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Abstract

Probabilistic latent semantic indexing (PLSI) represents
documents of a collection as mixture proportions of latent
topics, which are learned from the collection by an expec-
tation maximization (EM) algorithm. New documents or
queries need to be folded into the latent topic space by
a simplified version of the EM-algorithm. During PLSI-
Folding-in of a new document, the topic mixtures of the
known documents are ignored. This may lead to a subopti-
mal model of the extended collection.

Our new approach incorporates the topic mixtures of
the known documents in a Bayesian way during folding-
in. That knowledge is modeled as prior distribution over
the topic simplex using a kernel density estimate of Dirich-
let kernels. We demonstrate the advantages of the new
Bayesian folding-in using real text data.

1. Introduction and Context

The representation of documents as mixture proportions
of latent topics is proven to be a useful tool for text mining.
PLSI [7, 9] opened the way for probabilistic modeling of
such representations. Applications and extensions of the
PLSI model in the field of data mining include author-topic
identification [14], textmining [11], and web usage mining
[10].

A major drawback is, that PLSI is susceptible to over-
fitting [13]. The following research explored different
Bayesian extensions of the PLSI model itself as well as
alternative undirected models to overcome different draw-
backs. Bayesian extensions include latent Dirichlet allo-
cation (LDA) [4], which models the topic mixture propor-
tions of a document as hidden variables drawn from a sin-
gle Dirichlet distribution, rather than as parameters of the
model. PLSI has been shown to be a special case of LDA
[6], when it uses an uninformative flat Dirichlet as prior.
A more sophisticated variant are Dirichlet process priors

[1]. Another Bayesian extension of PLSI are correlated
topic models [2], which use a log-normal prior distribution.
Such a distribution can capture correlations between topics,
which cannot be expressed by a single Dirichlet. Dynamic
topic models [3] extent this framework to model temporal
changes in the latent topic space.

Alternative models from the class of undirect graphical
models are undirected PLSI [15] and the Rate Adapting
Poisson (RAP) model [5]. Those models are trained using
contrastive divergence and avoid drawbacks of Bayesian di-
rected models like the explaining away effect.

A general drawback of the proposed extensions and al-
ternatives to PLSI is, that the improvements come at the
price of increased runtime costs for the inference algo-
rithms, which hinders an applications to large data.

A more direct approach to learning of document similar-
ities are Fisher information kernels [8], which make use of
the latent decomposition of the term-document matrix and
model the similarities between pairs of documents directly.
A further improvement is reported in [12].

PLSI is not a generative model, so a special procedure
called folding-in has to be used to get the topic mixture
proportions of new documents or queries. Our approach
extends PLSIs folding-in in a Bayesian way instead of ex-
tending the PLSI model itself. Instead of using a maximum
likelihood estimator for folding-in, a maximum a posteriori
estimator is employed, which uses a kernel density estimate
as prior. The used kernel is a Dirichlet density. The advan-
tage of a kernel density estimate as prior is, that only a very
few model assumptions are made. Also such a prior can ex-
press correlations between topics similar to the correlated
topic model. The contributions of the paper are: (i) we pro-
pose a new Bayesian model for folding-in, and (ii) a new
inference technique is introduced which uses EM to maxi-
mize the posterior consisting of the word likelihood and the
kernel density prior.

The reminder of the paper is structured as follows, in sec-
tion 2 we elaborate on the problems of PLSIs folding-in. In
section 3, we introduce the new Bayesian model for folding-



in. Next, we present in section 4 an applications of how to
use our new model. Last, we describe our experiments on
real text data in section 5 and conclude the paper.

2. Problems of PLSIs Folding-In

Let D be a collection of N documents D =
{d1, . . . , dN}, and each document is represented by a
bag-of-words, which is a subset of the vocabulary of
size V . PLSI [7, 9] models the co-occurrence of doc-
uments and words as a mixture of K latent classes
P (d,w) = P (d)

∑K
j=1 P (w|aj)P (aj |d). The parame-

ters of the model are the topic-word associations �ω =
[ωij = P (wi|aj)]i=1,...,V,j=1,...,K and the document-topic
mixtures �θ = [θlj = P (aj |dl)]l=1,...,N,j=1,...,K , which are
estimated by an EM-algorithm. A K-dimensional row �θl of
the latter matrix denotes the mixture of topics for document
l.

PLSI is not a generative model, thus the topic mixture
P (a|dq) is not known for some new query document dq.
The proposed folding-in procedure [7, 9] estimates those
topic mixtures by running the original EM with fixed word-
topic associations. So, the folding-in procedure reduces
to (only the underlined probabilities are allowed to change
during the algorithm):

E-step: P (aj |wi, dq) =
P (wi|aj)P (aj |dq)∑K

j′=1 P (wi|aj′)P (aj′ |dq)
(1)

M-step: P (aj |dq) =

∑V
i=1 n(dq, wi)P (aj |wi, dq)

n(dq)
(2)

The quantities n(dq, wi) and n(dq) are the number of oc-
currences of word wi in dq and the number of words in dq

respectively.
Note, that the topic mixture for dq is found indepen-

dently from the mixtures of the other documents in the col-
lection. The only influence comes through the fixed word-
topic associations P (w|a), which are involved in the right-
hand side of the E-step.

This can lead to problems in case of short queries, which
do not contain a rich vocabulary as the documents in the
collection. Since those queries have much fewer words
with non-zero frequencies as the documents and the raw
frequency counts are one in most cases, PLSIs folding-in
tends to produce topic mixtures which are dominated by a
single latent aspect.

The following example demonstrates this behavior. The
data consists of 28 + 28 + 28 = 84 documents, which
are randomly sampled from three different newsgroups of
the 20newsgroups collection. Stopwords as well as infre-
quent words are eliminated and the other words are reduced
to their stemmed form by Porters stemmer. PLSI run with

K = 3 latent aspects maps the documents of the three dif-
ferent newsgroups (small circles, squares and triangles) into
the latent space shown by the simplex in figure 1(a). The six
big filled icons represent topic mixtures of documents from
the respective groups found by PLSIs folding-in. The other
six big empty icons simulate short queries each consists of
four words sampled from one of the folded-in documents.
Figures 1(b) and (c) show the likelihoods induced by the left
most filled big triangle and the upper most big empty trian-
gle query respectively. While the long document induces a
likelihood with a clear local maximum, the likelihood of the
short version of that query has its maximum close to the up-
per corner of the simplex. Only the tempered version of EM
[7] used for folding prevents that the short query is mapped
to that border position. However, note the empty big cir-
cles and squares representing the other short queries in the
left and right corners of the simplex in figure 1(a), where
the tempered EM could not help. Such a corner position
indicates that only a single latent aspect is present in such
a query, which, however, in case of short queries is mainly
caused by the small sample of words in the query. So, PLSIs
folding-in cannot account for alternative mappings of such
a query, which might correspond to alternative semantic in-
terpretations of the query.

3. Bayesian Folding-In

We present a new Bayesian way to estimate the mix-
ture proportions of topics �θq for a new (query) document
dq with the word vector �wq = (w1, . . . , wM ). Instead of
maximizing the likelihood P (�wq|�θq, �θ, �ω) of the word vec-
tor �wq with respect to �θq, the posterior P (�θq|�wq, �θ, �ω) is
maximized. This maximum a posteriori (MAP) approach
requires the definition of a prior distribution for the mixture
of topics �θq of the new (query) document.

Because the topic mixtures of the documents in the col-
lection shall have some influence on the topic mixture of the
query, the prior is modeled as kernel density estimate using
a Dirichlet distribution as kernel function. Kernel density
estimation is a quite flexible method, which does not make
strong assumptions about the distribution of the topic mix-
tures of the documents in the collections. Note, that while
the Dirichlet is a unimodal distribution, which assumes in-
dependence between the topics, a kernel density estimate
using Dirichlet kernels can be multimodal and is able to
capture dependencies between topics.

We propose to derive the unknown topic mixture �θq of an
new document using a MAP estimator. The following quan-
tities are given for the MAP estimator, namely the word
vector �wq of the new document, the topic mixtures of the
documents in the training set �θ, and the word topic associa-
tions �ω.
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Figure 1. (a) topic mixtures (small icons) for documents learned by PLSI and for queries of differ-
ent sizes (short: big empty icons, long: big filled icons) generated by PLSI folding-in, (b) typical
likelihood in the topic simplex for a long query, (c) short query.

The maximum a posteriori estimator for the new docu-
ment dq is the topic mixture �θMAP

q which maximizes

P (�θq|�wq, �θ, �ω) ∝ P (�wq|�θq, �θ, �ω)P (�θq|�θ, �ω). (3)

where P (�wq|�θq, �θ, �ω) is the word likelihood and P (�θq|�θ, �ω)
is the topic mixture prior. We assume the query words to be
independent, so the word likelihood can be decomposed as
follows

P (�wq|�θq, �ω) =
M∏
i=1

K∑
j=1

P (wi|aj)P (aj |q) =
M∏
i=1

K∑
j=1

ωijθqj

(4)
Since the likelihood of the query words does not depend on
�θ, for ease of writing that parameter is neglected.

The prior is modeled by a kernel density estimate based
on �θ using Dirichlet kernels. The topic mixtures are vectors,
which have non-negative components and all components
sum to one, ∀1 ≤ l ≤ N :

∑K
j=1 θlj = 1. That means

those vectors reside in a K − 1-simplex which is embedded
in the R

K . The Dirichlet distribution is suitable for such
data since the density function integrates to one over the
simplex. The density of a Dirichlet is given by

Dir(�x|�α) =
Γ(

∑K
j=1 αj)∏K

j=1 Γ(αj)
·

K∏
j=1

x
αj−1
j (5)

The jth coordinate of the mode of a Dirichlet is
αj−1

(
∑ K

j′=1 αj′ )−K
with αj > 1. The parameter vector �α con-

trols both, the location of the mode in the simplex and the
sharpness of the mode. Note, that multiplying the parameter
vector with a scalar larger one means to increase the sharp-
ness of the mode but it does not change the location of the
mode.

A kernel density estimate sums over the given data, in
our case the topic mixtures of the documents in the collec-
tion. The influence of each topic mixture θl is modeled by

(a) (b)

Figure 2. Examples of density estimates with
Dirichlet kernels, (a) h = 0.07, (b) h = 0.02.

a single Dirichlet distribution, which has the mode located
at θl. In order to control the sharpness of such a Dirichlet
kernel the smoothing parameter h is introduced. Further,
the function α(�θ) = 1/h · �θ + �1 is introduced, which takes
a topic mixture vector and outputs the corresponding para-
meter vector of the Dirichlet, s.t. the mode is exactly at �θ.
Large h makes the kernels flat and stretches the influences
of the individual topic mixtures over the simplex, whereas
small values for h make the kernels like sharp peaks. Mod-
eling the prior as kernel density estimate based on the topic
mixtures of the documents in the collection gives the fol-
lowing formular:

P (�θq|�θ) =
1
N

N∑
l=1

Dir(�θq|α(�θl)) (6)

Since the prior does not depend on �ω, for ease of writing
that parameter is neglected. Examples for priors in a (3−1)-
simplex with different values for h are shown in figure 2.

The direct maximization of the righthand side of (3) with
respect to �θq is difficult. Therefore, hidden variables are in-
troduced for both, the word likelihood and the prior distri-



bution to make the maximization tractable with an EM al-
gorithm. First, the likelihood of a single word P (wi|�θq, �ω)
can be seen as a mixture model of K topics. Thus, a hidden
binary variable �yi ∈ {0, 1}K is introduced, which indicates
which topic aj explains word wi. Second, the prior P (�θq|�θ)
(eq. 6) also can be seen as a mixture model with N Dirichlet
components and equal component priors. Again, a hidden
binary variable �z ∈ {0, 1}N is introduced, which indicates
the Dirichlet component which explains a specific setting of
the topic mixture of the query document. All hidden vari-
ables are concatenated to the vectors �y and �z respectively.
Instead maximizing the posterior shown in (3), the loga-
rithm of the posterior of the extended model is maximized.

log[P (�θq|�wq, �y, �z, �ω)]

= log[P (�wq, �y|�θq, �ω)P (�θq, �z|�θ, �ω)]

=
[ M∑

i=1

K∑
j=1

yij

[
log ωij + log θqj

]]
+

N∑
l=1

zl

[
log

1
N

+ log Dir(�θq|�α(�θl))
]
+ c (7)

The constant c comes from the normalization constant
in equation (3). The maximization is done by an EM-
algorithm, which starts with some settings for the wanted
topic mixture of the query document �θ(0) and iteratively
computes posteriors for the hidden variables in the E-step
and updates the topic mixture of the query document in the
M-step. The posteriors for the hidden variables computed
in the E-step are given by the following formulas

P (yij = 1|wi, �θ
(s)
q , �ω) =

ωij · θ(s)
qj∑K

j′=1 ωij′ · θ(s)
qj′

= gij (8)

P (zl = 1|�θ(s)
q , �θ) =

Dir
(
�θ
(s)
q |α(�θl)

)
∑N

l′=1 Dir
(
�θ
(s)
q |α(�θl′)

) = hl (9)

In the M-step, the posteriors of the hidden variables are
used as substitutes for the unknown values of the hidden
variables and plugged into (7). That equation is maximized
wrt. to �θq under the condition

∑K
j=1 θqj = 1, which give

the following update formula for the wanted topic mixture

θ
(s+1)
qj =

∑M
i=1 gij + 1/h

∑N
l=1 hlθlj

M + 1/h
(10)

Note that Bayesian folding-in includes PLSIs folding-in as a
special case, namely when h = ∞. In that case, the Dirich-
let kernels become flat and the posteriors hl of the prior
vanish in the update formula 10. Therefore, the posteriors
of the prior become irrelevant and with n(dq) = M the for-
mulas (8) and (10) reduce to the equations (1) and (2) of
PLSI folding-in respectively.

Figure 3 continues the small example from the previous
section and shows the results for Bayesian folding-in using
the same data as before. The contour lines in figure 3(a)
show the prior, which is the same for all queries. Also note,
the multimodal posterior (figure 3c) for the short query (big
empty triangle in the upper corner). The other less likely
modes of that posterior may correspond to alternative se-
mantic interpretations.

4. Bayesian Folding-In and Information Re-
trieval

An important application of Bayesian folding-in is in-
formation retrieval. A document collection is processed by
PLSI and then queries are folded into the latent document
space by Bayesian folding-in.

Bayesian folding-in determines for a query or a new doc-
ument mixture proportions of latent topics, which can be
seen as a K-dimensional vector. The found vector can be
used to determine similarities to the documents of a given
collection, for which such latent representations have been
determined before. Usually the similarities are calculated
by cosine similarity. Hofmann proposed model averaging
[7], which linearly combines for a particular query docu-
ment pair the similarities determined on different latent rep-
resentations (for which usually the number of aspect varies)
as well as the similarity determined on the original term rep-
resentations.

Bayesian folding opens two new degrees of freedom to
tune a ranking, namely (i) the choice of the starting point
for folding-in and (ii) varying the smoothing parameter h.

Bayesian folding-in of a new document is a determin-
istic process, which starts with an initial topic mixture for
that document and iteratively performs hill climbing on the
posterior density eq. (3) until it converges towards a local
maximum. However, as the posterior may have multiple
local maxima it depends on the starting point of the hill
climbing to which of the local maxima Bayesian folding-
in converges in the end. From a data modeling perspective,
the local maximum with the largest posterior, i.e. the global
maximum, is preferred since we are doing maximum a pos-
teriori estimation. The posterior consists of two factors, one
which depends on the given new document or query at hand,
i.e. called likelihood, while the other factor, called prior, is
independent of the documents to be folded in. From practi-
cal experience the prior itself has typically multiple modes
and is mainly responsible for the multimodal structure of the
posterior. The likelihood has usually a single mode only. In
order to find a small and general set of starting points, which
is independent from the document to be folded in, the prior
is analyzed only. Note, that the prior is independent of the
document to be folded in, so that the following analysis has
to be done only once as a preprocessing step.
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Figure 3. (a) topic mixtures for documents learned by PLSI and for queries of different sizes (short,
long) generated by Bayesian folding-in, (b) typical posterior in the topic simplex for a long query, (c)
short query.

The idea to get the set of starting points is to determine
the local maxima of the prior. This can be done by hill
climbing as well. Note, that this maximization is a special
case of the maximization of the posterior (3), just that the
likelihood becomes a constant.

The answer to the choice of the starting point is a differ-
ent one from the information retrieval perspective as from
the data modeling perspective. For data modeling it is fine
to select the start point, for which Bayesian folding-in con-
verges to the global maximum of the posterior. However,
information retrieval has the more informal goal to find doc-
uments relevant to the query. As especially short queries
may have ambiguous meanings, the most appropriate rep-
resentation of the query in the latent space may be not nec-
essarily correspond to the global maximum of the posterior.
Alternative meanings correspond to the set of local maxima
of the posterior. Using relevance feedback, an information
retrieval system may learn, which local maximum is most
appropriate for the user and the retrieval task at hand. If
no additional information (e.g. from relevance feedback)
is available, the global maximum of the posterior gives the
most plausible query representation.

The second new degree of freedom is the smoothing pa-
rameter h. The larger h the more the prior changes to-
wards a flat distribution. The kernel density-based prior
helps to focus onto the relevant part of the latent space dur-
ing folding-in. A very large value for h effectively removes
that focus and allows all possible mixture proportions of the
latent topics for the query representation. In terms of infor-
mation retrieval, the parameter h can be seen as a quantity,
which specifies how general the query can be interpreted to
match documents in the returned ranking. Large h means
more general, since the latent query representation is al-
lowed to take mixture proportions which are quite distant
from the rest of the documents in the collection.

The discussion shows the potential of Bayesian folding-

in for improvements in information retrieval.

5 Experiments

The performance of Bayesian folding-in is studied exper-
imentally regarding the following question: does Bayesian
folding-in improve the retrieval of relevant documents for a
given query.

The lemur package1 is used for preprocessing the text
data as well as training PLSI on a collection of documents.
Additionally the trec eval2 tool (version 8.1) is used to as-
sist the evaluation of the information retrieval experiments.

The proposed applications of Bayesian folding-in are
evaluated on public benchmark text corpora. The evalua-
tion of Bayesian folding-in in combination with PLSI can
be done on text documents only. For the application to in-
formation retrieval, queries with known relevant documents
are additionally needed as ground truth to estimate preci-
sion and recall. Three document collections are used in this
study, namely CISI (1460 document, 112 queries), CRAN
(1400 documents, 225 queries) and MED (1030 documents,
30 queries) 3.

Preprocessing of documents and queries includes elimi-
nation of stop words using the list from the SMART project4

as well as the elimination of infrequent words. Infrequent
words are those that occur in less than δ documents and
hence are assumed to obey only a minor information con-
tent about the topic mixture. In the experiment δ is chosen
to be 5, which guarantees that no query becomes empty.
Documents containing less than 5 words are neglected. All
terms are reduced to word stems using Porters stemmer.

1lemurproject.org
2trec.nist.gov/trec eval
3ir.dcs.gla.ac.uk/resources/test collections/
4http://ir.dcs.gla.ac.uk/resources/ir sys
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Figure 4. Interpolated recall-precision graphs
of (i) PLSI folding-in, and (ii) Bayesian
folding-in.

The experiment aims at assessing the capability of
Bayesian folding-in in comparison to PLSI folding-in to be
of use for information retrieval. In detail, the task is to re-
trieve a set of documents as the answers to a query with
high precision and recall. For a given document collection
and a query, recall is defined as:|a ∩ b|/|a| with the defined
sets of relevant documents a and the retrieved documents b
respectively. Whereas precision is defined as: |a ∩ b|/|b|.

First PLSI is performed on the entire document collec-
tions for 32 topics resulting in a co-occurrence data model
for each of them. As discussed in section 2 this model
estimates for each document a vector in the latent topic
space consisting of the learned document-topic mixtures.
Afterwards, the queries are folded into the previously ob-
tained co-occurrence data model using (i) PLSI folding-in,
and (ii) Bayesian folding-in. The similarity between each
query and all documents of the collection is computed and
postprocessed to give interpolated recall-precision graphs.
Similarities are defined as a weighted sum of similarities
in the latent semantic space which are influenced by either
PLSI-FI or B-FI, and in the original vector space spanned
by the words. This strategy was proposed by Hofmann [7].
Since this study first aims at comparing PLSI-FI and B-FI
the weight-parameter was not tuned.

The results of the experiment are shown in figure 4. In
general, the more the graph approaches the upper right cor-
ner the better the retrieval performance. In case of CISI
and MED one observes that for all recall values, the ob-
tained precisions using Bayesian folding-in are above those
using PLSI folding-in. In case of CRAN, the performances
of both methods are comparable. These results indicate that
(i) the B-FI benefit using a prior distribution over document-
topic mixtures, and (ii) the B-FI is advantageous in informa-
tion retrieval tasks.

The smoothing parameter h = 0.02 has been kept con-
stant during all experiments. This value gives a reasonable
small set of different starting points for Bayesian folding-
in. In general, that parameter should be estimated, like

other hyper-parameters of Bayesian methods, using cross-
validation.

To conclude, a new Bayesian method for folding new
documents into the latent space determined by PLSI is pro-
posed. Additionally to PLSIs folding-in, a prior based on
kernel density estimation with Dirichlet kernels is used.
Bayesian folding-in has been applied to information re-
trieval and its superior performance in the scenario has been
demonstrated on real document collections.
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