
Abstract
Cluster analysis is a primary method for database mining. It is
either used as a stand-alone tool to get insight into the distribution
of a data set, e.g. to focus further analysis and data processing, or as
a preprocessing step for other algorithms operating on the detected
clusters. Almost all of the well-known clustering algorithms require
input parameters which are hard to determine but have a significant
influence on the clustering result. Furthermore, for many real-data
sets there does not even exist a global parameter setting for which
the result of the clustering algorithm describes the intrinsic cluster-
ing structure accurately. We introduce a new algorithm for the pur-
pose of cluster analysis which does not produce a clustering of a
data set explicitly; but instead creates an augmented ordering of the
database representing its density-based clustering structure. This
cluster-ordering contains information which is equivalent to the
density-based clusterings corresponding to a broad range of param-
eter settings. It is a versatile basis for both automatic and interactive
cluster analysis. We show how to automatically and efficiently
extract not only ‘traditional’ clustering information (e.g. representa-
tive points, arbitrary shaped clusters), but also the intrinsic cluster-
ing structure. For medium sized data sets, the cluster-ordering can
be represented graphically and for very large data sets, we introduce
an appropriate visualization technique. Both are suitable for inter-
active exploration of the intrinsic clustering structure offering addi-
tional insights into the distribution and correlation of the data.

Keywords
Cluster Analysis, Database Mining, Visualization

1. Introduction
Larger and larger amounts of data are collected and stored in da-
tabases increasing the need for efficient and effective analysis
methods to make use of the information contained implicitly in
the data. One of the primary data analysis tasks is cluster analy-
sis which is intended to help a user to understand the natural
grouping or structure in a data set. Therefore, the development
of improved clustering algorithms has received a lot of attention
in the last few years (c.f. section 2).
Roughly speaking, the goal of a clustering algorithm is to group
the objects of a database into a set of meaningful subclasses. A
clustering algorithm can be used either as a stand-alone tool to
get insight into the distribution of a data set, e.g. in order to focus
further analysis and data processing, or as a preprocessing step
for other algorithms which operate on the detected clusters. Ap-

plications of clustering are, for instance, the creation of thematic
maps in geographic information systems by clustering feature
spaces [Ric 83], the detection of clusters of objects in geograph-
ic information systems and to explain them by other objects in
their neighborhood ([NH 94] and [KN 96]), or the clustering of
a Web-log database to discover groups of similar access patterns
which may correspond to different user profiles [EKS+ 98].
Most of the recent research related to the task of clustering has
been directed towards efficiency. The more serious problem,
however, is effectivity, i.e. the quality or usefulness of the result.
Although most traditional clustering algorithms do not scale
well with the size and/or dimension of the data set, one way to
overcome this problem is to use sampling in combination with a
clustering algorithm (see e.g. [EKX 95]). This approach works
well for many applications and clustering algorithms. The idea
is to apply a clustering algorithm A only to a subset of the whole
database. From the result of A for the subset, we can then infer
a clustering of the whole database which does not differ much
from the result obtained by applying A to the whole data set.
However, this does not ensure that the result of the clustering al-
gorithm A actually reflects the natural groupings in the data.
There are three interconnected reasons why the effectivity of
clustering algorithms is a problem. First, almost all clustering al-
gorithms require values for input parameters which are hard to
determine, especially for real-world data sets containing high-
dimensional objects. Second, the algorithms are very sensible to
these parameter values, often producing very different partition-
ings of the data set even for slightly different parameter settings.
Third, high-dimensional real-data sets often have a very skewed
distribution that cannot be revealed by a clustering algorithm us-
ing only one global parameter setting.
In this paper, we introduce a new algorithm for the purpose of
cluster analysis which does not produce a clustering of a data set
explicitly; but instead creates an augmented ordering of the da-
tabase representing its density-based clustering structure. This
cluster-ordering contains information which is equivalent to the
density-based clusterings corresponding to a broad range of pa-
rameter settings. It is a versatile basis for both automatic and in-
teractive cluster analysis. We show how to automatically and
efficiently extract not only ‘traditional’ clustering information
(e.g. representative points, arbitrary shaped clusters), but also
the intrinsic clustering structure. For medium sized data sets, the
cluster-ordering can be represented graphically and for very
large data sets, we introduce an appropriate visualization tech-
nique. Both are suitable for interactive exploration of the intrin-
sic clustering structure offering additional insights into the
distribution and correlation of the data.
The rest of the paper is organized as follows. Related work on

OPTICS: Ordering Points To Identify the Clustering Structure

Mihael Ankerst, Markus M. Breunig, Hans-Peter Kriegel, Jörg Sander

Institute for Computer Science, University of Munich
Oettingenstr. 67, D-80538 Munich, Germany

phone: +49-89-2178-2226, fax: +49-89-2178-2192
{ankerst | breunig | kriegel | sander}@dbs.informatik.uni-muenchen.de

Proc. ACM SIGMOD’99 Int. Conf. on Management of Data, Philadelphia PA, 1999.

clustering is briefly discussed in section 2. In section 3, the ba-
sic notions of density-based clustering are defined and our new
algorithm OPTICS to create an ordering of a data set with re-
spect to its density-based clustering structure is presented. The
application of this cluster-ordering for the purpose of cluster
analysis is demonstrated in section 4. Both, automatic as well
as interactive techniques are discussed. Section 5 concludes the
paper with a summary and a short discussion of future research.

2. Related Work
Existing clustering algorithms can be broadly classified into hi-
erarchical and partitioning clustering algorithms (see e.g.
[JD 88]). Hierarchical algorithms decompose a database D of n
objects into several levels of nested partitionings (clusterings),
represented by a dendrogram, i.e. a tree that iteratively splits D
into smaller subsets until each subset consists of only one ob-
ject. In such a hierarchy, each node of the tree represents a clus-
ter of D. Partitioning algorithms construct a flat (single level)
partition of a database D of n objects into a set of k clusters such
that the objects in a cluster are more similar to each other than
to objects in different clusters.
The Single-Link method is a commonly used hierarchical clus-
tering method [Sib 73]. Starting with the clustering obtained by
placing every object in a unique cluster, in every step the two
closest clusters in the current clustering are merged until all
points are in one cluster. Other algorithms which in principle
produce the same hierarchical structure have also been suggest-
ed (see e.g. [JD 88], [HT 93]) .
Another approach to hierarchical clustering is based on the
clustering properties of spatial index structures. The GRID
[Sch 96] and the BANG clustering [SE 97] apply the same ba-
sic algorithm to the data pages of different spatial index struc-
tures. A clustering is generated by a clever arrangement of the
data pages with respect to their point density. This approach,
however, is not well suited for high-dimensional data sets be-
cause it is based on the effectivity of these structures as spatial
access methods. It is well-known that the performance i.e. the
clustering properties of spatial index structures degenerate with
increasing dimensionality of the data space (e.g. [BKK 96]).
Recently, the hierarchical algorithm CURE has been proposed
in [GRS 98]. This algorithm stops the creation of a cluster hier-
archy if a level consists of k clusters where k is one of several in-
put parameters. It utilizes multiple representative points to
evaluate the distance between clusters, thereby adjusting well
to arbitrary shaped clusters and avoiding the single-link effect.
This results in a very good clustering quality. To improve the
scalability, random sampling and partitioning (pre-clustering)
are used. The authors do provide a sensitivity analysis using
one synthetic data set, showing that although some parameters
can be varied without impacting the quality of the clustering.
The parameter setting does have a profound influence on the re-
sult.
Optimization based partitioning algorithms typically represent
clusters by a prototype. Objects are assigned to the cluster rep-
resented by the most similar (i.e. closest) prototype. An itera-
tive control strategy is used to optimize the whole clustering
such that, e.g., the average or squared distances of objects to its
prototypes are minimized. Consequently, these clustering algo-
rithms are effective in determining a good clustering if the clus-

ters are of convex shape, similar size and density, and if their
number k can be reasonably estimated.
Depending on the kind of prototypes, one can distinguish
k-means, k-modes and k-medoid algorithms. For k-means algo-
rithms (see e.g. [Mac 67]), the prototype is the mean value of all
objects belonging to a cluster. The k-modes [Hua 97] algorithm
extends the k-means paradigm to categorical domains. For
k-medoid algorithms (see e.g. [KR 90]), the prototype, called
the medoid, is one of the objects located near the “center” of a
cluster. The algorithm CLARANS introduced by [NH 94] is an
improved k-medoid type algorithm restricting the huge search
space by using two additional user-supplied parameters. It is
significantly more efficient than the well-known k-medoid al-
gorithms PAM and CLARA presented in [KR 90], nonetheless
producing a result of nearly the same quality.
Density-based approaches apply a local cluster criterion and are
very popular for the purpose of database mining. Clusters are
regarded as regions in the data space in which the objects are
dense, and which are separated by regions of low object density
(noise). These regions may have an arbitrary shape and the
points inside a region may be arbitrarily distributed.
A common way to find regions of high-density in the dataspace
is based on grid cell densities [JD 88]. A histogram is construct-
ed by partitioning the data space into a number of non-overlap-
ping regions or cells. Cells containing a relatively large number
of objects are potential cluster centers and the boundaries be-
tween clusters fall in the “valleys” of the histogram. The suc-
cess of this method depends on the size of the cells which must
be specified by the user. Cells of small volume will give a very
“noisy” estimate of the density, whereas large cells tend to over-
ly smooth the density estimate.
In [EKSX 96], a density-based clustering method is presented
which is not grid-based. The basic idea for the algorithm
DBSCAN is that for each point of a cluster the neighborhood of
a given radius (ε) has to contain at least a minimum number of
points (MinPts) where ε and MinPts are input parameters.
Another density-based approach is WaveCluster [SCZ 98],
which applies wavelet transform to the feature space. It can de-
tect arbitrary shape clusters at different scales and has a time
complexity of O(n). The algorithm is grid-based and only ap-
plicable to low-dimensional data. Input parameters include the
number of grid cells for each dimension, the wavelet to use and
the number of applications of the wavelet transform.
In [HK 98] the density-based algorithm DenClue is proposed.
This algorithm uses a grid but is very efficient because it only
keeps information about grid cells that do actually contain data
points and manages these cells in a tree-based access structure.
This algorithm generalizes some other clustering approaches
which, however, results in a large number of input parameters.
Also the density- and grid-based clustering technique CLIQUE
[AGG+ 98] has been proposed for mining in high-dimensional
data spaces. Input parameters are the size of the grid and a glo-
bal density threshold for clusters. The major difference to all
other clustering approaches is that this method also detects sub-
spaces of the highest dimensionality such that high-density
clusters exist in those subspaces.
Another recent approach to clustering is the BIRCH method
[ZRL 96] which cannot entirely be classified as a hierarchical
or partitioning method. BIRCH constructs a CF-tree which is a

hierarchical data structure designed for a multiphase clustering
method. First, the database is scanned to build an initial in-
memory CF-tree which can be seen as a multi-level compres-
sion of the data that tries to preserve the inherent clustering
structure of the data. Second, an arbitrary clustering algorithm
can be used to cluster the leaf nodes of the CF-tree. Because
BIRCH is reasonably fast, it can be used as a more intelligent
alternative to data sampling in order to improve the scalability
of clustering algorithms.

3. Ordering The Database With Respect To
The Clustering Structure

3.1 Motivation
An important property of many real-data sets is that their intrin-
sic cluster structure cannot be characterized by global density
parameters. Very different local densities may be needed to re-
veal clusters in different regions of the data space. For example,
in the data set depicted in Figure 1, it is not possible to detect the
clusters A, B, C1, C2, and C3 simultaneously using one global
density parameter. A global density-based decomposition
would consist only of the clusters A, B, and C, or C1, C2, and C3.
In the second case, the objects from A and B are noise.

The first alternative to
detect and analyze such
clustering structures is to
use a hierarchical cluster-
ing algorithm, for in-
stance the single-link
method. This alternative,
however, has two draw-
backs. First, in general it
suffers considerably
from the single-link ef-
fect, i.e. from the fact that
clusters which are con-

nected by a line of few points having a small inter-object dis-
tance are not separated. Second, the results produced by
hierarchical algorithms, i.e. the dendrograms, are hard to under-
stand or analyze for more than a few hundred objects.
The second alternative is to use a density-based partitioning al-
gorithm with different parameter settings. However, there are
an infinite number of possible parameter values. Even if we use
a very large number of different values - which requires a lot of
secondary memory to store the different cluster memberships
for each point - it is not obvious how to analyze the results and
we may still miss the interesting clustering levels.
The basic idea to overcome these problems is to run an algo-
rithm which produces a special order of the database with re-
spect to its density-based clustering structure containing the
information about every clustering level of the data set (up to a
“generating distance” ε), and is very easy to analyze.

3.2 Density-Based Clustering
The key idea of density-based clustering is that for each object
of a cluster the neighborhood of a given radius (ε) has to contain
at least a minimum number of objects (MinPts), i.e. the cardi-
nality of the neighborhood has to exceed a threshold. The for-
mal definitions for this notion of a clustering are shortly

introduced in the following. For a detailed presentation see
[EKSX 96].

Definition 1: (directly density-reachable)
Object p is directly density-reachable from object q wrt. ε
and MinPts in a set of objects D if
1) p ∈ Nε(q) (Nε(q) is the subset of D contained in the
ε-neighborhood of q.)
2) Card(Nε(q)) ≥ MinPts (Card(N) denotes the cardinal-
ity of the set N)

The condition Card(Nε(q)) ≥ MinPts is called the “core object
condition”. If this condition holds for an object p, then we call
p a “core object”. Only from core objects, other objects can be
directly density-reachable.

Definition 2: (density-reachable)
An object p is density-reachable from an object q wrt. ε
and MinPts in the set of objects D if there is a chain of ob-
jects p1, ..., pn, p1 = q, pn = p such that pi ∈D and pi+1 is
directly density-reachable from pi wrt. ε and MinPts.

Density-reachability is the transitive hull of direct density-
reachability. This relation is not symmetric in general. Only
core objects can be mutually density-reachable.

Definition 3: (density-connected)
Object p is density-connected to object q wrt. ε and MinPts
in the set of objects D if there is an object o ∈D such that
both p and q are density-reachable from o wrt. ε and
MinPts in D.

Density-connectivity is a symmetric relation. Figure 2 illus-
trates the definitions on a sample database of 2-dimensional
points from a vector space. Note that the above definitions only
require a distance measure and will also apply to data from a
metric space.
A density-based cluster is now defined as a set of density-con-
nected objects which is maximal wrt. density-reachability and
the noise is the set of objects not contained in any cluster.

Definition 4: (cluster and noise)
Let D be a set of objects. A cluster C wrt. ε and MinPts in
D is a non-empty subset of D satisfying the following con-
ditions:
1) Maximality: ∀p,q ∈D: if p ∈C and q is density-reach-
able from p wrt. ε and MinPts, then also q ∈C.
2) Connectivity: ∀p,q ∈ C: p is density-connected to q wrt.
ε and MinPts in D.
Every object not contained in any cluster is noise.

Note that a cluster contains not only core objects but also ob-
jects that do not satisfy the core object condition. These objects

Figure 1. Clusters wrt. different
density parameters

A

B

C C1 C2

C3

p

qo

p

q

Figure 2. Density-reachability and connectivity

p density-reachable from q

q not density-reachable from p

p and q density-connected

to each other by o

- called “border objects” of the cluster - are, however, directly
density-reachable from at least one core object of the cluster (in
contrast to noise objects).
The algorithm DBSCAN [EKSX 96], which discovers the
clusters and the noise in a database according to the above def-
initions, is based on the fact that a cluster is equivalent to the set
of all objects in D which are density-reachable from an arbitrary
core object in the cluster (c.f. lemma 1 and 2 in [EKSX 96]).
The retrieval of density-reachable objects is performed by iter-
atively collecting directly density-reachable objects. DBSCAN
checks the ε-neighborhood of each point in the database. If the
ε-neighborhood Nε(p) of a point p has more than MinPts points,
a new cluster C containing the objects in Nε(p) is created. Then,
the ε-neighborhood of all points q in C which have not yet been
processed is checked. If Nε(q) contains more than MinPts
points, the neighbors of q which are not already contained in C
are added to the cluster and their ε-neighborhood is checked in
the next step. This procedure is repeated until no new point can
be added to the current cluster C.

3.2.1 Density-Based Cluster-Ordering
To introduce the notion of a density-based cluster-ordering, we
first make the following observation: for a constant MinPts-val-
ue, density-based clusters with respect to a higher density (i.e.
a lower value for ε) are completely contained in density-con-
nected sets with respect to a lower density (i.e. a higher value
for ε). This fact is illustrated in figure 3, where C1 and C2 are
density-based clusters with respect to ε2 < ε1 and C is a density-
based cluster with respect to ε1 completely containing the sets
C1 and C2.

Consequently, we could
extend the DBSCAN
algorithm such that sev-
eral distance parame-
ters are processed at the
same time, i.e. the den-
sity-based clusters with
respect to different den-
sities are constructed si-

multaneously. To produce a consistent result, however, we
would have to obey a specific order in which objects are pro-
cessed when expanding a cluster. We always have to select an
object which is density-reachable with respect to the lowest ε
value to guarantee that clusters with respect to higher density
(i.e. smaller ε values) are finished first.
Our new algorithm OPTICS works in principle like such an ex-
tended DBSCAN algorithm for an infinite number of distance
parameters εi which are smaller than a “generating distance” ε
(i.e. 0 ≤ εi ≤ ε). The only difference is that we do not assign clus-
ter memberships. Instead, we store the order in which the ob-
jects are processed and the information which would be used by
an extended DBSCAN algorithm to assign cluster member-
ships (if this were at all possible for an infinite number of pa-
rameters). This information consists of only two values for each
object: the core-distance and a reachability-distance, intro-
duced in the following definitions.

Definition 5: (core-distance of an object p)
Let p be an object from a database D, let ε be a distance
value, let Nε(p) be the ε-neighborhood of p, let MinPts be
a natural number and let MinPts-distance(p) be the dis-
tance from p to its MinPts’ neighbor. Then, the core-dis-
tance of p is defined as core-distanceε,MinPts(p) =

The core-distance of an object p is simply the smallest distance
ε’ between p and an object in its ε-neighborhood such that p
would be a core object with respect to ε’ if this neighbor is con-
tained in Nε(p). Otherwise, the core-distance is UNDEFINED.

Definition 6: (reachability-distance object p w.r.t. object o)
Let p and o be objects from a database D, let Nε(o) be the
ε-neighborhood of o, and let MinPts be a natural number.
Then, the reachability-distance of p with respect to o is de-
fined as reachability-distanceε,MinPts(p, o) =

Intuitively, the reachability-distance of an object p with respect
to another object o is the smallest distance such that p is directly
density-reachable from o if o is a core object. In this case, the
reachability-distance cannot be smaller than the core-distance
of o because for smaller distances no object is directly
density-reachable from o. Otherwise, if o is not a core object,
even at the generating distance ε, the reachability-distance of p
with respect to o is UNDEFINED. The reachability-distance of
an object p depends on the core object with respect to which it
is calculated. Figure 5 illustrates the notions of core-distance
and reachability-distance.

Our algorithm OPTICS creates
an ordering of a database, addi-
tionally storing the core-dis-
tance and a suitable
reachability-distance for each
object. We will see that this in-
formation is sufficient to extract
all density-based clusterings
with respect to any distance ε’
which is smaller than the gener-
ating distance ε from this order.
Figure 5 illustrates the main
loop of the algorithm OPTICS.
At the beginning, we open a file

OrderedFile for writing and close this file after ending the loop.
Each object from a database SetOfObjects is simply handed
over to a procedure ExpandClusterOrder if the object is not yet
processed.
The pseudo-code for the procedure ExpandClusterOrder is de-
picted in figure 6 . The procedure ExpandClusterOrder first re-
trieves the ε-neighborhood of the object Object passed from the
main loop OPTICS, sets its reachability-distance to UNDE-

MinPts = 3C

C1
C2

ε2 ε1

Figure 3. Illustration of “nested”
density-based clusters

UNDEFINED if Card Nε p()() MinPts<,

MinPts-distance p() otherwise,






UNDEFINED if Nε o() MinPts<,

max core-distance o() distance o p,(),(),otherwise






ε

o

p1

p2

co
re

(o
)

r(p2)

r(p1)

Figure 4. Core-distance(o),
reachability-distances

r(p1,o), r(p2,o) for MinPts=4

FINED and determines its core-distance. Then, Object is writ-
ten to OrderedFile. The IF-condition checks the core object
property of Object and if it is not a core object at the generating
distance ε, the control is simply returned to the main loop
OPTICS which selects the next unprocessed object of the data-
base. Otherwise, if Object is a core object at a distance ≤ ε, we
iteratively collect directly density-reachable objects with re-
spect to ε and MinPts. Objects which are directly density-reach-
able from a current core object are inserted into the seed-list
OrderSeeds for further expansion. The objects contained in
OrderSeeds are sorted by their reachability-distance to the
closest core object from which they have been directly density-
reachable. In each step of the WHILE-loop, an object currentO-
bject having the smallest reachability-distance in the seed-list is
selected by the method OrderSeeds:next(). The ε-neighbor-
hood of this object and its core-distance are determined. Then,
the object is simply written to the file OrderedFile with its core-
distance and its current reachability-distance. If currentObject
is a core object, further candidates for the expansion may be in-
serted into the seed-list OrderSeeds.

Insertion into the seed-list and the handling of the reachability-
distances is managed by the method OrderSeeds::up-
date(neighbors, CenterObject) depicted in figure 7. The reach-
ability-distance for each object in the set neighbors is
determined with respect to the center-object CenterObject. Ob-
jects which are not yet in the priority-queue OrderSeeds are
simply inserted with their reachability-distance. Objects which
are already in the queue are moved further to the top of the
queue if their new reachability-distance is smaller than their
previous reachability-distance.
Due to its structural equivalence to the algorithm DBSCAN, the

run-time of the algorithm OPTICS is nearly the same as the run-
time for DBSCAN. We performed an extensive performance
test using different data sets and different parameter settings. It
simply turned out that the run-time of OPTICS was almost con-
stantly 1.6 times the run-time of DBSCAN. This is not surpris-
ing since the run-time for OPTICS as well as for DBSCAN is
heavily dominated by the run-time of the ε-neighborhood que-
ries which must be performed for each object in the database,
i.e. the run-time for both algorithms is O(n * run-time of an
ε-neighborhood query).
To retrieve the ε-neighborhood of an object o, a region query
with the center o and the radius ε is used. Without any index
support, to answer such a region query, a scan through the
whole database has to be performed. In this case, the run-time
of OPTICS would be O(n2). If a tree-based spatial index can be
used, the run-time is reduced to O (n log n) since region queries
are supported efficiently by spatial access methods such as the
R*-tree [BKSS 90] or the X-tree [BKK 96] for data from a vec-
tor space or the M-tree [CPZ 97] for data from a metric space.
The height of such a tree-based index is O(log n) for a database
of n objects in the worst case and, at least in low-dimensional
spaces, a query with a “small” query region has to traverse only
a limited number of paths. Furthermore, if we have a direct ac-
cess to the ε-neighborhood, e.g. if the objects are organized in
a grid, the run-time is further reduced to O(n) because in a grid
the complexity of a single neighborhood query is O(1).
Having generated the augmented cluster-ordering of a database
with respect to ε and MinPts, we can extract any density-based
clustering from this order with respect to MinPts and a cluster-
ing-distance ε’ ≤ ε by simply “scanning” the cluster-ordering
and assigning cluster-memberships depending on the reach-
ability-distance and the core-distance of the objects. Figure 8
depicts the algorithm ExtractDBSCAN-Clustering which per-
forms this task.
We first check whether the reachability-distance of the current
object Object is larger than the clustering-distance ε’. In this
case, the object is not density-reachable with respect to ε’ and
MinPts from any of the objects which are located before the
current object in the cluster-ordering. This is obvious, because
if Object had been density-reachable with respect to ε’ and
MinPts from a preceding object in the order, it would have been
assigned a reachability-distance of at most ε’. Therefore, if the
reachability-distance is larger than ε’, we look at the core-dis-
tance of Object and start a new cluster if Object is a core object
with respect to ε’ and MinPts; otherwise, Object is assigned to

Figure 5. Algorithm OPTICS

OPTICS (SetOfObjects, ε, MinPts, OrderedFile)
OrderedFile.open();
FOR i FROM 1 TO SetOfObjects.size DO

Object := SetOfObjects.get(i);
IF NOT Object.Processed THEN

ExpandClusterOrder(SetOfObjects, Object, ε,
MinPts, OrderedFile)

OrderedFile.close();
END; // OPTICS

Figure 6. Procedure ExpandClusterOrder

ExpandClusterOrder(SetOfObjects, Object, ε, MinPts,
OrderedFile);

neighbors := SetOfObjects.neighbors(Object, ε);
Object.Processed := TRUE;
Object.reachability_distance := UNDEFINED;
Object.setCoreDistance(neighbors, ε, MinPts);
OrderedFile.write(Object);
IF Object.core_distance <> UNDEFINED THEN

OrderSeeds.update(neighbors, Object);
WHILE NOT OrderSeeds.empty() DO

currentObject := OrderSeeds.next();
neighbors:=SetOfObjects.neighbors(currentObject, ε);
currentObject.Processed := TRUE;
currentObject.setCoreDistance(neighbors, ε, MinPts);
OrderedFile.write(currentObject);
IF currentObject.core_distance<>UNDEFINED THEN

OrderSeeds.update(neighbors, currentObject);
END; // ExpandClusterOrder

Figure 7. Method OrderSeeds::update()

OrderSeeds::update(neighbors, CenterObject);
c_dist := CenterObject.core_distance;
FORALL Object FROM neighbors DO

IF NOT Object.Processed THEN
new_r_dist:=max(c_dist,CenterObject.dist(Object));
IF Object.reachability_distance=UNDEFINED THEN

Object.reachability_distance := new_r_dist;
insert(Object, new_r_dist);

ELSE // Object already in OrderSeeds
IF new_r_dist<Object.reachability_distance THEN

Object.reachability_distance := new_r_dist;
decrease(Object, new_r_dist);

END; // OrderSeeds::update

NOISE (note that the reachability-distance of the first object in
the cluster-ordering is always UNDEFINED and that we as-
sume UNDEFINED to be greater than any defined distance). If
the reachability-distance of the current object is smaller than ε’,
we can simply assign this object to the current cluster because
then it is density-reachable with respect to ε’ and MinPts from
a preceding core object in the cluster-ordering.
The clustering created from a cluster-ordered data set by Ex-
tractDBSCAN-Clustering is nearly indistinguishable from a
clustering created by DBSCAN. Only some border objects may
be missed when extracted by the algorithm ExtractDBSCAN-
Clustering if they were processed by the algorithm OPTICS be-
fore a core object of the corresponding cluster had been found.
However, the fraction of such border objects is so small that we
can omit a postprocessing (i.e. reassign those objects to a clus-
ter) without much loss of information.
To extract different density-based clusterings from the cluster-
ordering of a data set is not the intended application of the OP-
TICS algorithm. That an extraction is possible only demon-
strates that the cluster-ordering of a data set actually contains
the information about the intrinsic clustering structure of that
data set (up to the generating distance ε). This information can
be analyzed much more effectively by using other techniques
which are presented in the next section.

4. Identifying The Clustering Structure
The OPTICS algorithm generates the augmented cluster-order-
ing consisting of the ordering of the points, the reachability-val-
ues and the core-values. However, for the following interactive
and automatic analysis techniques only the ordering and the
reachability-values are needed. To simplify the notation, we
specify them formally:

Definition 7: (results of the OPTICS algorithm)
Let DB be a database containing n points. The OPTICS al-
gorithm generates an ordering of the points o:{1..n} → DB
and corresponding reachability-values r:{1..n} → R≥0.

The visual techniques presented below fall into two main cate-
gories. First, methods to get a general overview of the data.
These are useful for gaining a high-level understanding of the
way the data is structured. It is important to see most or even all
of the data at once, making pixel-oriented visualizations the
method of choice. Second, once the general structure is under-

stood, the user is interested in zooming into the most interesting
looking subsets. In the corresponding detailed view, single
(small or large) clusters are being analyzed and their relation-
ships examined. Here it is important to show the maximum
amount of information which can easily be understood. Thus,
we present different techniques for these two different tasks.
Because the detailed technique is a direct graphical representa-
tion of the cluster-ordering, we present it first and then continue
with the high-level technique.
A totally different set of requirements is posed for the automatic
techniques. They are used to generate the intrinsic cluster struc-
ture automatically for further (automatic) processing steps.

4.1 Reachability Plots And Parameters
The cluster-ordering of a data set can be represented and under-
stood graphically. In principle, one can see the clustering struc-
ture of a data set if the reachability-distance values r are plotted
for each object in the cluster-ordering o. Figure 9 depicts the
reachability-plot for a very simple 2-dimensional data set. Note
that the visualization of the cluster-order is independent from
the dimension of the data set. For example, if the objects of a
high-dimensional data set are distributed similar to the distribu-
tion of the 2-dimensional data set depicted in figure 9 (i.e. there
are three “Gaussian bumps” in the data set), the “reachability-
plot” would also look very similar.
A further advantage of cluster-ordering a data set compared to
other clustering methods is that the reachability-plot is rather
insensitive to the input parameters of the method, i.e. the gen-
erating distance ε and the value for MinPts. Roughly speaking,
the values have just to be “large” enough to yield a good result.
The concrete values are not crucial because there is a broad
range of possible values for which we always can see the clus-
tering structure of a data set when looking at the corresponding
reachability-plot. Figure 10 shows the effects of different pa-
rameter settings on the reachability-plot for the same data set
used in figure 9. In the first plot we used a smaller generating
distance ε, for the second plot we set MinPts to the smallest pos-
sible value. Although, these plots look different from the plot
depicted in figure 9, the overall clustering structure of the data
set can be recognized in these plots as well.
The generating distance ε influences the number of clustering-
levels which can be seen in the reachability-plot. The smaller
we choose the value of ε, the more objects may have an UN-
DEFINED reachability-distance. Therefore, we may not see
clusters of lower density, i.e. clusters where the core objects are
core objects only for distances larger than ε.

Figure 8. Algorithm ExtractDBSCAN-Clustering

ExtractDBSCAN-Clustering (ClusterOrderedObjs,ε’, MinPts)
// Precondition: ε' ≤ generating dist ε for ClusterOrderedObjs

ClusterId := NOISE;
FOR i FROM 1 TO ClusterOrderedObjs.size DO

Object := ClusterOrderedObjs.get(i);
IF Object.reachability_distance > ε’ THEN

// UNDEFINED > ε
IF Object.core_distance ≤ ε’ THEN

ClusterId := nextId(ClusterId);
Object.clusterId := ClusterId;

ELSE
Object.clusterId := NOISE;

ELSE // Object.reachability_distance ≤ ε’
Object.clusterId := ClusterId;

END; // ExtractDBSCAN-Clustering

cluster-order

reachability-
distance

Figure 9. Illustration of the cluster-ordering
of the objects

ε

ε = 10, MinPts = 10

The optimal value for
ε is the smallest value
so that a density-
based clustering of
the database with re-
spect to ε and MinPts
consists of only one
cluster containing al-
most all points of the
database. Then, the
information of all
clustering levels will
be contained in the
reachability-plot.
However, there is a
large range of values

around this optimal value for which the appearance of the
reachability-plot will not change significantly. Therefore, we
can use rather simple heuristics to determine the value for ε, as
we only need to guarantee that the distance value will not be too
small. For example, we can use the expected k-nearest-neigh-
bor distance (for k = MinPts) under the assumption that the ob-
jects are randomly distributed, i.e. under the assumption that
there are no clusters. This value can be determined analytically
for a data space DS containing N points. The distance is equal to
the radius r of a d-dimensional hypersphere S in DS where S
contains exactly k points. Under the assumption of a random
distribution of the points, it holds that

 and the volume of a d-dimensional

hypersphere S having a radius r is ,

where Γ denotes the Gamma-function. The radius r can be

computed as .

The effect of the MinPts-value on the visualization of the clus-
ter-ordering can be seen in figure 10. The overall shape of the
reachability-plot is very similar for different MinPts values.
However, for lower values the reachability-plot looks more
jagged and higher values for MinPts smoothen the curve.
Moreover, high values for MinPts will significantly weaken
possible “single-link” effects. Our experiments indicate that we
will always get good results using values between 10 and 20.
To show that the reachability-plot is very easy to understand,
we will finally present some examples. Figure 11 depicts the
reachability-plot for a very high-dimensional real-world data

set containing 10,000 greyscale images of 32x32 pixels. Each
object is represented by a vector containing the greyscale value
for each pixel. Thus, the dimension of the vectors is equal to
1,024. The Euclidean distance function was used as similarity
measure for these vectors.
Figure 12 shows a further example of a reachability-plot having
characteristics which are very typical for real-world data sets.
For a better comparison of the real distribution with the cluster-
ordering of the objects, the data set was synthetically generated
in two dimensions. Obviously, there is no global density-
threshold (which is graphically a horizontal line in the reach-
ability plot) that can reveal all the structure in the data set.
To make the simple reachability-plots even more useful, we can
additionally show an attribute-plot. For every point it shows the
attribute values (discretized into 256 levels) for every dimen-
sion. Underneath each reachability value we plot for each di-
mension one rectangle in a shade of grey corresponding to the
value of this attribute. The width of the rectangle is the same as
the width of the reachability bar above it, whereas the height
can be chosen arbitrarily by the user. In figure 13, for example,
we see the reachability-plot and the attribute-plot for 9-dimen-
sional data from weather stations. The data is very clearly struc-
tured into a number of clusters with very little noise in between
as we can see from the reachability-plot. From the attribute-
plot, we can furthermore see that the points in each cluster are
close to each other mainly because within the set of points be-
longing to a cluster, the attribute values in all but one attribute
does not differ significantly. A domain expert knowing what
each dimension represents will find this to be a very useful in-
formation.
To summarize, the reachability-plot is a very intuitive means
for getting a clear understanding of the structure of the data. Its
shape is mostly independent from the choice of the parameters
ε and MinPts. If we supplement it further with attribute-plots,
we can even gain information about the dependencies between
the clustering structure and the attribute values.

Figure 10. Effects of parameter set-
tings on the cluster-ordering

ε = 5, MinPts = 10

ε
UNDEF

ε
UNDEF

ε = 10, MinPts = 2

VolumeS

VolumeDS
N

-------------------------- k×=

VolumeS r()
πd

Γ d
2
--- 1+()

-------------------- r
d×=

r
VolumeDS k× Γ× d

2
--- 1+()

N πd×
--d=

Figure 11. Part of the reachability-plot for 1,024-d image data

.

Figure 12. Reachability-plots for a data set with hierarchical
clusters of different sizes, densities and shapes

Figure 13. Reachability-plot and attribute-plot for 9-d data
from weather stations

4.2 Visualizing Large High-d Data Sets
The applicability of the reachability-plot is obviously limited to
a certain number of points as well as dimensions. After scroll-
ing a couple of screens of information, it is hard to remember
the overall structure in the data. Therefore, we investigate ap-
proaches for visualizing very large amounts of multidimension-
al data (see [Kei 96b] for an excellent classification of the
existing techniques).
In order to increase the amount of both, the number of objects
and the number of dimensions that can be visualized simulta-
neously, we could apply commonly used reduction techniques
like the wavelet transform [GM 85] or the Discrete Fourier
transform [PTVF 92] and display a compressed reachability-
plot. The major drawback of this approach, however, is that we
may loose too much information, especially with respect to the
structural similarity of the reachability-plot to the attribute-plot.
Therefore, we decided to extend a pixel-oriented technique
[Kei 96a] which can visualize more data items at the same time
than other visualization methods.
The basic idea of pixel-oriented techniques is to map each at-
tribute value to one colored pixel and to present the attribute
values belonging to different dimensions in separate subwin-
dows. The color of a pixel is determined by the HSI color scale
which is a slight modification of the scale generated by the
HSV color model. Within each subwindow, the attribute values
of the same record are plotted at the same relative position.

Definition 8: (pixel-oriented visualization technique)
Let Col be the HSI color scale, d the number of dimen-
sions, domd the domain of the dimension d and the
pixelspace on the screen. Then a pixel-oriented visualiza-
tion technique (PO) consists of the two independent map-
pings SO (sorting) and DV (data-values). SO maps the
cluster-ordering to the arrangement, and DV maps the at-
tribute-values to colors: PO=(SO,DV) with

SO : and DV : .

Existing pixel-oriented
techniques differ only in the
arrangements SO within the
subwindows. For our appli-
cation, we extended the Cir-
cle Segments technique
introduced in [AKK 96].
The Circle Segments tech-
nique maps n-dimensional
objects to a circle which is
partitioned into n segments
representing one attribute

each. Figure 14 illustrates the partitioning of the circle as well
as the arrangement within each segment. It starts in the middle
of the circle and continues to the outer border of the correspond-
ing segment in a line-by-line fashion. Since the attribute values
of the same record are all mapped to the same relative position,
their coherence is perceived as parts of a circle.
For the purpose of cluster analysis, we extend the Circle Seg-
ments technique as follows:
• Discretization. Discretization of the data values can obvi-

ously improve the distinctness of the cluster structure. We
generate the mapping of the data values to the greyscale
colormap dynamically, thus enabling the user to adapt the
mapping to his domain-specific requirements. Since Col
in the mapping DV is a user-specified colormap (e.g.
greyscale), the discretization determines the number of
different colors used.

• Small clusters. Potentially interesting clusters may con-
sist of relatively few data points which should be percepti-
ble even in a very large data set. Let be the
sidelength of a square of pixels used for visualizing one
attribute value. We have extended the mapping SO to

SO’, with SO’: .
 can be chosen by the user.

• Progression of the ordered data values. The color scale
Col in the mapping DV should reflect the progression of
the ordered data values in a way that is well perceptible.
Our experiments indicate that the greyscale colormap is
most suitable for the detection of hierarchical clusters.

In the following example using real-world data, the cluster-or-
dering of both, the reachability values and the attribute values,
is mapped from the inside of the circle to the outside. DV maps
high values to light colors and low data values to dark colors.
As far as the reachability values are concerned, the significance
of a cluster is correlated to the darkness of the color since it re-
flects close distances. For all other attributes, the color repre-
sents the attribute value. Due to the same relative position of the
attributes and the reachability for each object, the relations be-
tween the attribute values and the clustering structure can be
easily examined.
In figure 15, 30,000 records consisting of 16 attributes of fou-
rier-transformed data describing contours of industrial parts
and the reachability attribute are visualized by setting the dis-
cretization to just three different colors, i.e. white, grey and
black. The representation of the reachability attribute clearly
shows the general clustering structure, revealing many small to
medium sized clusters (regions with black pixels). Only the

ℵ ℵ×

1…n{ } ℵ ℵ×→ domd()d
Col→

Figure 14. The Circle Segments
technique for 8-d data

attr. 1

attr. 2

attr. 3

attr. 4attr. 5

attr. 6

attr. 7

attr. 8

Resolution

1…n{ } ℵ ℵ× Resolution
2–⋅→

Resolution

attr. 9

attr. 7

attr. 15

attr. 16

reachability attr. 1

attr. 2

attr. 5

Figure 15. Clustering structure of 30,000 16-d objects

attr. 6

attr. 8attr. 10

attr. 11

attr. 12

attr. 13

attr. 14 attr. 4

attr. 3

outside of the segments which depicts the end of the ordering
shows a large cluster surrounded by white-colored regions de-
noting noise. When comparing the progression of all attribute
values within this large cluster, it becomes obvious that at-
tributes 2 - 9 all show an (up to discretization) constant value,
whereas the other attributes differ in their values in the last third
part. Moreover, in contrast to all other attributes, attribute 9 has
its lowest value within the large cluster and its highest value
within other clusters. When focussing on smaller clusters like
the third black stripe in the reachability attribute, the user iden-
tifies the attributes 5, 6 and 7 as the ones which have values dif-
fering from the neighboring attribute values in the most
remarkable fashion. Many other data properties can be revealed
when selecting a small subset and visualizing it with the reach-
ability-plot in great detail.
To summarize, with the extended Circle Segments technique
we are able to visualize large multidimensional data sets sup-
porting the user in analyzing attributes in relation to the overall
cluster structure and to other attributes. Note that attributes not
used by the OPTICS clustering algorithm to determine the clus-
ter structure can also be mapped to additional segments for the
same kind of analysis.

4.3 Automatic Techniques
In this section, we will look at how to analyze the cluster-order-
ing automatically and generate a hierarchical clustering struc-
ture from it. The general idea of our algorithm is to identify
potential start-of-cluster and end-of-cluster regions first, and
then to combine matching regions into (nested) clusters.

4.3.1 Concepts And Formal Definition Of A Cluster
In order to identify
the clusters con-
tained in the data-
base, we need a
notion of “clusters”
based on the results
of the OPTICS al-
gorithm. As we
have seen above,
the reachability value of a point corresponds to the distance of
this point to the set of its predecessors. From this (and the way
OPTICS chooses the order) we know that clusters are dents in
the reachability-plot. For example, in figure 16 we see a cluster
starting at point #3 and ending at point #16. Note that point #3,
which is the last point with a high reachability value, is part of
the cluster, because its high reachability indicates that it is far
away from the points #1 and #2. It has to be close to point #4,
however, because point #4 has a low reachability value, indi-
cating that it is close to one of the points #1, #2 or #3. Because
of the way OPTICS chooses the next point in the cluster-order-
ing, it has to be close to #3 (if it were close to point #1 or
point #2 it would have been assigned index 3 and not index 4).
A similar argument holds for point #16, which is the last point
with a low reachability value, and therefore is also part of the
cluster.
Clusters in real-world data sets do not always start and end with
extremely steep points. For example, in figure 17 we see three
clusters that are very different. The first one starts with a very

steep point A and ends with a very steep point B, whereas the
second one ends with a number of not-quite-so-steep steps in
point D. To capture these different degrees of steepness, we
need to introduce a parameter ξ:

Definition 9: (ξ-steep points)
A point is called a ξ-steep upward point iff
it is ξ% lower than its successor:

A point is called a ξ-steep downward point
iff p’s successor is ξ% lower:

Looking closely at
figure 17, we see that all
clusters start and end in a
number of upward points,
most of, but not all are ξ-
steep. These ‘regions’ start
with ξ-steep points, fol-
lowed by a few points
where the reachability val-
ues level off, followed by

more ξ-steep points. We will call such a region a steep area.
More precisely, a ξ-steep upward area starts at a ξ-steep upward
point, ends at a ξ-steep upward point and always keeps on going
upward or level. Also, it must not contain too many consecutive
non-steep points. Because of the core condition used in OP-
TICS, a natural choice for “not too many” is “fewer than
MinPts”, because MinPts consecutive non-steep points can be
considered as a separate cluster and should not be part of a steep
area. Our last requirement is that ξ-steep areas be as large as
possible, leading to the following definition:

Definition 10: (ξ-steep areas)
An interval is called a ξ-steep upward area

 iff it satisfies the following conditions:

- s is a ξ-steep upward point:

- e is a ξ-steep upward point:

- each point between s and e is at least as high as its prede-
cessor:

- I does not contain more than MinPts consecutive points
that are not ξ-steep upward:

- I is maximal:

A ξ-steep downward area is defined analogously
().

The first and the second cluster in figure 17 start at the begin-
ning of steep areas (points A and C) and end at the end of other
steep areas (points B and D), while the third cluster ends at
point F in the middle of a steep area extending up to point G.
Given these definitions, we can formalize the notion of a clus-

1 2 3 4 5 6 7 8 9 1 1 1 1 1 1 1 1 1 1 2 2

0 1 2 3 4 5 6 7 8 9 0 1

r

Figure 16. A cluster

p 1…n 1–{ }∈

UpPointξ p() r⇔ p() r p 1+() 1 ξ–()×≤

p 1…n 1–{ }∈

DownPointξ p() r⇔ p() 1 ξ–()× r p 1+()≤

A B C D E F G

Figure 17. Real world clusters

I s e,[]=

UpAreaξ I()

UpPointξ s()

UpPointξ e()

x s x< e≤, : r x() r x 1–()≥∀

s e,[] s e,[] : x s e,[]∈ :

UpPointξ x()¬

∀(

) e s– MinPts<⇒

(

)

⊆∀

J : ∀ I J⊆ UpAreaξ J(), I J=⇒()

DownAreaξ I()

ter. The following definition of a ξ-cluster consists of 4 condi-
tions, each will be explained in detail. Recall that the first point
of a cluster (called the start of the cluster) is the last point with
a high reachability value, and the last point of a cluster (called
the end of the cluster) is the last point with a low reachability
value.

Definition 11: (ξ-cluster)
An interval is called a ξ-cluster iff it
satisfies conditions 1 to 4:

1)

2)

3) a)
b)

4) (s,e) =

Conditions 1) and 2) simply state that the start of the cluster is
contained in a ξ-steep downward area D and the end of the clus-
ter is contained in a ξ-steep upward area U.
Condition 3a) states that the cluster has to consist of at least
MinPts points because of the core condition used in OPTICS.
Condition 3b) states that the reachability values of all points in
the cluster have to be at least ξ% lower than the reachability val-
ue of the first point of D and the reachability value of the first
point after the end of U.
Condition 4) determines the start and the end point. Depending
on the reachability values of the first point of D (called Reach-
Start) and the reachability of the first point after the end of U
(called ReachEnd), we distinguish three cases (c.f. figure 18).
First, if these two values are at most ξ% apart, the cluster starts
at the beginning of D and ends at the end of U (figure 18a). Sec-
ond, if ReachStart is more than ξ% higher than ReachEnd, the
cluster ends at the end of U, but starts at that point in D, that has
approximately the same reachability value as ReachEnd
(figure 18b, cluster starts at SoC). Otherwise (i.e. if ReachEnd
is more than ξ% higher than ReachStart), the cluster starts at the
first point of D and ends at that point in U, that has approximate-
ly the same reachability value as ReachStart (figure 18c, cluster
ends at EoC).

4.3.2 An Efficient Algorithm To Compute All ξ-Clusters
We will now present an efficient algorithm to compute all ξ-
clusters using only one pass over the reachability values of all
points. The basic idea is to identify all ξ-steep down and ξ-steep
up areas (we will drop the ξ for the remainder of this section and
just talk about steep up areas, steep down areas and clusters),
and combine them into clusters if a combination satisfies all of
the cluster conditions.
We will start out with a naïve implementation of definition 11.
The resulting algorithm, however, is inefficient, so in a second
step we will show how to transform it into a more efficient ver-
sion while still finding all clusters. The naïve algorithm works
as follows: We make one pass over all reachability values in the
order computed by OPTICS. Our main data structure is a set of
steep down regions SDASet which contains for each steep
down region encountered so far its start-index and end-index.
We start at index=0 with an empty SDASet.
While index < n do

① If a new steep down region starts at index, add it to SDASet
and continue to the right of it.
② If a new steep up region starts at index, combine it with ev-
ery steep down region in SDASet, check each combination
for fulfilling the cluster conditions and save it if it is a cluster
(computing s and e according to condition 4). Continue to the
right of this steep up region.
③ Otherwise, increment index.

Obviously, this algorithm finds all clusters. It makes one pass
over the reachability values and additionally one loop over each
potential cluster to check for condition 3b in step②. The num-
ber of potential clusters is quadratic in the number of steep up
and steep down regions. Most combinations do not actually re-
sult in clusters, however, so we employ two techniques to over-
come this inefficiency: First, we filter out most potential
clusters which will not result in real clusters, and second, we get
rid of the loop over all points in the cluster.
Condition 3b,

, is equiv-

alent to
(sc1)

(sc2) ,

so we can split it and check the sub-conditions (sc1) and (sc2)
separately. We can further transform (sc1) and (sc2) into the
equivalent condition (sc1*) and (sc2*), respectively:
(sc1*)

(sc2*)

In order to make use of conditions (sc1*) and (sc2*), we need to
introduce the concept of maximum-in-between values, or mib-
values, containing the maximum value between a certain point
and the current index. We will keep track of one mib-value for
each steep down region in SDASet, containing the maximum
value between the end of the steep down region and the current
index, and one global mib-value containing the maximum be-
tween the end of the last steep (up or down) region found and
the current index.
We can now modify the algorithm to keep track of all the mib-

C s e,[] 1 n,[]⊆=

clusterξ C() D∃⇔ sD eD,[] U, sU eU,[] with= =

DownAreaξ D() s D∈∧

UpAreaξ U() e U∈∧

e s– MinPts≥
x sD x eU : r x() min r sD() r eU(),() 1 ξ–()×≤()< <,∀

max x D |r x() r eU 1+()>∈{ } eU,() if r sD() 1 ξ–()× r eU 1+()≥

sD min x U | r x() r sD()<∈{ },() if r eU 1+() 1 ξ–()× r sD()≥

sD eU,() otherwise






 (b)

(c)

(a)

Figure 18. Three different types of clusters taken from an in-
dustrial parts data set

(a) (b) (c)

ReachStart ReachStart ReachStartReachEnd

ReachEnd

ReachEnd

SoC

EoC

x sD x eU : r x() min r sD() r eU(),() 1 ξ–()×≤()< <,∀

x sD x eU : r x() r sD() 1 ξ–()×≤()< <,∀ ∧

x sD x eU : r x() r eU() 1 ξ–()×≤()< <,∀

max x | sD x eU< <{ } r sD() 1 ξ–()×≤

max x | sD x eU< <{ } r eU() 1 ξ–()×≤

values and use them to save the expensive operations identified
above. The complete algorithm is shown in figure 19. Whenev-

er we encounter a new steep (up or down) area, we filter all
steep down areas from SDASet whose start multiplied by (1-ξ)
is smaller than the global mib-value, thus reducing the number
of potential clusters significantly and satisfying (sc1*) at the
same time (c.f. line (*) in figure 19). In step ② (line (**) in
figure 19), we compare the end of the steep up area U multi-
plied by (1-ξ) to the mib-value of the steep down area D, thus
satisfying (sc2*).
What we have gained by using the mib-values to satisfy condi-
tion (sc1*) and (sc2*) (implying that condition 3b is satisfied)
is that we reduced the number of potential clusters significantly
and saved the loop over all points in each remaining potential
cluster.

4.3.3 Experimental Evaluation
Figure 20 depicts the runtime of the cluster extraction algorithm
for a data set containing 64-dimensional color histograms ex-
tracted from TV-snapshots. It shows the scale-up between
10,000 and 100,000 data objects for different ξ values, proving
that the algorithm is indeed very fast and linear in the number of
data objects. For higher ξ-values the number of clusters increas-
es, resulting in a small (constant) increase in runtime. The pa-
rameter ξ can be used to control the steepness of the points a
cluster starts with and ends with. Higher ξ-values can be used to
find only the most significant clusters, lower ξ-values to find

less significant clusters which means that the choice depends on
the intended granularity of the analysis. All experiments were
performed on a 180 MHz PentiumPro with 96 MB RAM under
Windows NT 4.0. The clustering algorithm was implemented
in Java by using Sun’s JDK version 1.1.6. Note that Java is in-
terpreted byte-code, not compiled native code.
In section 4.1, we have identified clusters as “dents” in the
reachability-plot. Here, we demonstrate that what we call a dent
is, in fact, a ξ-cluster by showing synthetic, two-dimensional
points as well as high-dimensional real-world examples.
In figure 21, we see an example of three equal size clusters, two
of which are very close together, and some noise points. We see
that the algorithm successfully identifies this hierarchical struc-
ture, i.e. it finds the two clusters and the higher-level cluster
containing both of them. It also finds the third cluster, and even
identifies an especially dense region within it.
In figure 22, a reachability-plot for 64-dimensional color histo-
grams is shown. The cluster identified in region I contains
screen shots from one talk show. The cluster in region II con-
tains stock market data. It is very interesting to see that this clus-
ter actually consists of 2 smaller sub-clusters (both of which the
algorithm identifies; the first one, however, is filtered out be-
cause it does not contain enough points). These sub-clusters
contain the same stock-market-data shown on two different
TV-stations which (during certain times of the day) broadcast
the same program. The only difference between these clusters
is the TV-station symbol, which each station overlays in the
top-left hand corner of the image. Region III are pictures from
a tennis match, the subclusters are different camera angles.
Note that the notion of ξ-clusters nicely captures this hierachi-
cal structure.
We have seen that it is possible to extract the hierarchical cluster
structure from the augmented cluster-ordering generated by
OPTICS, both visually and automatically. The algorithm for the
automatic extraction is highly efficient and of a very high qual-
ity. Once we have the set of points belonging to a cluster, we can
easily compute traditional clustering information like represen-
tative points (e.g. medoid or mean) or shape descriptions.

SetOfSteepDownAreas = EmptySet
SetOfClusters = EmptySet
index = 0, mib = 0
WHILE(index < n)

mib = max(mib, r(index))
IF(start of a steep down area D at index)

update mib-values and filter SetOfSteepDownAreas(*)
set D.mib = 0
add D to the SetOfSteepDownAreas
index = end of D + 1; mib = r(index)

ELSE IF(start of steep up area U at index)
update mib-values and filter SetOfSteepDownAreas
index = end of U + 1; mib = r(index)
FOR EACH D in SetOfSteepDownAreas DO

IF(combination of D and U is valid AND(**)
satisfies cluster conditions 1, 2, 3a)
compute [s, e] add cluster to SetOfClusters

ELSE index = index + 1
RETURN(SetOfClusters)

Figure 19. Algorithm ExtractClusters

0
100
200
300
400
500
600
700
800

10 20 30 40 50 60 70 80 90 10
0

number of points (x 1000)

ti
m

e
[m

s]

ξ=0.001
ξ=0.03

ξ=0.05

Figure 20. Scale-up of the ξ-clustering algorithm for the 64-d
color histograms

Figure 21. 2-d synthetic data set (left), the reachability-plot
(right) and ξ=0.09-clustering (below the reachability-plot)

Figure 22. 64-d color histograms auto-clustered for ξ=0.02
I II III

5. Conclusions
In this paper, we proposed a cluster analysis method based on
the OPTICS algorithm. OPTICS computes an augmented clus-
ter-ordering of the database objects. The main advantage of our
approach, when compared to the clustering algorithms pro-
posed in the literature, is that we do not limit ourselves to one
global parameter setting. Instead, the augmented cluster-order-
ing contains information which is equivalent to the density-
based clusterings corresponding to a broad range of parameter
settings and thus is a versatile basis for both automatic and in-
teractive cluster analysis.
We demonstrated how to use it as a stand-alone tool to get in-
sight into the distribution of a data set. Depending on the size of
the database, we either represent the cluster-ordering graphical-
ly (for small data sets) or use an appropriate visualization tech-
nique (for large data sets). Both techniques are suitable for
interactively exploring the clustering structure, offering addi-
tional insights into the distribution and correlation of the data.
We also presented an efficient and effective algorithm to auto-
matically extract not only ‘traditional’ clustering information
but also the intrinsic, hierarchical clustering structure.
There are several opportunities for future research. For very
high-dimensional spaces, no index structures exist to efficiently
support the hypersphere range queries needed by the OPTICS
algorithm. Therefore it is infeasible to apply it in its current
form to a database containing several million high-dimensional
objects. Consequently, the most interesting question is whether
we can modify OPTICS so that we can trade-off a limited
amount of accuracy for a large gain in efficiency. Incrementally
managing a cluster-ordering when updates on the database oc-
cur is another interesting challenge. Although there are tech-
niques to update a ‘flat’ density-based decomposition
[EKS+ 98] incrementally, it is not obvious how to extend these
ideas to a density-based cluster-ordering of a data set.

6. References
[AGG+ 98] Agrawal R., Gehrke J., Gunopulos D., Raghavan P.:

“Automatic Subspace Clustering of High Dimensional Data
for Data Mining Applications”, Proc. ACM SIGMOD’98 Int.
Conf. on Management of Data, Seattle, WA, 1998, pp. 94-
105.

[AKK 96] Ankerst M., Keim D. A., Kriegel H.-P.: “‘Circle Seg-
ments': A Technique for Visually Exploring Large Multidi-
mensional Data Sets”, Proc. Visualization'96, Hot Topic
Session, San Francisco, CA, 1996.

[BKK 96] Berchthold S., Keim D., Kriegel H.-P.: “The X-Tree: An
Index Structure for High-Dimensional Data”, 22nd Conf. on
Very Large Data Bases, Bombay, India, 1996, pp. 28-39.

[BKSS 90] Beckmann N., Kriegel H.-P., Schneider R., Seeger B.:
“The R*-tree: An Efficient and Robust Access Method for
Points and Rectangles”, Proc. ACM SIGMOD Int. Conf. on
Management of Data, Atlantic City, NJ, ACM Press, New
York, 1990, pp. 322-331.

[CPZ 97] Ciaccia P., Patella M., Zezula P.: “M-tree: An Efficient
Access Method for Similarity Search in Metric Spaces”, Proc.
23rd Int. Conf. on Very Large Data Bases, Athens, Greece,
1997, pp. 426-435.

[EKSX 96] Ester M., Kriegel H.-P., Sander J., Xu X.: “A Density-
Based Algorithm for Discovering Clusters in Large Spatial
Databases with Noise”, Proc. 2nd Int. Conf. on Knowledge
Discovery and Data Mining, Portland, OR, AAAI Press,
1996, pp. 226-231.

[EKS+ 98] Ester M., Kriegel H.-P., Sander J., Wimmer M., Xu X.:
“ Incremental Clustering for Mining in a Data Warehousing

Environment”, Proc. 24th Int. Conf. on Very Large Data
Bases, New York, NY, 1998, pp. 323-333.

[EKX 95] Ester M., Kriegel H.-P., Xu X.: “Knowledge Discovery
in Large Spatial Databases: Focusing Techniques for Effi-
cient Class Identification”, Proc. 4th Int. Symp. on Large
Spatial Databases, Portland, ME, 1995, in: Lecture Notes in
Computer Science, Vol. 951, Springer, 1995, pp. 67-82.

[GM 85] Grossman A., Morlet J.: “Decomposition of functions
into wavelets of constant shapes and related transforms”.
Mathematics and Physics: Lectures on Recent Results, World
Scientific, Singapore, 1985.

[GRS 98] Guha S., Rastogi R., Shim K.: ”CURE: An Efficient
Clustering Algorithms for Large Databases”, Proc. ACM
SIGMOD Int. Conf. on Management of Data, Seattle, WA,
1998, pp. 73-84.

[HK 98] Hinneburg A., Keim D.: “An Efficient Approach to Clus-
tering in Large Multimedia Databases with Noise”, Proc. 4th
Int. Conf. on Knowledge Discovery & Data Mining, New
York City, NY, 1998.

[HT 93] Hattori K., Torii Y.: “Effective algorithms for the nearest
neighbor method in the clustering problem”, Pattern Recog-
nition, 1993, Vol. 26, No. 5, pp. 741-746.

[Hua 97] Huang Z.: “A Fast Clustering Algorithm to Cluster Very
Large Categorical Data Sets in Data Mining”, Proc. SIG-
MOD Workshop on Research Issues on Data Mining and
Knowledge Discovery, Tech. Report 97-07, UBC, Dept. of
CS, 1997.

[JD 88] Jain A. K., Dubes R. C.: “Algorithms for Clustering Da-
ta,” Prentice-Hall, Inc., 1988.

[Kei 96a] Keim D. A.: “Pixel-oriented Database Visualizations”,
in: SIGMOD RECORD, Special Issue on Information Visu-
alization, Dezember 1996.

[Kei 96b] Keim D. A.: “Databases and Visualization”, Proc. Tuto-
rial ACM SIGMOD Int. Conf. on Management of Data,
Montreal, Canada, 1996, p. 543.

[KN 96] Knorr E. M., Ng R.T.: “Finding Aggregate Proximity Re-
lationships and Commonalities in Spatial Data Mining,”
IEEE Trans. on Knowledge and Data Engineering, Vol. 8,
No. 6, December 1996, pp. 884-897.

[KR 90] Kaufman L., Rousseeuw P. J.: “Finding Groups in Data:
An Introduction to Cluster Analysis”, John Wiley & Sons,
1990.

[Mac 67] MacQueen, J.: “Some Methods for Classification and
Analysis of Multivariate Observations”, 5th Berkeley Symp.
Math. Statist. Prob., Vol. 1, pp. 281-297.

[NH 94] Ng R. T., Han J.: “Efficient and Effective Clustering
Methods for Spatial Data Mining”, Proc. 20th Int. Conf. on
Very Large Data Bases, Santiago, Chile, Morgan Kaufmann
Publishers, San Francisco, CA, 1994, pp. 144-155.

[PTVF 92] Press W. H.,Teukolsky S. A., Vetterling W. T., Flannery
B. P.: “Numerical Recipes in C”, 2nd ed., Cambridge Univer-
sity Press, 1992.

[Ric 83] Richards A. J.: “Remote Sensing Digital Image Analysis.
An Introduction”, 1983, Berlin, Springer Verlag.

[Sch 96] Schikuta E.: “Grid clustering: An efficient hierarchical
clustering method for very large data sets”. Proc. 13th Int.
Conf. on Pattern Recognition, Vol 2, 1996, pp. 101-105.

[SE 97] Schikuta E., Erhart M.: “The bang-clustering system:
Grid-based data analysis”. Proc. Sec. Int. Symp. IDA-97,
Vol. 1280 LNCS, London, UK, Springer-Verlag, 1997.

[SCZ 98] Sheikholeslami G., Chatterjee S., Zhang A.: “WaveClus-
ter: A Multi-Resolution Clustering Approach for Very Large
Spatial Databases”, Proc. 24th Int. Conf. on Very Large Data
Bases, New York, NY, 1998, pp. 428 - 439.

[Sib 73] Sibson R.: “SLINK: an optimally efficient algorithm for
the single-link cluster method”.The Comp. Journal, Vol. 16,
No. 1, 1973, pp. 30-34.

[ZRL 96] Zhang T., Ramakrishnan R., Linvy M.: “BIRCH: An Ef-
ficient Data Clustering Method for Very Large Databases”.
Proc. ACM SIGMOD Int. Conf. on Management of Data,
ACM Press, New York, 1996, pp.103-114.

