2.2 Extended Euclidean Algorithm

The Extended Euclidean Algorithm determines, if present, the inverse of b modulo n:

1.b0 = b
2.n0 = n
3.t0 = 0
4.t = 1
5.q = n0 / b0 (rounded off)
6.r = n0 - q * b0
7.while r > 0 do
8.    temp = t0 - q * t
9.if temp >= 0 then temp = temp mod n
10.if temp < 0 then temp = n - (( -temp) mod n)
11.t0 = t
12.t = temp
13.n0 = b0
14.b0 = r
15.q = n0 / b0 (abgerundet)
16.r = n0 - q * b0
17.if b0 != 1 then
b has no inverse modulo n
else
b-1 = t mod n



source




2.3 Large Primes