
XML and Databases

Chapter 6: XML Schema II:
Simple Types

Prof. Dr. Stefan Brass

Martin-Luther-Universität Halle-Wittenberg

Winter 2023/24

http://www.informatik.uni-halle.de/˜brass/xml23/

6. XML Schema II: Simple Types 6-1 / 86

http://www.informatik.uni-halle.de/~brass/xml23/

Objectives

After completing this chapter, you should be able to:

select or define simple types for an application.

explain union an list types in XML schema.

check given XML documents for validity according to a
given XML schema, in particular with respect to simple types.

6. XML Schema II: Simple Types 6-2 / 86

Contents

1 Introduction

2 Strings, Names

3 Numbers

4 Date/Time

5 Other

6 UNION

7 LIST

8 Reference

6. XML Schema II: Simple Types 6-3 / 86

Data Types: Introduction (1)

The second part of the XML schema standard defines

a set of 44 built-in simple types,
In addition, there are two “ur types”: anyType and anySimpleType.

possibilities for defining new simple types by restriction
(similar to CHECK constraints in SQL), and the type
constructors union and list.

Many of the built-in types are not primitive, but defined
by restriction of other built-in types.

19 types are primitive.

6. XML Schema II: Simple Types 6-4 / 86

Data Types: Introduction (2)

These definitions were put into a separate standard
document because it is possible that other (XML) standards
(besides XML schema) might use them in future.

The requirements for this standard include

It must be possible to represent the primitive types of
SQL and Java as XML Schema types.

The type system should be adequate for import/export
from database systems (e.g., relational, object-oriented,
OLAP).

6. XML Schema II: Simple Types 6-5 / 86

Data Types: Introduction (3)

Datatypes are seen as triples consisting of:

a value space (the set of possible values of the type),

a lexical space (the set of constants/literals of the type),
Every element of the value space has one or more representations in
the lexical space (exactly one canonical representation).

a set of “facets”, which are properties of the type,
distinguished into “fundamental facets” that describe
the type (e.g. ordered), and “constraining facets” that
can be used to restrict the type.

6. XML Schema II: Simple Types 6-6 / 86

Data Types: Introduction (4)

The standard does not define data type operations
besides equality (=) and order (<, >).

E.g., the standard does not talk about +, string concatenation, etc. (But
Appendix E explains how durations are added to dateTimes.).

One should define application-specific data types, even if
they are equal to a built-in type:

This makes the semantics and comparability of
attributes and element contents clearer.

If one later has to change/extend a data type, this is
automatically applied to all attributes/
elements that contain values of the type.

6. XML Schema II: Simple Types 6-7 / 86

Built-in Simple Types (1)

Strings and Names
string, normalizedString, token, Name, NCName, QName, language

Numbers
float, double, decimal, integer, positiveInteger,
nonPositiveInteger, negativeInteger, nonNegativeInteger, int,
long, short, byte,
unsignedInt, unsignedLong, unsignedShort, unsignedByte

Date and Time
duration, dateTime, date, time, gYear, gYearMonth, gMonth,
gMonthDay, gDay

Boolean
boolean

6. XML Schema II: Simple Types 6-8 / 86

Built-in Simple Types (2)

Legacy Types
ID, IDREF, IDREFS, ENTITY, ENTITIES, NMTOKEN, NMTOKENS, NOTATION

Character Encodings for Binary Data
hexBinary, base64Binary

URIs
anyURI

“Ur-types”
anyType, anySimpleType

6. XML Schema II: Simple Types 6-9 / 86

Facets (1)

Constraining Facets:

Bounds: minInclusive, maxInclusive,

minExclusive, maxExclusive

Length: length, minLength, maxLength

Precision: totalDigits, FractionDigits

Enumerated Values: enumeration

Pattern matching: pattern

Whitespace processing: whiteSpace

6. XML Schema II: Simple Types 6-10 / 86

Facets (2)

Fundamental Facets:
ordered: false, partial, total

The specification defines the order between data type values. Sometimes,
values are incomparable, which means that the order relation is a partial
order. Some types are not ordered at all.
Note that every value space supports the notion of equality. The value
spaces of all primitive data types are disjoint.

bounded: true, false

cardinality: finite, countably infinite

numeric: true, false

6. XML Schema II: Simple Types 6-11 / 86

Contents

1 Introduction

2 Strings, Names

3 Numbers

4 Date/Time

5 Other

6 UNION

7 LIST

8 Reference

6. XML Schema II: Simple Types 6-12 / 86

Strings and Names (1)

A string is a finite-length sequence of characters as
defined in the XML standard.

The XML standard in turn refers to the Unicode standard, and excludes
control characters (except tab, carriage return, linefeed), “surrogate
blocks”, FFFE, FFFF.

In XML Schema, string values are not ordered.

The following (constraining) facets can be applied to
string and its subtypes: length, minLength,
maxLength, pattern, enumeration, whitespace.

The hierarchy of types derived from string by restriction
is shown on the next slide.

6. XML Schema II: Simple Types 6-13 / 86

Strings and Names (2)

ID IDREF ENTITY

NCName

language Name NMTOKEN

token

normalizedString

string

6. XML Schema II: Simple Types 6-14 / 86

Strings and Names (3)

normalizedString are strings that do not contain the
characters carriage return, line feed, and tab.

The XML processor will replace line ends and tabs by
spaces.

The combination “carriage return, linefeed” is replaced by a single space.
The XML Schema Standard says that even the lexical space does not
contain carriage return, linefeed, tab. If I understand correctly, that would
mean that they are forbidden in the input. However, the book “Definite
XML Schema” states that the processor does this replacement. This seems
plausible, because even in the original XML standard, CDATA attributes were
normalized in this way. By the way, this gives an apparent incompatibility
with the original XML standard, when one defines an attribute of type
string: Does normalization occur anyway, because it is built into XML?

6. XML Schema II: Simple Types 6-15 / 86

Strings and Names (4)

token is a string without

carriage return, linefeed, tab,

sequences of two or more spaces,

leading or trailing spaces.

The name “token” is misleading: It is not a single “word
symbol”, but a sequence of such “tokens”.

Again, I and the book “Definite XML Schema” believe that the XML
processor normalizes input strings in this way, whereas the standard seems
to say that the external representation must already fulfill the above
requirements. In the XML standard, this normalization is required for all
attribute types except CDATA.

6. XML Schema II: Simple Types 6-16 / 86

Strings and Names (5)

normalizedString and token can be derived from
string by using the facet whiteSpace, which has three
possible values:

preserve: the input is not changed.
The XML standard requires that any XML processor replaces the
sequence “carriage return, linefeed” by a single linefeed.

replace: carriage return, linefeed, and tab are replaced
by space.

collapse: Sequences of spaces are reduced to a single
one, leading/trailing spaces are removed.

6. XML Schema II: Simple Types 6-17 / 86

Strings and Names (6)

Name: An XML name.
I.e. a sequence of characters that starts with a letter, an underscore “_”, or
a colon “:”, and otherwise contains only letters, digits, and the special
characters underscore “_”, colon “:”, hyphen “-”, and period “.”. Letter
means an Unicode letter, not only an ASCII letter (actually, there are also
more digits in Unicode than in ASCII).

NMTOKEN: Any sequence of XML name characters.
This is like Name, but without the requirement that it must start with a
letter etc. E.g., a sequence of digits would be valid. For compatibility,
NMTOKEN should be used only for attributes (not element content).

NCName: “Non-colonized name”, i.e. like Name, but
without colon “:”.

Important because the colon has a special meaning for namespaces.

6. XML Schema II: Simple Types 6-18 / 86

Strings and Names (7)

ID: Syntax like NCName, but the XML processor enforces
uniqueness in the document.

Actually, the XML Schema standard (Part 2) does not mention the
uniqueness requirement, but the book “Definite XML Schema” does
mention it (it is probably inherited from the XML standard). As all legacy
types, ID should be used only for attributes. The XML standard forbids
that an element type has two or more attributes of type ID. Furthermore,
ID-attributes cannot have default or fixed values specified.

IDREF: Syntax like NCName, value must appear as value of
an ID-attribute in the document.

6. XML Schema II: Simple Types 6-19 / 86

Strings and Names (8)

ENTITY: Syntax like NCName, must be declared as an
unparsed entity in a DTD.

It is interesting that the XML Schema standard does mention the
restriction with the DTD.

language: Language identifier, see RFC 3066.
E.g. en, en-US, de. These are language identifiers according to the ISO
standard ISO 639, optionally with a country code as defined in ISO 3166.
However, also the IANA (Internet Assigned Numbers Authority) registers
languages, their names start with “i-”. Unofficial languages start with
“x-”. The pattern given in the XML Schema standard permits an arbitrary
number of pieces (at least one), separated by hyphens, each consisting of
1 to 8 letters and digits (the first piece must be only letters).

6. XML Schema II: Simple Types 6-20 / 86

Strings and Names (9)

The preceding types are derived from string directly or
indirectly by restriction.

With the facets whiteSpace and pattern (see below).

However, there are also built-in types that are derived
using the type constructor list. The result is a
space-separated list of values of the base type.

The following legacy types are defined as lists:

IDREFS: list of IDREF values.

NMTOKENS: list of NMTOKEN values.

ENTITIES: list of ENTITY values.

6. XML Schema II: Simple Types 6-21 / 86

Strings and Names (10)

QName is the type for qualified names, i.e. names that can
contain a namespace prefix.

The prefix is not required, either because there is a default namespace
declaration, or because the name belongs to no namespace.

QName is not derived from string, since it is not a simple
string, but contains two parts:

The local name, and

the namespace URI.
Note the distinction between lexical space and value space: The
lexical space contains the prefix (like xs:), the value space the
corresponding URI.

6. XML Schema II: Simple Types 6-22 / 86

Length Restrictions (1)

One can define a type by constraining the length
(measured in characters) of a string type, e.g.

<xs:simpleType name="varchar20">
<xs:restriction base="xs:string">

<xs:maxLength value="20"/>
</xs:restriction>

</xs:simpleType>

There are three length constraining facets:

maxLength: String length must be ≤ value.

minLength: String length must be ≥ value.

length: String length must be = value.
Using the length restrictions for QName is deprecated.

6. XML Schema II: Simple Types 6-23 / 86

Length Restrictions (2)

One can use minLength and maxLength together, but
not together with length.

For example, strings with 3 to 10 characters:
<xs:simpleType name="From3To10Chars">

<xs:restriction base="xs:string">
<xs:minLength value="3"/>
<xs:maxLength value="10"/>

</xs:restriction>
</xs:simpleType>

One cannot specify any of the three facets more than
once in the same restriction.

6. XML Schema II: Simple Types 6-24 / 86

Length Restrictions (3)

One can further constrain a defined type, but one cannot
extend it, e.g. the following is invalid:
<xs:simpleType name="varchar40">

<xs:restriction base="xs:varchar20">
<xs:maxLength value="40"/> <!-- ERROR -->

</xs:restriction>
</xs:simpleType>

Actually, one can extend a type, but not in xs:restriction. E.g., one can
add values with union (see below).

It would, however, be possible to define strings of
maximal length 10 in this way.

6. XML Schema II: Simple Types 6-25 / 86

Enumeration Types

Example:
<xs:simpleType name="weekday">

<xs:restriction base="xs:token">
<xs:enumeration value="Sun"/>
<xs:enumeration value="Mon"/>
<xs:enumeration value="Tue"/>...

</xs:restriction>
</xs:simpleType>

By using xs:token as base type, leading and trailing white space is
accepted and automatically removed.

If one wants to restrict an enumeration type further, one
must again list all possible values.

6. XML Schema II: Simple Types 6-26 / 86

Regular Expressions (1)

The facet “pattern” can be used to derive a new
(restricted) type from the above string types by requiring
that the values match a regular expression.

The facet pattern can also be applied to some other types, see below.

The regular expressions in XML Schema are inspired by
the regular expressions in Perl.

However, XML schema requires that the regular expressions matches the
complete string, not only some part inside the string (i.e. there is an
implicit ˆ at the beginning and $ at the end: If necessary, use .* to allow
an arbitrary prefix of suffix).

6. XML Schema II: Simple Types 6-27 / 86

Regular Expressions (2)

E.g., a type for product codes that consist of an
uppercase letter and four digits (e.g., A1234) could be
defined as follows:

<xs:simpleType name="prodCode">
<xs:restriction base="xs:token">

<xs:pattern value="[A-Z][0-9]{4}"/>
</xs:restriction>

</xs:simpleType>

One can specify more than one pattern, then it suffices
if one of the pattern matches.

6. XML Schema II: Simple Types 6-28 / 86

Regular Expressions (3)

A regular expression is composed from zero or more
branches, separated by “|” characters.

As usual, “|” indicates an alternative: The language defined by the regular
expression b1| . . . |bn is the union of the languages defined by the
branches bi (see below).

A branch consists of zero or more pieces, concatenated
together.

The language defined by the regular expression p1 . . . pn consists of all
words w that can be constructed by concatenating words wi of the
languages defined by the pieces pi , i.e. w = w1 . . . wn.

6. XML Schema II: Simple Types 6-29 / 86

Regular Expressions (4)

A piece consists of an atom and an optional quantifier: ?,
*, +, {n,m}, {n}, {n,}.

The quantifier permits repetition of the piece, see below. If the quantifier is
missing, the language defined by the piece is of course equal to the
language defined by the atom. Otherwise, the language defined by the
piece consists of all words of the form w1 . . . wk , where each wi is from the
language defined by the atom, and k satisfies the requirements of the
quantifier (see next slide).

An atom is

a character (except metacharacters, see below)

a character class (see below),

or a regular expression in parentheses “(...)”.

6. XML Schema II: Simple Types 6-30 / 86

Regular Expressions (5)

Meaning of quantifiers (permitted repetitions k):

(No quantifier): exactly once (k = 1).

?: optional (k = 0 or k = 1).

*: arbitrarily often (no restriction on k).

+: once or more (k ≥ 1).

{n,m}: between n and m times (n ≤ k ≤ m).

{n}: exactly n times (k = n).

{n,}: at least n times (k ≥ n).

6. XML Schema II: Simple Types 6-31 / 86

Regular Expressions (6)

Metacharacters are characters that have a special
meaning in regular expressions. One needs a character
class escape (see below) for a regular expression that
matches them.

Metacharacters are: ., \, ?, *, +, |, {, }, (,), [,].

Character classes are:

Character class escape: \... (see below)

Character class expressions: [...] (see below)

The wildcard “.”
Matches any character except carriage return and newline.

6. XML Schema II: Simple Types 6-32 / 86

Regular Expressions (7)

Character class escapes (slide 1/2):

\x for every metacharacter x : matches x .

\n: newline

\r: carriage return

\t: tab

\d: any decimal digit

\s: any whitespace character

\i: any character allowed first in XML name
I.e. a letter, underscore “_”, or colon “:”.

\c: any character allowed inside XML name

6. XML Schema II: Simple Types 6-33 / 86

Regular Expressions (8)

Character class escapes (slide 2/2):

\w: any character not in categories “punctation”,
“separator”, “other” in the Unicode standard.

In Perl, this is simply an alphanumeric “word character”, i.e. a
letter, a digit, or the underscore “_”.

\p{x}: Any character in Unicode category x .
E.g.: \p{L}: all letters, \p{Lu}: all uppercase letters, \p{Ll}: all
lowercase letters, \p{Sc}: all currency symbols, \p{isBasicLatin}:
all ASCII characters (codes #x0000 to #x007F), \isCyrillic{Sc}:
all cyrillic characters (codes #x0400 to #x04FF).
[www.unicode.org/Public/3.1-Update/UnicodeCharacterDatabase-3.1.0.html].

\D, \S, \I, \C, \W, \P{x}: complement of corresponding
lowercase escape.

6. XML Schema II: Simple Types 6-34 / 86

www.unicode.org/Public/3.1-Update/UnicodeCharacterDatabase-3.1.0.html

Regular Expressions (9)

A character class expression has one of the forms (slide 1/2):

[c1 . . . cn] with characters, character ranges, or
character escapes ci .

It matches every character matched by one of the ci , i.e. it is
basically an abbreviation for (c1|...|cn), where character ranges
x-y are replaced by all characters with Unicode value between the
Unicode values of x and y . E.g. [a-d] is equivalent to [abcd].
Because of the special meaning of -, it must be the first or last
character if it is meant literally. In a character range x-y , one
cannot use multi character escapes (character escapes that match
more than one character, e.g. \d) as x and y .

6. XML Schema II: Simple Types 6-35 / 86

Regular Expressions (10)

Character class expressions (slide 2/2):

[ˆc1 . . . cn]: complement of [c1 . . . cn].
Because of the special meaning of ˆ, it must be not the first
character if it is meant literally.

[c1 . . . cn-E]: Characters matched by [c1 . . . cn], but
not matched by the character class expression E .

E.g. [a-z-[aeiou]] is equivalent to [bcdfghjklmnpqrstvwxyz].

[ˆc1 . . . cn-E]: Characters matched by [ˆc1 . . . cn], but
not matched by E .

6. XML Schema II: Simple Types 6-36 / 86

Contents

1 Introduction

2 Strings, Names

3 Numbers

4 Date/Time

5 Other

6 UNION

7 LIST

8 Reference

6. XML Schema II: Simple Types 6-37 / 86

Floating Point Numbers

float: 32-bit floating point type
It can be represented as m ∗ 2e , where m is an integer whose absolute value
is less than 224, and e is an integer with −149 ≤ e ≤ 104. In addition, it
contains the three special values -INF (negative infinity), +INF (positive
infinity), and NaN (“not a number”: error value). NaN is incomparable with
all other values. This type is very similar to the one defined in
IEEE 754-1985, but has only one zero and one NaN. Furthermore, NaN=NaN

in XML Schema. Constants (literals) are, e.g., -1E2, +1.2e-3, 1.23, -0.

double: 64-bit floating point type
It can be represented as m ∗ 2e , where m is an integer whose absolute
value is less than 253, and e is an integer with −1075 ≤ e ≤ 970.

The two are distinct primitive types.

6. XML Schema II: Simple Types 6-38 / 86

Fixed Point Numbers (1)

decimal: primitive type for fixed point numbers.
Exact numeric types in contrast to float/double, which are approximate
numeric types, because the rounding errors are not really forseeable. E.g.,
one should not use float for amounts of money.

Value space: numbers of the form i ∗ 10−n, where i and n
are integers and n ≥ 0 (e.g. 1.23).

Lexical space: finite-length sequences of decimal digits
with at most one decimal point in the sequence,
optionally preceded by a sign (+, -).

The book “Definitive XML Schema” states that the sequence may start of
end with a period (e.g. “.123”), the standard does not clearly specify this.

6. XML Schema II: Simple Types 6-39 / 86

Fixed Point Numbers (2)

Leading zeros and trailing zeros after the decimal point
are not significant, i.e. 3 and 003.000 are the same
decimal number.

The option + sign is also not significant.

Every XML Schema processor must support at least
18 digits.

E.g. it could use 64 bit binary integer numbers, plus an indication of where
the decimal point is. However, also using strings or a BCD encoding (4 bit
per digit) would be possible internal representations.

All integer types are derived from decimal by restriction
(see below).

6. XML Schema II: Simple Types 6-40 / 86

Fixed Point Numbers (3)

By using the facets totalDigits and fractionDigits,
one can get the SQL data type NUMERIC(p,s).

p is the precision (totalDigits), s is the scale (fractionDigits).

E.g. NUMERIC(5,2) permits numbers with 5 digits in
total, of which two are after the decimal point
(like 123.45):

<xs:simpleType name="NUMERIC_5_2">
<xs:restriction base="xs:decimal">

<xs:totalDigits value="5"/>
<xs:fractionDigits value="2"/>

</xs:restriction>
</xs:simpleType>

6. XML Schema II: Simple Types 6-41 / 86

Fixed Point Numbers (4)

One can specify bounds b for the data value d with the
facets

minExclusive: d > b.
b is the contents of the value-Attribute of the xs:minExclusive

element. The same for the other facets.

minInclusive: d ≥ b.

maxInclusive: d ≤ b.

maxExclusive: d < b.

The factes length, minLength, maxLength are not
applicable for numeric types.

If necessary, one can use a pattern.

6. XML Schema II: Simple Types 6-42 / 86

Fixed Point Numbers (5)

The facet whiteSpace has the fixed value collapse for
the numeric types: leading and trailing spaces are
automatically skipped.

Because the facet value is fixed, one cannot change this behaviour.

The facet pattern is applicable, e.g. one could exclude
or require leading zeros.

pattern applies to the lexical representation of the value.

The facet enumeration is applicable.
E.g. one could list the valid grades in the German system: 1.0, 1.3, 1.7,
2.0, . . . , 4.3, 5.0.

6. XML Schema II: Simple Types 6-43 / 86

Fixed Point Numbers (6)

Integer types are derived from decimal by setting
fractionDigits to 0 and selecting the bounds shown
on the next slide.

There are four classes of integer types:

integer: no restrictions

positiveInteger etc.: restrictions at -1, 0, 1.

long, int, short, byte: restriction given by
representability in 64, 32, 16, 8 Bit.

unsigned long etc.: minimum 0, maximum x Bit.
Using a sign is invalid for these types, even -0 is not allowed.

6. XML Schema II: Simple Types 6-44 / 86

Fixed Point Numbers (7)

Type minInclusive maxInclusive
integer
positiveInteger 1
nonPositiveInteger 0
negativeInteger -1
nonNegativeInteger 0
long (64 Bit) -9223372036854775808 9223372036854775807

int (32 Bit) -2147483648 2147483647
short (16 Bit) -32768 32767
byte (8 Bit) -128 127
unsigned long 0 18446744073709551615

unsigned int 0 4294967295
unsigned short 0 65535
unsigned byte 0 255

6. XML Schema II: Simple Types 6-45 / 86

Contents

1 Introduction

2 Strings, Names

3 Numbers

4 Date/Time

5 Other

6 UNION

7 LIST

8 Reference

6. XML Schema II: Simple Types 6-46 / 86

Date and Time Types (1)

A dateTime-value has the form (similar to ISO 8601)
yyyy-mm-dd T hh:mi:ss.xxx zzzzzz

where (continued on next slide)

yyyy is the year,
It is possible to use negative years for the time Before Christ
(“Before Common Era”), but the meaning might change: Currently,
there is no year 0000, the year before 0001 is -0001. This was
changed in the corresponding ISO standard, 0000 is now 1 BC. More
than four digits are permitted (then leading zeros are disallowed).

mm is the month (1 to 12)

dd is the day (1 to max. 31, restricted by month)
E.g., February 30 is impossible, and February 29 only in leap years.

6. XML Schema II: Simple Types 6-47 / 86

Date and Time Types (2)

Components of dateTime values, continued:

hh is the hour (0 to 23)
The value 24 is permitted if minute and second is 0, it is the same
as 00:00:00 on the following day.

mi is the minute (0 to 59)

ss is the second (0 to 59)
When a leap second is inserted, also 23:59:60 is possible. From
1972 to 2005, this has happend 23 times. Note that the seconds
part of dateTime-values cannot be left out.

xxx is an optional fractional part of a second
It can have arbitrary length, not only milliseconds.

zzzzzz is optional timezone information

6. XML Schema II: Simple Types 6-48 / 86

Date and Time Types (3)

The suffix Z, e.g. 2007-05-14T15:30:00Z marks a value
as UTC (“Universal Coordinated Time”).

This is May 14, 2007, 3:30pm, in Greenwich, UK.

2007-05-14T15:30:00Z is the same as

2007-05-14T16:30:00+01:00

CET: Central European Time, e.g. in Germany (“MEZ”)

2007-05-14T17:30:00+02:00

CEDT/CEST: Central European Daylight savings/Summer Time

2007-05-14T10:30:00-05:00

EST: Eastern Standard Time, e.g. New York, Pittsburgh.

6. XML Schema II: Simple Types 6-49 / 86

Date and Time Types (4)

If timezone information is not specified, as e.g. in
2007-05-14T16:00:00

the time is considered to be local time in some
(unknown) timezone.

One should avoid comparing local time and time with
timezone information (UTC).

E.g., 2007-05-14T15:30:00Z and 2007-05-14T16:00:00 are
uncomparable (e.g. in Germany, 2007-05-14T16:00:00 would actually be
before 2007-05-14T15:30:00). If, however, the time difference is greater
than 14 hours (maximal zone difference), local time and UTC are
comparable. Note that all dateTime-values without timezone are
considered comparable, i.e. it is assumed that they are all in the same
timezone.

6. XML Schema II: Simple Types 6-50 / 86

Date and Time Types (5)

date:

Value space: top-open intervals of dateTime-values (they
include 00:00:00, but not 24:00:00).

This means that 2007-05-14+13:00 is actually the same date-value as
2007-05-13-11:00. In general, values are not necessarily printed on output
in the same way as they are read from input. This also applies to dateTime

values: The actual timezone is lost, values are stored internally as UTC.
The application program could know the timezone.

Lexical space: date-values are written in the form
yyyy-mm-dd

with optional timezone information as before.

E.g.: 2007-05-14 (local time), 2007-05-14+01:00.
6. XML Schema II: Simple Types 6-51 / 86

Date and Time Types (6)

gYearMonth:

Value space: Intervals of dateTime-values from the
beginning of the month (inclusive) to the beginning of
the next month (exclusive).

The “g” indicates that this depends on the Gregorian calendar (this is the
ususal calender e.g. in Germany and the US). Whereas also
dateTime-literals are written using the Gregorian Calender, they can easily
be converted into other calendars. For year/month combinations, this
conversion is usually not possible.

Lexical space: Constants are written in the form
yyyy-mm, with optional time zone information.

E.g.: 2007-05 (local time), 2007-05+01:00.

6. XML Schema II: Simple Types 6-52 / 86

Date and Time Types (7)

gYear:

Value space: years (intervals of dateTime values
corresponding to one year in the Gregorian calendar).

Lexical space: Constants are written in the form yyyy ,
with optional time zone information.

E.g. 2007 (local time), -0001 (local time, 1/2 BC),
2007+01:00, 2007Z (UTC).

dateTime, date, gYearMonth, gYear form a hierarchy
of larger and larger timeline intervals.

Actually, dateTime values are points on the timeline (zero duration).

6. XML Schema II: Simple Types 6-53 / 86

Date and Time Types (8)

time:

An instant of time that recurs every day.

Constants are written in the form hh:mi:ss, with
optional fractional seconds and timezone.

This is simply the suffix of dateTime literals after the T. This especially
means that the seconds cannot be left out (15:30 is invalid).

E.g. 15:30:00, 15:30:00.123+01:00, 15:30:00Z.

time-values are ordered, with the usual problem that
local time and timezoned time can can be compared only
if the difference is large enough.

6. XML Schema II: Simple Types 6-54 / 86

Date and Time Types (9)

gDay:
A day that recurs every month, e.g. the 15th.

More precisely, it is a recurring time interval of length one day.

Lexical representation: ---dd (plus opt. timezone).

gMonth:
A month that recurs every year, e.g. May.
Lexical representation: --mm (plus opt. timezone).

gMonthDay:
A day that recurs every year, e.g. December 24.
Lexical representation: --mm-dd (opt. timezone).

6. XML Schema II: Simple Types 6-55 / 86

Date and Time Types (10)

duration:

A duration of time, consisting of seven components:
sign, and number of years, months, days, hours, minutes,
seconds.

Seconds can have a fractional part, the other numbers are integers.

The constants are written as optional sign, then the
letter “P”, then one or more numbers with unit (Y, M, D,
H, M, S — in this order), with the letter T used as
separator in front of the time-related values.

E.g. P2M is two months, and PT2M is two minutes. The letter “T” must be
written if and only if hours, minutes, or seconds are specified.

6. XML Schema II: Simple Types 6-56 / 86

Date and Time Types (11)

Examples:

P1Y2M3D is a duration of one year, two months, and
three days.

P2DT12H is a duration of two days and twelve hours.

-P1D is the duration that gives yesterday if added to
today’s date.

The values of the components are not restricted by the
size of the next larger component, e.g. PT36H is possible
(36 hours).

6. XML Schema II: Simple Types 6-57 / 86

Date and Time Types (12)

duration values are ordered only partially, e.g. P30D and
P1M are not comparable.

P1M is larger than P27D, it is uncomparable to P28D, P29D, P30D, P31D, and
it is smaller than P32D. However, P5M not simply multiplies these values
by 5, but looks at an arbitrary sequence of five consecutive months. Thus,
p5M is larger than P149D, smaller than P154D, and uncomparable to the
values in between.

One can use the pattern facet to enforce that durations
are specified in a single unit, P\d+D permits only days.

6. XML Schema II: Simple Types 6-58 / 86

Date and Time Types (13)

Applicable constraining facets:

pattern

enumeration

minExclusive, minInclusive,
maxExclusive, maxInclusive

As explained above, mixing UTC and local time should be avoided.
If a value is not comparable with the bound, it is considered illegal.

whiteSpace has the fixed value collapse.

6. XML Schema II: Simple Types 6-59 / 86

Contents

1 Introduction

2 Strings, Names

3 Numbers

4 Date/Time

5 Other

6 UNION

7 LIST

8 Reference

6. XML Schema II: Simple Types 6-60 / 86

Boolean

The value space consists of the truth values true, false.

The lexical space consists of true, false, 1, 0.
As one would expect, 1 represents the value true, and 0 represents the
value false.

6. XML Schema II: Simple Types 6-61 / 86

Binary Data

Values of the types hexBinary and base64Binary are
finite-length sequences of bytes (“binary octets”).

The lexical space of hexBinary is the set of even-length
strings of decimal digits and letters a-f/A-F.

Every hexadecimal digit represents 4 bits of the binary string.

The Base64-encoding packs 6 Bits into every character by
using the characters A-Z, a-z, 0-9, “+”, “/” (and “=” at
the end to mark characters derived from fill bytes).

See RFC 2045. The string length is always a multiple of four (4 characters
from the encoding are mapped to 3 bytes of binary data).

6. XML Schema II: Simple Types 6-62 / 86

URIs

The value space of the built-in type anyURI is the set of
(absolute or relative) URIs, optionally with a fragment
identifier (i.e., “#”).

See RFC 2396 and RFC 2732.

Some international characters are allowed directly in
constants of type anyURI that would normally have to be
escaped with “%xy”.

See the XLink specification, Section 5.4 “Locator Attribute”, and Section 8
“Character Encoding in URI References”.

It is not required that the URI can be dereferenced
(accessed).

6. XML Schema II: Simple Types 6-63 / 86

NOTATION

One can declare notations (non-XML data formats) in
XML schema:
<xs:notation name="gif" public=

"-//IETF//NOTATION Media Type image/gif//EN"/>

Values of the built-in data type NOTATION are the
qualified names of the declared notations.

One cannot use this type directly for elements and
attributes, but must declare an enumeration:

<xs:simpleType name="imageFormat">
<xs:restriction base="xs:NOTATION">

<xs:enumeration value="gif"/>
<xs:enumeration value="jpeg"/>
...

6. XML Schema II: Simple Types 6-64 / 86

Contents

1 Introduction

2 Strings, Names

3 Numbers

4 Date/Time

5 Other

6 UNION

7 LIST

8 Reference

6. XML Schema II: Simple Types 6-65 / 86

Union Types (1)

One can define a new simple type by constructing the
union of two or more simple types.

One can construct the union of a union, but this is equivalent to a “flat”
union. One cannot take the union of complex types.

Example: The attribute maxOccurs permits integers
(≥ 0) and the special value “unbounded” (a string).

The components of a union type can be specified by the
attribute “memberTypes” or by simpleType-children, or
a mixture of both.

The order of the menber types is insofar significant, as the value will count
as a value of the first member type for which it is a legal value.

6. XML Schema II: Simple Types 6-66 / 86

Union Types (2)

<!-- Enumeration type with only value "unbounded" -->
<xs:simpleType name="uType">

<xs:restriction base="xs:string">
<xs:enumeration value="unbounded"/>

</xs:restriction>
</xs:simpleType>

<!-- Defining a union with attribute memberTypes: -->
<xs:simpleType name="cardinality">

<xs:union memberTypes="nonNegativeInteger uType"/>
</xs:simpleType>

6. XML Schema II: Simple Types 6-67 / 86

Union Types (3)

<!-- Defining a union with simpleType children: -->
<xs:simpleType name="cardinality">

<xs:union>
<xs:simpleType>

<xs:restriction base="xs:integer">
<xs:minInclusive value="0">

</xs:restriction>
</xs:simpleType>
<xs:simpleType>

<xs:restriction base="xs:string">
<xs:enumeration value="unbounded"/>

</xs:restriction>
</xs:simpleType>

</xs:union>
</xs:simpleType>

6. XML Schema II: Simple Types 6-68 / 86

Union Types (4)

<!-- Using a mixture of both: -->
<xs:simpleType name="cardinality">

<xs:union memberTypes="nonNegativeInteger">
<xs:simpleType>

<xs:restriction base="xs:string">
<xs:enumeration value="unbounded"/>

</xs:restriction>
</xs:simpleType>

</xs:union>
</xs:simpleType>

6. XML Schema II: Simple Types 6-69 / 86

Union Types (5)

<union>:

Possible attributes:

id: Unique ID
All XML Schema elements have attribute id of type ID. It will not
be explicitly mentioned for the other element types.

memberTypes: component types of the union
This is a list of QName values. The attribute or a simpleType-child
(or both) must be present (empty unions are not reasonable).

Content model:
annotation?, simpleType*

6. XML Schema II: Simple Types 6-70 / 86

Union Types (6)

<union>, continued:

Possible parent element types: simpleType.
Normally, it is not really necessary to specify the possible parent element
types, since this information can be derived from the content model of the
other element types. However, this is at least useful cross-reference
information: It simplifies the understanding where the current element type
can be used. Furthermore, sometimes an element type has different
syntactic variants depending on the context in which it appears (remember
that this is a feature of XML Schema that goes beyond the possibilities of
DTDs). Then the parent type really gives important information.

Union types can be restricted by facets pattern and
enumeration.

6. XML Schema II: Simple Types 6-71 / 86

Contents

1 Introduction

2 Strings, Names

3 Numbers

4 Date/Time

5 Other

6 UNION

7 LIST

8 Reference

6. XML Schema II: Simple Types 6-72 / 86

List Types (1)

A simple type can be constructed as list of values of
another simple type.

The component type cannot be itself a list type, not a union that contains
a list, and so on. Because of the lexical representation, nested lists could
not be distinguished from the corresponding flat list. List types can be
defined only for simple types, not for complex types.

The lexical represenation of a list value is a string that
consists of the lexical representation of the single values,
separated by whitespace.

Whitespace is one or more spaces, tabs, and line breaks. This is the same
representation that is used in classical SGML/XML e.g. for IDREFS: This
type is defined in XML Schema as list of IDREF values.

6. XML Schema II: Simple Types 6-73 / 86

List Types (2)

Suppose we want to define a list of weekdays when a
museum is open:

<museum name="Big Art Gallery"
open="Tue Wed Thu Fri Sat Sun"
from="09:00:00" to="17:00:00"/>

<museum name="Private Computer Collection"
open="Sat Sun"
from="15:00:00" to="18:00:00"/>

This can be done as follows:
<xs:simpleType name="weekdayList">

<xs:list itemType="weekday"/>
</xs:simpleType>

6. XML Schema II: Simple Types 6-74 / 86

List Types (3)

Instead of specifying a named component type in the
itemType attribute, one can also define a type in a
simpleType child element:

<xs:simpleType name="weekdayList">
<xs:list>

<xs:simpleType>
<xs:restriction base="xs:token">

<xs:enumeration value="Sun"/>
...

</xs:restriction>
</xs:simpleType>

</xs:list>
</xs:simpleType>

6. XML Schema II: Simple Types 6-75 / 86

List Types (4)

The constants of the list item type must not contain
whitespace.

The input string is split into list elements at whitespace before the single
list elements are validated.

Instead of a list type, one could also use a sequence of
elements:

Advantage of list type: shorter.

Advantage of element list: List items can be structured
(e.g. attributes can be added).

Furthermore, currently XPath and XSLT do not permit access to the
single items in a list type, but one can of course select single
elements in a sequence.

6. XML Schema II: Simple Types 6-76 / 86

List Types (5)

<list>:

Possible attributes:

itemType: Type of list elements (a QName).
One must use either this attribute or a simpleType child element.
One cannot use both.

Content model:
annotation?, simpleType?

Possible parent element types: simpleType.

6. XML Schema II: Simple Types 6-77 / 86

List Types (6)

List types can be restricted by facets:

length, minLength, maxLength,
The length is the number of list items, not the string length of the
lexical representation. If necessary, the string length can be
restricted with pattern. Note that empty lists are possible. If
necessary, use minLength with a value of 1.

pattern,
This is a pattern for the entire list, not for the list items. A pattern
for the list items can be specified in the definition of the item type.

enumeration.

6. XML Schema II: Simple Types 6-78 / 86

Contents

1 Introduction

2 Strings, Names

3 Numbers

4 Date/Time

5 Other

6 UNION

7 LIST

8 Reference

6. XML Schema II: Simple Types 6-79 / 86

Restrictions: Summary (1)

<restriction> (for simple types):

Possible attributes:
base: Name of the type to be restricted (a QName).

Either this attribute or a simpleType child must be used.

Content model:
annotation?, simpleType?,

(minExclusive | minInclusive
| maxExclusive | maxInclusive
| length | minLength | maxLength
| totalDigits | fractionDigits
| enumeration | pattern | whiteSpace)*

Possible parent element types: simpleType.
6. XML Schema II: Simple Types 6-80 / 86

Restrictions: Summary (2)

<restriction>, continued:

The above content model is a little too generous:

length cannot be used together with minLength or
with maxLength.

Also minExclusive and minInclusive cannot be used
together.

The same for maxExclusive and maxInclusive.

Except enumeration and pattern, one cannot use the
same facet twice.

And there are restrictions given by the base type.

6. XML Schema II: Simple Types 6-81 / 86

Restrictions: Summary (3)

<minInclusive>, <minExclusive>, . . . (facets):

Possible attributes:

value: The parameter of the restriction.
This attribute is required. Its type depends on the facet.

fixed: A boolean value that indicates wether this facet
can be further restricted in derived types.

The default value is false. Note that this attribute is not applicable
for pattern and enumeration.

Content model:
annotation?

Possible parent element types: restriction.

6. XML Schema II: Simple Types 6-82 / 86

Simple Types: Declaration (1)

<simpleType> (with name):

Possible attributes:

name: Name of the type (an NCName).

final: Restrictions for the derivation of other types
from this one (see below).

Content model:
annotation?, (restriction | list | union)

Possible parent element types: schema, redefine.

6. XML Schema II: Simple Types 6-83 / 86

Simple Types: Declaration (2)

<simpleType> (without name):

Possible attributes:

(only id)

Content model:
annotation?, (restriction | list | union)

Possible parent element types: element, attribute,
restriction, list, union.

6. XML Schema II: Simple Types 6-84 / 86

Simple Types: Declaration (3)

Attribute final:

One can forbid that a type is used for deriving other types
(inspired by object-oriented languages).

Possible values of the attribute are:

#all: There cannot be any derived type.

Lists of restriction, list, union: Only the explicitly
listed type derivations are forbidden.

If final is not specified, the value of the attribute
finalDefault of the schema-element is used (which in
turn defaults to "", i.e. no restrictions).

6. XML Schema II: Simple Types 6-85 / 86

References

Harald Schöning, Walter Waterfeld: XML Schema.
In: Erhard Rahm, Gottfried Vossen: Web & Datenbanken, Seiten 33-64.
dpunkt.verlag, 2003, ISBN 3-89864-189-9.

Priscilla Walmsley: Definitive XML Schema.
Prentice Hall, 2001, ISBN 0130655678, 560 pages.

W3C Architecture Domain: XML Schema.
[http://www.w3.org/XML/Schema]

David C. Fallside, Priscilla Walmsley: XML Schema Part 0: Primer.
W3C, 28. October 2004, Second Edition.
[http://www.w3.org/TR/xmlschema-0/]

Henry S. Thompson, David Beech, Murray Maloney, Noah Mendelsohn:
XML Schema Part 1: Structures.
W3C, 28. October 2004, Second Edition
[http://www.w3.org/TR/xmlschema-1/]

Paul V. Biron, Ashok Malhotra: XML Schema Part 2: Datatypes.
W3C, 28. October 2004, Second Edition
[http://www.w3.org/TR/xmlschema-2/]

[http://www.w3schools.com/schema/]

6. XML Schema II: Simple Types 6-86 / 86

http://www.w3.org/XML/Schema
http://www.w3.org/TR/xmlschema-0/
http://www.w3.org/TR/xmlschema-1/
http://www.w3.org/TR/xmlschema-2/
http://www.w3schools.com/schema/

	Introduction
	Introduction

	Strings, Names
	Strings, Names

	Numbers
	Numbers

	Date/Time
	Date/Time

	Other
	Other Types

	UNION
	UNION

	LIST
	LIST

	Reference
	Summary
	References

