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Introduction -
    Preliminary Remarks

Problem: Analyze a (large) set of objects and
form a smaller number of groups using the
similarity and factual closeness between the
objects.

Goals:
– Finding representatives for homogenous groups ->

Data Reduction
–  Finding “natural” clusters and describe their

unknown properties -> “natural” Data Types
– Find useful and suitable groupings -> “useful”

Data Classes
– Find unusual data objects -> Outlier Detection



2

Hinneburg / Keim, PKDD 2000

Introduction -
    Preliminary Remarks

n Examples:
– Plant / Animal classification
– Book ordering
– Sizes for clothing
– Fraud detection

Hinneburg / Keim, PKDD 2000

Introduction -
    Preliminary Remarks

n Goal:objective instead of subjective
Clustering

n Preparations:
– Data Representation

• Feature Vectors, real / categorical values
• Strings, Key Words

– Similarity Function, Distance Matrix
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Introduction
n Application Example: Marketing

– Given:
• Large data base of customer data

containing
their properties and past buying records

– Goal:
• Find groups of customers with similar

behavior
• Find customers with unusual behavior

Hinneburg / Keim, PKDD 2000

Introduction
n Application Example:

Class Finding in CAD-Databases
– Given:

• Large data base of CAD data containing abstract
feature vectors (Fourier, Wavelet, ...)

– Goal:
• Find homogeneous groups of similar CAD parts
• Determine standard parts for each group
• Use standard parts instead of special parts

(→ reduction of the number of parts to be produced)
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The KDD-Process (CRISP)

Hinneburg / Keim, PKDD 2000

Data Mining vs. Statistic

n Algorithms scale to
large data sets

n Data is used secondary
for Data mining

n DM-Tools are for End-
User with Background

n Strategy:
– explorative
– cyclic

n Many Algorithms with
quadratic run-time

n Data is made for the
Statistic (primary use)

n Statistical Background
is often required

n Strategy:
– conformational,
– verifying
– few loops
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Data Mining, an inter-
disciplinary Research Area

Visualization

Logic Programming

Statistic
Data Bases

Machine Learning

Data Mining

Hinneburg / Keim, PKDD 2000

Introduction

n Related Topics
– Unsupervised Learning (AI)
– Data Compression
– Data Analysis / Exploration
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Role of Clustering in the
KDD Process
n Clustering is beside Classification and

Association Rules Mining a basic technique
for Knowledge Discovery.

Clustering

Association
Rules Classification

Frequent
Pattern

Separation of
classes

Hinneburg / Keim, PKDD 2000

Introduction

Problem Description
n Given:

A data set of N  data items with each have a
d-dimensional data feature vector.

n Task:
Determine a natural, useful partitioning of the
data set into a number of clusters (k) and
noise.
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Introduction

From the Past ...

n Clustering is a well-known problem in

statistics [Sch 64, Wis 69, DH 73, Fuk 90]

n more recent research in
– machine learning [Roj 96],

– databases [CHY 96], and

– visualization [Kei 96] ...

Hinneburg / Keim, PKDD 2000

Introduction

... to the Future
n Effective and efficient clustering algorithms for

large high-dimensional data sets with high
noise level

n Requires Scalability with respect to
– the number of data points (N)

– the number of dimensions (d)

– the noise level

n New Understanding of Problems
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Overview ( First Lesson)

1. Introduction1. Introduction

2. Clustering Methods2. Clustering Methods
2.1 Model- and Optimization-based Approaches

2.2 Linkage-based Methods / Linkage Hierarchies

2.3 Density-based Approaches

2.4 Categorical Clustering

From the Past ... 

... to the Future

3. Techniques for Improving the Efficiency3. Techniques for Improving the Efficiency

4. Recent Research Topics4. Recent Research Topics

5. Summary and Conclusions5. Summary and Conclusions
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Model-based Approaches

n Optimize the parameters for a given model
Statistic

Statistic / KDD
Artificial Intelligence•K-Means/LBG

•CLARANS

•EM

•LBG-U

•K-Harmonic Means

•Kohonen Net/ SOM

•Neural Gas/ Hebb Learning

•Growing Networks
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Model-based Methods:
Statistic/KDD

n K-Means [Fuk 90]

n Expectation Maximization [Lau 95]

n CLARANS [NH 94]

n Foccused CLARANS [EKX 95]

n LBG-U [Fri 97]

n K-Harmonic Means [ZHD 99, ZHD 00]

Hinneburg / Keim, PKDD 2000

n Determine k prototypes (p) of a given data set

n Assign data points to nearest prototype

n Minimize distance criterion:

K-Means / LBG [Fuk 90, Gra 92]

∑ ∑
∈ ∈

=
Pp Rx p

xpdistDPDE 2),(/1),(

n Iterative Algorithm
– Shift the prototypes towards the mean of their

point set

– Re-assign the data points to the nearest prototype

Set-Voronoi pRp →
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K-Means: Example

Hinneburg / Keim, PKDD 2000

Expectation Maximization [Lau 95]

n Generalization of k-Means
(è probabilistic assignment of points to clusters)

n Baisc Idea:
– Estimate parameters of k Gaussians

– Optimize the probability, that the mixture of
parameterized Gaussians fits the data

– Iterative algorithm similar to k-Means
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CLARANS [NH 94]

n Medoid Method:
– Medoids are special

data points

– All data points are
assigned to the
nearest medoid

n Optimization Criterion:

Hinneburg / Keim, PKDD 2000

n CLARANS uses two bounds to restrict
the optimization: num_local, max_neighbor

n Impact of the Parameters:
– num_local     Number of iterations
– max_neighbors     Number of tested 

neighbors per iteration

Bounded Optimization [NH 94]
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n Graph Interpretation:
– Search process can be  symbolized by a graph
– Each node corresponds to a specific set of medoids
– The change of one medoid corresponds to a jump to a

neighboring node in the search graph

CLARANS

n Complexity Considerations:
– The search graph has      nodes and each node

has N*k edges
– The search is bound by a fixed number of jumps (num_local)

in the search graph
– Each jump is optimized by randomized search and costs

max_neighbor scans over the data (to evaluate the cost
function)
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LBG-U [Fri 97]

n Pick the prototype p with min. Utility and
set it near the prototype p’ with max.
Quantization Error .

n Run LBG again until convergence

),(),(
),(}){\,()(Utility 

2 xpdistxpdist
PDEpPDEpU

pRx
∑
∈

−=
−=

∑
∈

=
pRx

P pxdistRpE ),(/1)(Error on Quantizati
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LBG-U: Example

Hinneburg / Keim, PKDD 2000

K-Harmonic Means [ZHD 99]

n Different Optimization Function:

n Update Formula for Prototypes:

),(, jiji mxdistd =



14

Hinneburg / Keim, PKDD 2000

K-Harmonic Means [ZHD 99]

Hinneburg / Keim, PKDD 2000

Model-based Methods: AI

n Online Learning vs. Batch Learning

n Self-Organizing Maps [KMS+ 91, Roj
96]

n Neural Gas & Hebb. Learning [MBS
93, Fri 96]

n Growing Networks [Fri 95]
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n Self-Organizing Maps [Roj 96, KMS 91]

– Fixed map topology 
(grid, line)

Self Organizing Maps

Hinneburg / Keim, PKDD 2000

Neural Gas / Hebb Learning
[MBS 93, Fri 96]

n Neural Gas:

n Hebbian Learning:
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Neural Gas / Hebb Learning
[MBS 93, Fri 96]

n Neural Gas & Hebbian Learning:

Hinneburg / Keim, PKDD 2000

n Growing Networks [Fri 95]
– Iterative insertion of nodes
– Adaptive map

topology

Growing Networks
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n Growing Networks [Fri 95]
– Adaptive map

topology

Growing Networks

Hinneburg / Keim, PKDD 2000

Linkage-based Methods

n Hierarchical Methods:
– Single / Complete / Centroid Linkage
– BIRCH [ZRL 96]

n Graph Partitioning based Methods:
– Single Linkage
– Method of Wishart
– DBSCAN
– DBCLASD
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n Single Linkage (Minimum Spanning Tree)

n Complete Linkage
n Average Linkage
n Centroid Linkage (see also BIRCH)

Distance

Top-down (Dividing):

- Find the most inhomogeneous
  cluster and split

Bottom-up (Agglomerating):

- Find the nearest pair of
  clusters and merge

Linkage Hierarchies [Bok 74]

Hinneburg / Keim, PKDD 2000

Single Linkage
n Distance between clusters (nodes):

n Merge Step:
Union of two subset of data points

n A single linkage hierarchy can be
constructed using the Minimal
Spanning Tree

)},({min),(
21 ,21 qpdistCCDist

CqCp ∈∈
=
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Complete Linkage

n Distance between clusters (nodes):

n Merge Step:
Union of two subset of data points

n Each cluster in a complete
linkage hierarchy corresponds
to a complete subgraph

)},({max),(
21 ,21 qpdistCCDist

CqCp ∈∈
=
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Average Linkage / Centroid Method

n Distance between clusters (nodes):

n Merge Step:
– union of two subset of data points
– construct the mean point of the two clusters

)](),([),( 2121 CmeanCmeandistCCDistmean =

∑ ∑
∈ ∈⋅

=
1 2

),(
)(#)(#

1
),(

21
21

Cp Cp
avg qpdist

CC
CCDist



20

Hinneburg / Keim, PKDD 2000

BIRCH [ZRL 96]

Clustering
in BIRCH

Hinneburg / Keim, PKDD 2000

Basic Idea of the CF-Tree

n Condensation of the data         using  
CF-Vectors 

n CF-tree uses sum of CF-vectors to
build higher levels of the CF-tree

BIRCH
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BIRCH

Insertion algorithm for a point x:
(1) Find the closest leaf b
(2) If x fits in b, insert x in b;

otherwise split b
(3) Modify the path for b
(4) If tree is to large, condense the tree
      by merging the closest leaves

Hinneburg / Keim, PKDD 2000

BIRCH

CF-Tree
Construction
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Condensing Data

n BIRCH [ZRL 96]:
– Phase 1-2 produces a condensed

representation of the data (CF-tree)
– Phase 3-4 applies a separate cluster

algorithm to the leafs of the CF-tree

n Condensing data is crucial for efficiency

Data CF-Tree condensed CF-Tree Cluster

Hinneburg / Keim, PKDD 2000

Problems of BIRCH

n Centroid Method with fixed
order of the points and limited
space for the hierarchy
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Linkage-based Methods

n Hierarchical Methods:
– Single / Complete / Centroid Linkage
– BIRCH [ZRL 96]

n Graph Partitioning based Methods:
– Single Linkage [Boc 74]

– Method of Wishart [Wis 69]
– DBSCAN [EKS+ 96]

– DBCLASD [XEK+ 98]

Hinneburg / Keim, PKDD 2000

Linkage -based Methods
(from Statistics) [Boc 74]

n Single Linkage (Connected components for distance d)

n Single Linkage + additional Stop Criterion
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Linkage -based Methods [Boc 74]

n Method of Wishart [Wis 69] (Min. no. of points: c=4)

Reduce data set

Apply Single Linkage

Hinneburg / Keim, PKDD 2000

n Clusters are defined as
Density-Connected Sets (wrt. MinPts, ε)

DBSCAN [EKS+ 96]
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DBSCAN
n For each point, DBSCAN determines the

ε-environment and checks, whether it contains
more than MinPts data points

n DBSCAN uses index structures for determining
the ε-environment

n Arbitrary shape clusters found by DBSCAN

Hinneburg / Keim, PKDD 2000

n Distribution-based method
n Assumes arbitrary-shape

clusters of uniform distribution
n Requires no parameters

DBCLASD [XEK+ 98]
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DBCLASD

n Definition of a cluster C based on the
distribution of the NN-distance (NNDistSet):

Hinneburg / Keim, PKDD 2000

DBCLASD

n Incremental augmentation of clusters by
neighboring points (order-depended)
– unsuccessful candidates are tried again later
– points already assigned to some cluster may  

switch to another cluster

n Step (1) uses the concept of the χ2-test
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Linkage-based Methods

n Single Linkage + additional Stop Criteria
describes the border of the Clusters

Hinneburg / Keim, PKDD 2000

OPTICS[ABK+ 99]

n DBSCAN with variable
n The Result corresponds to the Bottom

of a hierarchy
n Ordering:

– Reachability Distance:

MAXεεε ≤≤0  ,

{ }
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OPTICS[ABK+ 99]

n Breath First Search with Priority Queue

Hinneburg / Keim, PKDD 2000

DBSCAN / DBCLASD/ OPTICS

n DBSCAN / DBCLASD / OPTICS use
index structures to speed-up the ε-
environment or nearest-neighbor search

n the index structures used are mainly the
R-tree and variants
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Density-based Methods

n Kernel-Density Estimation [Sil 86]

n STING [WYM 97]

n Hierarchical Grid Clustering [Sch 96]

n WaveCluster [SCZ 98]

n DENCLUE [HK 98]

Hinneburg / Keim, PKDD 2000

Point Density
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STING [WYM 97]

n Uses a quadtree-like structure for
condensing the data into grid cells

n The nodes of the quadtree
contain statistical
information about the data
in the corresponding cells

n STING determines clusters
as the density-connected
components of the grid

n STING approximates the
clusters found by DBSCAN

Hinneburg / Keim, PKDD 2000

Hierarchical Grid Clustering [Sch 96]

n Organize the data space as a
grid-file

n Sort the blocks by their density

n Scan the blocks iteratively and
merge blocks, which are adjacent
over a (d-1)-dim. hyperplane.

n The order of the merges forms
a hierarchy



31

Hinneburg / Keim, PKDD 2000

WaveCluster [SCZ 98]

n Clustering from a signal processing perspective
using wavelets

Hinneburg / Keim, PKDD 2000

WaveCluster

n Grid Approach
– Partition the data space by a grid → reduce the

number of data objects by making a small error
– Apply the wavelet-transformation to the reduced

feature space
– Find the connected components as clusters

n Compression of the grid is crucial for the
efficiency

n Does not work in high dimensional space!
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WaveCluster
n Signal transformation using wavelets

n Arbitrary shape clusters found by WaveCluster

Hinneburg / Keim, PKDD 2000

Hierarchical Variant of
WaveCluster [SCZ 98]

n WaveCluster can be used to perform
multiresolution clustering

n Using coarser grids, cluster start to merge
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Kernel Density Estimation

Data Set Data Set Density FunctionDensity Function

  Density Function: Sum of the influences of all data
points

Influence FunctionInfluence Function

  Influence Function: Influence of a data point in its 
neighborhood

Hinneburg / Keim, PKDD 2000

Influence FunctionInfluence Function
The influence of a data point y at a point x in the data
space is modeled by a function                       ,

y

ℜ→dy
B Ff :

Density FunctionDensity Function
The density at a point x in the data space is defined as
the sum of influences of all data points xi, i.e.

∑
=

=
N

i

x
B

D
B xfxf i
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2
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Kernel Density Estimation
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Kernel Density Estimation

Hinneburg / Keim, PKDD 2000

DensityDensity Attractor Attractor/Density-Attracted Points/Density-Attracted Points
- local maximum of the density function
- density-attracted points are determined by a

gradient-based hill-climbing method

DENCLUE [HK 98]

Definitions of Clusters

(    )(    )
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DENCLUE

Center-Defined ClusterCenter-Defined Cluster
A center-defined cluster with
density-attractor x* (                  ) is
the subset of the database which
is density-attracted by x*.

Multi-Center-DefinedMulti-Center-Defined
ClusterCluster
A multi-center-defined cluster
consists of a set of center-defined
clusters which are linked by a path
with significance ξ.

ξ>*)(xf D
B

Cluster 1Cluster 1 Cluster 3Cluster 3Cluster 2Cluster 2

ξ

Cluster 1Cluster 1 Cluster 2Cluster 2

ξ

         Cluster 1         Cluster 1 Cluster 2Cluster 2

ξ

Hinneburg / Keim, PKDD 2000

DENCLUE
Impact of different Significance Levels (ξ)
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Choose  σ  such that number of density
attractors is constant for a long interval of σ!

#clusters

σmin σmaxσ   σopt

DENCLUE
Choice of the Smoothness Level (σ)

Hinneburg / Keim, PKDD 2000

Building Hierarchies (σ)
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DENCLUE
Variation of the Smoothness Level (σ)

Hinneburg / Keim, PKDD 2000

DENCLUE
Variation of the Smoothness Level (σ)
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DENCLUE
Variation of the Smoothness Level (σ)

Hinneburg / Keim, PKDD 2000

)()()( xfxfxf NDD C +=
- density function of noise approximates a constant .))(( constxf N ≈

Idea of the Proof:
- partition density function into signal and noise

Assumption:Assumption: Noise is uniformly distributed in the data space

Lemma:Lemma:

The density-attractors do not change when
increasing the noise level.

DENCLUE
Noise Invariance



39

Hinneburg / Keim, PKDD 2000

DENCLUE
Noise Invariance

Hinneburg / Keim, PKDD 2000

DENCLUE
Noise Invariance
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DefinitionDefinition
The local density              is defined as
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Lemma (Error Bound)Lemma (Error Bound)
If                                               , the error is bound
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DENCLUE
Local Density Function

Hinneburg / Keim, PKDD 2000

Clustering on Categorical
Data

n STIRR [GKR 2000], [GKR 98]
n ROCK [GRS 99]
n CACTUS [GGR 99]
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Overview ( Second Lesson)

1. Introduction1. Introduction

2. Clustering Methods2. Clustering Methods
Model-, Linkage-, Density- based Approaches

3.  Techniques Improving the Efficiency3.  Techniques Improving the Efficiency
3.1 Multi-Dimensional Indexing

3.2 Grid-based Approaches

3.3 Sampling

4.  Recent Research Topics4.  Recent Research Topics
4.1 Outlier Detection

4.2 Projected Clustering

4. Summary and Conclusions4. Summary and Conclusions

Hinneburg / Keim, PKDD 2000

Improving the Efficiency

n Multi-dimensional Index Structures
R-Tree, X-Tree, VA-File

n Grid Structures
n Sampling
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Indexing [BK 98]

n Cluster algorithms and their index
structures
– BIRCH:   CF-Tree [ZRL 96]

– DBSCAN: R*-Tree [Gut 84]

X-Tree [BKK 96]

– STING: Grid / Quadtree [WYM 97]

– WaveCluster:   Grid / Array [SCZ 98]

– DENCLUE:   B+-Tree, Grid / Array [HK 98]

Hinneburg / Keim, PKDD 2000

R-Tree:  [Gut 84]
The Concept of Overlapping Regions

directory

data

level 1

directory
level 2

pages

. . . exact representation
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Variants of the R-Tree
Low-dimensional
n R+-Tree [SRF 87]
n R*-Tree [BKSS 90]
n Hilbert R-Tree [KF94]

High-dimensional
n TV-Tree [LJF 94]
n X-Tree [BKK 96]
n SS-Tree [WJ 96]
n SR-Tree [KS 97]

Hinneburg / Keim, PKDD 2000

Effects of High Dimensionality

n Data pages have large extensions
n Most data pages touch the surface

of the data space on most sides

Location and Shape of Data Pages
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The X-Tree [BKK 96]
(eXtended-Node Tree)
n Motivation:

Performance of the R-Tree degenerates in
high dimensions

n Reason: overlap in the directory

Hinneburg / Keim, PKDD 2000

The X-Tree

Supernodes Normal Directory Nodes Data Nodes

root
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Speed-Up of X-Tree over
the R*-Tree

Point QueryPoint Query 10 NN Query10 NN Query

Hinneburg / Keim, PKDD 2000

Effects of High Dimensionality

n The selectivity depends on the volume of the query

selectivity = 0.1 %

e

Selectivity of  Range Queries

⇒ no fixed ε-environment  (as in DBSCAN)
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n In high-dimensional data spaces, there exists a
region in the data space which is affected by ANY
range query (assuming uniformly distributed data)

Effects of High Dimensionality

Selectivity of  Range Queries

⇒ difficult to build an efficient index structure 

⇒ no efficient support of range queries (as in DBSCAN)

Hinneburg / Keim, PKDD 2000

Efficiency of
     NN-Search[WSB 98]

n Assumptions:
– A cluster is characterized by a geometrical form

(MBR) that covers all cluster points
– The geometrical form is convex
– Each Cluster contains at least two points

n Theorem: For any clustering and partitioning
method there is a dimensionality d for which a
sequential scan performs better.
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VA File [WSB 98] 

n Vector Approximation File:
– Compressing Vector Data: each dimension of a

vector is represented by some bits
        partitions the space into a grid

– Filtering Step: scan the compressed vectors to
derive an upper and lower bound for the
NN-distance       Candidate Set

– Accessing the Vectors: test the Candidate Set

Hinneburg / Keim, PKDD 2000

Multi-Dimensional Grids

n Difference to Indexes:
   Allow Partitions with one Data Point

n Collect statistical Information about regions in
the Data Space

n Filter Noise from the clustered data
n Used by:

– STING [WYM 97]

– WaveCluster [SCZ 98]

– DENCLUE [HK 98]
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Multi-Dimensional Grids

n General Idea:
NRFunctionCoding d →: 

n Two Implementations:
– Array: Stores all Grid Cells,

• prohibitive for large d

– Tree, Hash Structure: stores only the used
Grid Cells,

• works for all dimensions
• drawback: mostly all data point are in a single cell, when

the dimensionality is high

Hinneburg / Keim, PKDD 2000

Multi-Dimensional Grids

n Connecting Grid Cells:
– the number of neighboring cells grows

exponentially with the dimensionality
       Testing if the cell is used is
prohibitive

– Connect only the highly populated cells
drawback: highly populated cells are
unlikely in high dimensional spaces
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CubeMap

Data Structure based on regular cubes for storing the data
and efficiently determining the density function

Hinneburg / Keim, PKDD 2000

DENCLUE Algorithm

DENCLUE (D, σ, ξ)
)( (a) DBRDetermineMMBR ←

),,( (b) σMBRDsDetPopCubeC p ←

),(     cpsp CopCubesDetHighlyPC ξ←

),,,( (d) ξσrCmapractorsDetDensAttclusters ←

),,(, (c) σsppr CCConnectMapCmap ←
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Multi-Dimensional Grids

Hinneburg / Keim, PKDD 2000

Effects of High Dimensionality

Number of Neighboring cells
n Probability that Cutting Planes partition clusters

increases

⇒ cluster can not be identified using the grid
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Complexity of Clustering Data with Noise

Lemma:
The worst case time compexity for a correct
clustering of highdimensional data with a
constant percentage of noise is superlinearsuperlinear,
when the number of datapoints is N < 2d .

Idea of the Proof:
Assumption: - database contains O(N) noise

              - noise is read first (worst case)
Observation: - no constant access possible for noisy

      highdimensional, nonredundent data
  ï  noise (linear in N) has to be read multiple times

Hinneburg / Keim, PKDD 2000

Sampling

n R*-Tree Sampling [EKX 95]

n Density Based Sampling [PF 00]
– Uses a grid combined with a hash structure to approximate

the density
– Generates a uniform (random) Sample, if most grid-cells

have only one data point.

n Sampling uses the redundancy in the
data; however, the redundancy of high
dimensional data decreases
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Recent Research Topics

n Outlier Detection [KN 98,99,00], [RRS 00],
[BKN+99, 00]

n Projected Clustering [AGG+ 98] [AMW+ 99],
[AY 00][HK 99],[HKW 99]

Hinneburg / Keim, PKDD 2000

Outlier

n Definition: (Hawkins-Outlier) An outlier
is an observation that deviates so much
from other observations as to arouse
suspicion that it was generated by a
different mechanism.
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Distance Based Outliers

n Definition 1[KN 00] : Given a Database D, the
Object o is an Outlier, iff

n Definition 2[RRS 00]: An Object o is an Outlier iff
there exists not more than n-1 objects o’ with

n Both groups proposed efficient algorithms for multi-
dimensional data with d<6

n The Algorithms base on Grids or Indexes.

{ } 10,)',(,'|'#)(# ≤≤>∈≤⋅ pDoodistDooDp

)()'( odistnnodistnn kk −>−

Hinneburg / Keim, PKDD 2000

Density Based Outliers
n Local instead Global Definition:

n The Outlier-Definition base on the average density in
the neighborhood of a point, see reachability distance
in the OPTICS paper.

n The Performance depends on the used index
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Projected Clustering

n CLIQUE [AGG+ 98]

n ProClust / OrClust [AMW+ 99],[AY 00]

n OptiGrid / HD-Eye [HK 99],[HKW 99]

Hinneburg / Keim, PKDD 2000

CLIQUE [AGG+ 98]

n Monotonicity Lemma:
If a collection of points S is a
cluster in a k-dimensional space,
then S is also part of a cluster in
any (k-1)-dimensional projection
of this space.

n Bottom-up Algorithm
for determining the
projections

n Subspace Clustering
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ProClust [AMW+ 99]

n Based on k-Means with a usability
criterion for the dimensions

Hinneburg / Keim, PKDD 2000

OR CLUST[AY 00]

n Based on k-
Means with
Local Principal
Component
Analyses.

n Prototypes with
orientation
vector
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Contracting Projections

Contracting ProjectionContracting Projection Non-contracting ProjectionNon-contracting Projection

Hinneburg / Keim, PKDD 2000

Upper Bound Property

Lemma:
Let  P(x)=Ax  be a contracting projection, P(D) the
projection of the data set D and                 an
estimate of the density at a point                . Then,

)'(ˆ )( xf DP

)(' SPx ∈

).(ˆ)'(ˆ:')(   with )( xfxfxxPSx DDP ≥=∈∀

yxyxAyxAyPxP −≤−⋅≤−=− )()()(

Syx ∈∀ ,Proof:
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Cutting Plane

The Cutting PlaneCutting Plane is a set of points y such

that 1
1

=⋅∑ =

d

i ii yw

The cutting plane defines a Partitioning FunctionPartitioning Function
H(x) for all points x of the data space

Hinneburg / Keim, PKDD 2000

Multi-dimensional Grids

Orthogonal GridOrthogonal Grid

Coding Function 

Non-orthogonal GridNon-orthogonal Grid
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The OptiGrid Algorithm [HK 99]

1. Determine a set of contracting projection {P0, ... Pk}

2. Determine the best q Cutting Planes {H0, ... Hq} in
the projections

3. If there are no good Cutting Planes   exit;
otherwise:

4. Determine a multi-dim. Grid based on {H0, ... Hk}

5. Find Clusters Ci in the Grid by determining highly-
populated grid cells

6.  For each Ci : OptiGrid(Ci )

Hinneburg / Keim, PKDD 2000

Example Partitioning
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Integration of
Visual and Automated Data Mining

Icons for one-dim. ProjectionsIcons for one-dim. Projections Icons for two-dim. ProjectionsIcons for two-dim. Projections

Hinneburg / Keim, PKDD 2000

Integration of
Visual and Automated Data Mining



60

Hinneburg / Keim, PKDD 2000
Pixel-oriented Representation of  one-dimensional ProjectionsPixel-oriented Representation of  one-dimensional Projections

Integration of
Visual and Automated Data Mining

Hinneburg / Keim, PKDD 2000

Pixel-oriented Pixel-oriented 
Representation of  Representation of  
two-dim. Projectionstwo-dim. Projections

Integration of
Visual and Automated Data Mining
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Interactive Specification of Cutting Planes in 2D ProjectionsInteractive Specification of Cutting Planes in 2D Projections

Integration of
Visual and Automated Data Mining

Hinneburg / Keim, PKDD 2000

The HD-Eye System [HK 99a]
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Summary and Conclusions

n A number of effective and efficient Clustering
Algorithms is available for small to medium
size data sets and small dimensionality

n Efficiency suffers severely for large
dimensionality (d)

n Effectiveness suffers severely for large
dimensionality (d), especially in combination
with a high noise level

Hinneburg / Keim, PKDD 2000

Open Research Issues

n Efficient Data Structures for large N
and large d

n Clustering Algorithms which work effectively
for large N, large d and large Noise Levels

n Integrated Tools for an Effective Clustering
of High-Dimensional Data
(combination of automatic, visual and
interactive clustering techniques)
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