
Introduction Example Template Rules XPath 1.0 More XSLT Constructs

XML and Databases

Chapter 15: XSLT

Prof. Dr. Stefan Brass

Martin-Luther-Universität Halle-Wittenberg

Winter 2022/23

http://www.informatik.uni-halle.de/˜brass/xml22/

Stefan Brass: XML and Databases 15. XSLT 15-1 / 86

http://www.informatik.uni-halle.de/~brass/xml22/

Introduction Example Template Rules XPath 1.0 More XSLT Constructs

Objectives

After completing this chapter, you should be able to:

write transformations from XML to XML, or from XML
to HTML as an XSLT stylesheet.

This chapter also explains how a transformation from XML to LATEX is
done with XSLT.

read and understand given XSLT stylesheets.

Stefan Brass: XML and Databases 15. XSLT 15-2 / 86

Introduction Example Template Rules XPath 1.0 More XSLT Constructs

Contents

1 Introduction

2 Example

3 Template Rules

4 XPath 1.0

5 More XSLT Constructs

Stefan Brass: XML and Databases 15. XSLT 15-3 / 86

Introduction Example Template Rules XPath 1.0 More XSLT Constructs

Introduction (1)

XML is by itself only a data format:

It contains the data (content), but

does not specify how the elements should be printed or
displayed in a browser or on paper.

The output format is specified with style sheets:

Using Cascading Stylesheets (CSS).

Using XSLT to translate XML to HTML.
The HTML is then typically formatted with CSS.

Using XSLT to translate XML to XSL-FO.
For paper/PDF. One can also translate to LATEX with XSLT.

Stefan Brass: XML and Databases 15. XSLT 15-4 / 86

Introduction Example Template Rules XPath 1.0 More XSLT Constructs

Introduction (2)

Many browsers support CSS, which is normally used for
HTML web pages, also for XML:

<?xml version="1.0" encoding="UTF-8"?>
<?xml-stylesheet type="text/css"

href="mystyle.css"?>
<GRADES-DB>
...

However, this has many restrictions:

With CSS, the elements are formatted in the order in
which they are written,

and there is only very limited filtering.

Stefan Brass: XML and Databases 15. XSLT 15-5 / 86

Introduction Example Template Rules XPath 1.0 More XSLT Constructs

Introduction (3)

The Extensible Stylesheet Language (XSL) consists of
two parts:

XSLT (XSL Transformations) is a mechanism to
transform XML documents into XML documents (e.g.,
with other elements/tags).

As explained below, the output is not necessarily XML. Even binary
files can be generated.

XSL-FO (XSL Formatting Objects) is a set of element
types/tags with a specified semantics for displaying
them.

“an XML vocabulary for specifying formatting semantics”
[https://www.w3.org/Style/XSL/]

Stefan Brass: XML and Databases 15. XSLT 15-6 / 86

https://www.w3.org/Style/XSL/

Introduction Example Template Rules XPath 1.0 More XSLT Constructs

Introduction (4)

So the idea is to

use XSLT to transform a custom XML file to XSL-FO,

which is then displayed on screen or printed on paper.

XSL-FO especially supports high-quality printout on
paper (or as a PDF file).

Thus, e.g. splitting a document into pages is important for XSL-FO,
whereas it is not important for displaying a web page in a browser. Also,
hyphenation is treated. Where possible, properties from CSS2 where taken,
and somtimes extended or split into several properties.

Stefan Brass: XML and Databases 15. XSLT 15-7 / 86

Introduction Example Template Rules XPath 1.0 More XSLT Constructs

Introduction (5)
XSL has its roots in DSSSL, the Document Style
Semantics and Specification Language (for SGML).

XSLT 1.0 became a W3C recommendation (official standard)
on November 16, 1999.

See [https://www.w3.org/TR/1999/REC-xslt-19991116].
The next version was XSLT 2.0 from Januar 23, 2007.
[https://www.w3.org/TR/xslt20/]
The current version is XSLT 3.0 from June 8, 2017.
[https://www.w3.org/TR/xslt-30/]

XSL 1.0 (which specifies XSL-FO) became a W3C
recommendation on October 15, 2001.

See [https://www.w3.org/TR/2001/REC-xsl-20011015/]
Current ver.: XSL 1.1 (Dec. 5, 2006) [https://www.w3.org/TR/xsl/]
Draft: XSL 2.0 (Jan. 17, 2012) [https://www.w3.org/TR/xslfo20/]

Stefan Brass: XML and Databases 15. XSLT 15-8 / 86

https://www.w3.org/TR/1999/REC-xslt-19991116
https://www.w3.org/TR/xslt20/
https://www.w3.org/TR/xslt-30/
https://www.w3.org/TR/2001/REC-xsl-20011015/
https://www.w3.org/TR/xsl/
https://www.w3.org/TR/xslfo20/

Introduction Example Template Rules XPath 1.0 More XSLT Constructs

Introduction (6)

Quite often, XSLT is used without XSL-FO:

For instance, XML is transformed to HTML to be
displayed in a browser.

Or XSLT is used to transform a given XML document
into a differently structured XML document (with
different element types/tags).

In this way, one can adapt an XML file from a business partner to
one’s own XML structure. Or one can integrate XML files from
different sources to a common XML vocabulary.

Stefan Brass: XML and Databases 15. XSLT 15-9 / 86

Introduction Example Template Rules XPath 1.0 More XSLT Constructs

Introduction (7)

For translating XML to HTML, XSLT can be used in two
places:

Client: the web browser does the mapping,
Server: one uses an XSLT processor to translate XML to
HTML, and publishes the HTML files.

Maybe in addition to the XML files. It is also possible that the
HTTP server does the translation on demand: The web browser
sends in the HTTP request a list of mime types it understands.

It seems that browsers today still understand only
XSLT 1.0 (which is based on XPath 1.0).

E.g. documentation of XSLT support in Mozilla Firefox:
[https://developer.mozilla.org/en-US/docs/Web/XSLT]

Stefan Brass: XML and Databases 15. XSLT 15-10 / 86

https://developer.mozilla.org/en-US/docs/Web/XSLT

Introduction Example Template Rules XPath 1.0 More XSLT Constructs

Introduction (8)

Doing the XML to HTML mapping on Client or Server,
continued:

If one does the translation in an intranet only for the
employees of the company, one can at least rely on the
knowledge which browser is used.

On the global internet, it might be that potential
customers use old browsers which do not support XSLT
or support it in incompatible ways.

One can still put the XML file on the server in addition to the
HTML file, in order to support semantic web applications (like price
comparision services).

Stefan Brass: XML and Databases 15. XSLT 15-11 / 86

Introduction Example Template Rules XPath 1.0 More XSLT Constructs

XSLT Implementations

Saxon (from Michael Kay)
M. Kay is editor of the XSLT 2.0 Spec. Basic version (without static type
checking and XQuery→Java compiler) is open source. Supports XSLT 2.0,
XPath 2.0, XQuery 1.0. [http://saxon.sourceforge.net/]

Xalan (Apache) (Java and C++ versions)
[http://xalan.apache.org/]
This is mainly a library, but it also has a command line untility.

xsltproc/libxslt
[http://xmlsoft.org/], [http://xmlsoft.org/XSLT/xsltproc.html]

AltovaXML Community Edition
[http://www.softpedia.com/get/Internet/Other-Internet-Related/AltovaXML.shtml]

Stefan Brass: XML and Databases 15. XSLT 15-12 / 86

http://saxon.sourceforge.net/
http://xalan.apache.org/
http://xmlsoft.org/
http://xmlsoft.org/XSLT/xsltproc.html
http://www.softpedia.com/get/Internet/Other-Internet-Related/AltovaXML.shtml

Introduction Example Template Rules XPath 1.0 More XSLT Constructs

Contents

1 Introduction

2 Example

3 Template Rules

4 XPath 1.0

5 More XSLT Constructs

Stefan Brass: XML and Databases 15. XSLT 15-13 / 86

Introduction Example Template Rules XPath 1.0 More XSLT Constructs

Example XML File (1)

STUDENTS
SID FIRST LAST EMAIL
101 Ann Smith · · ·
102 David Jones NULL
103 Paul Miller · · ·
104 Maria Brown · · ·

EXERCISES
CAT ENO TOPIC MAXPT
H 1 ER 10
H 2 SQL 10
M 1 SQL 14

RESULTS
SID CAT ENO POINTS
101 H 1 10
101 H 2 8
101 M 1 12
102 H 1 9
102 H 2 9
102 M 1 10
103 H 1 5
103 M 1 7

Stefan Brass: XML and Databases 15. XSLT 15-14 / 86

Introduction Example Template Rules XPath 1.0 More XSLT Constructs

Example XML File (2)

Consider the grades DB with data in attributes:

<?xml version=’1.0’ encoding=’UTF-8’?>
<?xml-stylesheet type=’text/xsl’

href=’mystyle.xsl’?>
<GRADES-DB>

<STUDENT SID=’101’
FIRST=’Ann’ LAST=’Smith’
EMAIL=’smith@acm.org’/>

<STUDENT SID=’102’
FIRST=’Michael’ LAST=’Jones’/>

...

Stefan Brass: XML and Databases 15. XSLT 15-15 / 86

Introduction Example Template Rules XPath 1.0 More XSLT Constructs

Example XML File (3)

Grades DB (with data in attributes), continued:

<EXERCISE CAT=’H’ ENO=’1’
TOPIC=’Relational Algebra’
MAXPT=’10’/>...

<RESULT SID=’101’ CAT=’H’ ENO=’1’
POINTS=’10’/>...

</GRADES-DB>

Note: If there is a typing error in the name of the stylesheet, many
browsers (e.g., Firefox 43) silently apply the built-in templates (see
Slide 57), which means that the output will be empty if the data is stored
in attributes. Textual element content is shown.

Stefan Brass: XML and Databases 15. XSLT 15-16 / 86

Introduction Example Template Rules XPath 1.0 More XSLT Constructs

Example XSLT Stylesheet (1)

<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet

version="1.0"
xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
xmlns:html="http://www.w3.org/1999/xhtml"
xmlns="http://www.w3.org/1999/xhtml"
exclude-result-prefixes="html">

XSLT stylesheets are written in XML syntax, using the
outermost element stylesheet.

transform is allowed as a synonym. The version number is mandatory.

Stefan Brass: XML and Databases 15. XSLT 15-17 / 86

Introduction Example Template Rules XPath 1.0 More XSLT Constructs

Example XSLT Stylesheet (2)

The namespace URI for XSLT elements must be
http://www.w3.org/1999/XSL/Transform.

In the example, a namespace for XHTML is declared in
addition to the namespace for XSLT, and this is also the
default namespace.

So one can write XHTML tags without namespace prefix.

With exclude-result-prefixes, it is specified that in
the output of the transformation, the namespace prefix of
XHTML tags should not be written.

Stefan Brass: XML and Databases 15. XSLT 15-18 / 86

Introduction Example Template Rules XPath 1.0 More XSLT Constructs

Example XSLT Stylesheet (3)

<xsl:output
method="xml"
doctype-system=

"http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd"
doctype-public="-//W3C//DTD XHTML 1.1//EN" />

This specifies how the resulting XDM tree should be
printed/serialized (in this case, as XHTML).

Alternative (classical HTML):
<xsl:output method="html"

encoding="ISO-8859-1"
doctype-public="-//W3C//DTD HTML 3.2 Final//EN"
indent="yes" />

See: [https://www.w3.org/TR/1999/REC-xslt-19991116#output]

Stefan Brass: XML and Databases 15. XSLT 15-19 / 86

https://www.w3.org/TR/1999/REC-xslt-19991116#output

Introduction Example Template Rules XPath 1.0 More XSLT Constructs

Example XSLT Stylesheet (4)

<xsl:template match="/">
<html>

<head><title>Students</title></head>
<body>

<h1>Student List</h1>

<xsl:apply-templates
select="/GRADES-DB/STUDENT"/>

</body>

</html>
</xsl:template>

Stefan Brass: XML and Databases 15. XSLT 15-20 / 86

Introduction Example Template Rules XPath 1.0 More XSLT Constructs

Example XSLT Stylesheet (5)

An XSLT stylesheet is mainly a set of transformation rules
called “templates” or “template rules”.

[https://www.w3.org/TR/1999/REC-xslt-19991116#rules]

Each template describes a transformation from a subtree
of the input (i.e. a start node and all its descendants) into
a tree or list of trees.

The output of the transformation for a given XML
document is given by the rule for the root node “/” of
the input tree.

All other templates are used only if they are called (maybe indirectly) from
the pattern for this root node “/” with “apply-templates”.

Stefan Brass: XML and Databases 15. XSLT 15-21 / 86

https://www.w3.org/TR/1999/REC-xslt-19991116#rules

Introduction Example Template Rules XPath 1.0 More XSLT Constructs

Example XSLT Stylesheet (6)

Each transformation rule (template) consists mainly of
two parts:

The attribute “match” defines, for which nodes this
transformation rule is applicable.

It is a restricted XPath-expression (called a pattern).
[https://www.w3.org/TR/1999/REC-xslt-19991116#patterns]

The contents of “xsl:template” is a pattern for the
output. It is mainly copied to the output tree, but
contained XSLT elements are evaluated.

In the example, the contents contains “xsl:apply-templates”.
Another typical tag used in the contents is “xsl:value-of”.

Stefan Brass: XML and Databases 15. XSLT 15-22 / 86

https://www.w3.org/TR/1999/REC-xslt-19991116#patterns

Introduction Example Template Rules XPath 1.0 More XSLT Constructs

Example XSLT Stylesheet (7)

“xsl:apply-templates” will be replaced by the result
of applying the transformation recursively to the node
which is specified in the “select”-attribute.

The contents of this attribute is an XPath expression.
[https://.../REC-xslt-19991116#section-Applying-Template-Rules]

If it selects several nodes, the transformation results for
all these the nodes are inserted into the output tree
(in the same sequence).

If the attribute “select” is omitted, all child nodes are
transformed.

Stefan Brass: XML and Databases 15. XSLT 15-23 / 86

https://www.w3.org/TR/1999/REC-xslt-19991116#section-Applying-Template-Rules

Introduction Example Template Rules XPath 1.0 More XSLT Constructs

Example XSLT Stylesheet (8)

<xsl:template match="STUDENT">

<xsl:value-of select="@LAST" />,
<xsl:value-of select="@FIRST" />

</xsl:template>

</xsl:stylesheet>

The result of the stylesheet is an HTML page which
contains the student names, e.g. “Smith, Ann” as an
unordered list.

value-of adds the value of the XPath-expression converted to a string.

Stefan Brass: XML and Databases 15. XSLT 15-24 / 86

Introduction Example Template Rules XPath 1.0 More XSLT Constructs

Example XSLT Stylesheet (9)

<STUDENT SID=’101’
FIRST=’Ann’ LAST=’Smith’
EMAIL=’smith@acm.org’/>

<xsl:template match="STUDENT">
<xsl:value-of select="@LAST" />,

<xsl:value-of select="@FIRST" />

</xsl:template>

Smith,
Ann

Stefan Brass: XML and Databases 15. XSLT 15-25 / 86

Introduction Example Template Rules XPath 1.0 More XSLT Constructs

Stylesheets are XML (1)

Note that XSLT stylesheets must be well-formed XML.
Thus, even if HTML is generated, one must e.g. write
“
” and not simply “
”.

XML has only the five predefined entities:
“<”, “>”, “'”, “"e;”, “&”.

To use other HTML entities (e.g. “ ”):

declare them in a local DTD part in the DOCTYPE
declaration (see below), or

put them into a CDATA section (see below), or

write a character reference: for .

Stefan Brass: XML and Databases 15. XSLT 15-26 / 86

Introduction Example Template Rules XPath 1.0 More XSLT Constructs

Stylesheets are XML (2)

Solution with CDATA-Section:
<xsl:text disable-output-escaping="yes"

><![CDATA[]]></xsl:text>

The xsl:text is needed so that the CDATA-section does
not appear in the output (because the output escaping is
disabled).

xsl:text simply creates a text node.
[https://.../REC-xslt-19991116#section-Creating-Text]
[https://.../REC-xslt-19991116#disable-output-escaping]

Obviously, this is only practical if there are very few entity
references.

Stefan Brass: XML and Databases 15. XSLT 15-27 / 86

https://www.w3.org/TR/1999/REC-xslt-19991116#section-Creating-Text
https://www.w3.org/TR/1999/REC-xslt-19991116#disable-output-escaping

Introduction Example Template Rules XPath 1.0 More XSLT Constructs

Stylesheets are XML (3)

<!DOCTYPE xsl:stylesheet [
<!ENTITY Auml "Ä">
<!ENTITY auml "ä">
<!ENTITY Ouml "Ö">
<!ENTITY ouml "ö">
<!ENTITY Uuml "Ü">
<!ENTITY uuml "ü">
<!ENTITY szlig "ß">
<!ENTITY nbsp " ">

]>

The numbers can be taken from the HTML DTD or the Unicode standard or
[http://www.w3.org/2003/entities/2007/w3centities-f.ent].

Stefan Brass: XML and Databases 15. XSLT 15-28 / 86

http://www.w3.org/2003/entities/2007/w3centities-f.ent

Introduction Example Template Rules XPath 1.0 More XSLT Constructs

Contents

1 Introduction

2 Example

3 Template Rules

4 XPath 1.0

5 More XSLT Constructs

Stefan Brass: XML and Databases 15. XSLT 15-29 / 86

Introduction Example Template Rules XPath 1.0 More XSLT Constructs

Templates as Functions (1)

One can view a template rule as a function with the
following input:

a current node,
The current node is the context node for the evaluation of XPath
expressions within the template. It is the main input of the template
rule. [https://www.w3.org/TR/1999/REC-xslt-19991116#rules]

a current node list,
The current node list is only used for determining the context position
and context size: The current node is always a member of the current
node list. Its position is the context position (counted from 1).
The length of the current node list is the context size.

possibly named parameters (see below).

Stefan Brass: XML and Databases 15. XSLT 15-30 / 86

https://www.w3.org/TR/1999/REC-xslt-19991116#rules

Introduction Example Template Rules XPath 1.0 More XSLT Constructs

Templates as Functions (2)

The output is a “result tree fragment” in XSLT 1.0.
This is a root node with children. The root node is not important, it is
normally removed when the “result tree fragment” is inserted into another
“result tree fragment”. I.e. it could also be simply formalized as a list of
nodes. However, because a root node cannot have attribute nodes as children,
a result tree fragment cannot contain attribute nodes (except within element
nodes). The special type “result tree fragment” as opposed to node set is
also needed because one is not allowed to use /, // and [...] on result
tree fragments (only the string value can be used). It is possible to define
variables that have result tree fragments as values, (see Slide 73), but one
cannot do much with it except inserting it into the output document.
In particular, one cannot apply templates to the result of other templates.
[https://...#section-Result-Tree-Fragments]

In XSLT 2.0, it is a sequence of items.

Stefan Brass: XML and Databases 15. XSLT 15-31 / 86

https://www.w3.org/TR/1999/REC-xslt-19991116#section-Result-Tree-Fragments

Introduction Example Template Rules XPath 1.0 More XSLT Constructs

Templates as Functions (3)

One can view the template rules as different versions of a
heavily overloaded function/method.

All functions have the same name, they differ only in the argument type.
Later, “modes” will be discussed, which correspond to functions with
different names. One can also introduce named templates.

The attribute match defines the “data type” of the
current node (the argument) for which this
“implementation” of xs:template is applicable.

E.g. there may be one implementation for STUDENT
element nodes, and another one for EXERCISE nodes.

Stefan Brass: XML and Databases 15. XSLT 15-32 / 86

Introduction Example Template Rules XPath 1.0 More XSLT Constructs

Templates as Functions (4)

Initially, xs:template is called with the root node of the
input document as current node.

I.e. this is the call of the “main” procedure which initiates the stylesheet
execution. The “current node list” contains only this node, i.e. the context
position is 1 and context size is 1.

When a template is executed, the contents of the
xs:template element is evaluated.

This process is described in detail starting on Slide 38. The language can
be seen as a functional language, i.e. the contents of the xs:template is
basically a term which is evaluated to a result tree fragment based on the
values of its subterms. There are variables (see Slide 73), but these can be
assigned a value only once, i.e. they are constants.

Stefan Brass: XML and Databases 15. XSLT 15-33 / 86

Introduction Example Template Rules XPath 1.0 More XSLT Constructs

Templates as Functions (5)

If <xsl:apply-templates select="e"> is called,

the XPath-expression e is evaluated. The result must be
a node set. Let n1, . . . , nk be these nodes in document
order (xs:sort changes the order).

For i := 1, . . . , k, a recursive call of the template
evaluation procedure is done with ni as current node and
n1, . . . , nk as current node list.

I.e. context node: ni , context position: i , context size: k.

Each call returns a sequence of nodes (result tree fragment).
These sequences are concatenated (with adjacent text
nodes merged).

Stefan Brass: XML and Databases 15. XSLT 15-34 / 86

Introduction Example Template Rules XPath 1.0 More XSLT Constructs

Templates as Functions (6)

Within a template, one can e.g. use
<xsl:value-of select="position()"/>

to see the context position.
For instance, this can be used to generate a sequential number of the
template calls resulting from a single xsl:apply-templates. In the same
way, last() gives the total number of nodes selected in this call.

But note that the context changes within an XPath expression
(and thus, the value of position()).

E.g. “//STUDENT[position()+1]” gives ∅, because position() is then
the position of the current node in the //STUDENT-sequence. If one needs
to remember the position for which the template was called, this can be
done by defining a variable within the template, see Slide 76.

Stefan Brass: XML and Databases 15. XSLT 15-35 / 86

Introduction Example Template Rules XPath 1.0 More XSLT Constructs

Templates as Functions (7)

Since the current node (the main input parameter to the
template invocation) is so important, there is a special
function current() which returns it.

There are several “additional functions” that can be used in XPath
expressions embedded in XSLT, which are not part of the XPath core
function library. [http://.../REC-xslt-19991116#add-func]
[http://.../REC-xslt-19991116#function-current]

When an XPath expression in the template is evaluated,
the context node is first the current node.

However, as the path expression navigates through the
XML document, the context node changes, while the
result of current() remains stable.

Stefan Brass: XML and Databases 15. XSLT 15-36 / 86

https://www.w3.org/TR/1999/REC-xslt-19991116#add-func
https://www.w3.org/TR/1999/REC-xslt-19991116#function-current

Introduction Example Template Rules XPath 1.0 More XSLT Constructs

Templates as Functions (8)

Note that a template invocation for a node n can call
templates for any node in the input document, not only in
the subtree rooted at n.

Print sum of homework points for each student:

<xsl:template match="STUDENT">

<xsl:value-of select="@LAST" />:
<xsl:value-of select="sum(//RESULT

[@SID=current()/@SID][@CAT=’H’]
/@POINTS)" />

</xsl:template>

Stefan Brass: XML and Databases 15. XSLT 15-37 / 86

Introduction Example Template Rules XPath 1.0 More XSLT Constructs

Template Instantiation (1)

General Remarks:

The contents of the xs:template-element is
“instantiated” to give a result tree fragment
(which usually becomes part of the output document).

When the “real” XSLT evaluation starts, there is an XDM tree for the
input document, and one for the stylesheet (which is XML, too).

I.e. to specify what XSLT does, one must define a
function “instantiate” that takes a context C and a
node n inside the template as input, and returns a
sequence of nodes for the result tree.

Usually, it will call itself recursively for the children of node n.

Stefan Brass: XML and Databases 15. XSLT 15-38 / 86

Introduction Example Template Rules XPath 1.0 More XSLT Constructs

Template Instantiation (2)

Literal Result Elements:

Elements within the template that do not belong to the
XSLT namespace are evaluated by creating the
corresponding element in the output.

[https://www.w3.org/TR/1999/REC-xslt-19991116#literal-result-element]

The content of the element in the template is evaluated
to give the content of the constructed element.

Therefore, e.g. nested xsl:value-of or xsl:apply-templates are
evaluated, too.

Stefan Brass: XML and Databases 15. XSLT 15-39 / 86

https://www.w3.org/TR/1999/REC-xslt-19991116#literal-result-element

Introduction Example Template Rules XPath 1.0 More XSLT Constructs

Template Instantiation (3)

Literal Result Elements, continued:

Attributes of the element are treated as “attribute value
templates”: They can contain XPath-expressions in
“{...}” that are evaluated to give the attribute value of
the constructed element.

This is similar to XQuery. If one needs literal “{” outside an XPath
expression, one has to write “{{”, and the same for “}”. Note that this
special interpretation of “{...}” happens only in attribute values of literal
result elements or certain attributes of some XSLT elements. Within
element content, “{...}” is not interpreted.
[https://.../REC-xslt-19991116#dt-attribute-value-template]

Stefan Brass: XML and Databases 15. XSLT 15-40 / 86

https://www.w3.org/TR/1999/REC-xslt-19991116#dt-attribute-value-template

Introduction Example Template Rules XPath 1.0 More XSLT Constructs

Template Instantiation (4)

Literal Text:

Text nodes within the template are copied to the
generated output, unless they contain only whitespace.

And unless an acestor element of the text node contains the special
attribute xml:space="preserve" (introduced in the XML standard).
[https://.../REC-xslt-19991116#section-Creating-Text]
[https://.../REC-xslt-19991116#strip]

Note that adjacent text nodes (no matter how they are
created) are merged, and empty text nodes are removed,
as required by the data model.

Stefan Brass: XML and Databases 15. XSLT 15-41 / 86

https://www.w3.org/TR/1999/REC-xslt-19991116#section-Creating-Text
https://www.w3.org/TR/1999/REC-xslt-19991116#strip

Introduction Example Template Rules XPath 1.0 More XSLT Constructs

Template Instantiation (5)

xsl:text:

If one wants to generate e.g. a single space in the output
document, one can write

<xsl:text> </xsl:text>

Whitespace within this element is preserved.

The element xsl:text can be used for generating any
text node, but because literal text is copied, this is
needed only in special situations.

The content model of xsl:text is #PCDATA.
I.e. pure text without nested elements.

Stefan Brass: XML and Databases 15. XSLT 15-42 / 86

Introduction Example Template Rules XPath 1.0 More XSLT Constructs

Template Instantiation (6)

disable-output-escaping:

If one writes < or <, the internal representation
of the style sheet contains the character “<”.

Normally, on output this is escaped, i.e. written “<”,
so that valid XML is produced.

The same is done for “&” and maybe other special characters.

The elements xsl:text and xsl:value-of have an
attribute disable-output-escaping which permits to
suppress this translation.

[https://.../REC-xslt-19991116#disable-output-escaping]

Stefan Brass: XML and Databases 15. XSLT 15-43 / 86

https://www.w3.org/TR/1999/REC-xslt-19991116#disable-output-escaping

Introduction Example Template Rules XPath 1.0 More XSLT Constructs

Template Instantiation (7)

disable-output-escaping, continued:

The default value of this attribute is "no".

If disable-output-escaping is set to “yes”,
characters like < are printed without the translation to <.

Note that in the stylesheet, one must write <
(so that the stylesheet is valid XML).

But the output will then be simply “<”.

E.g., if one wants to generate “ä”:
<xsl:text disable-output-escaping="yes"

>&auml;</xsl:text>

Stefan Brass: XML and Databases 15. XSLT 15-44 / 86

Introduction Example Template Rules XPath 1.0 More XSLT Constructs

Template Instantiation (8)

value-of:

<xsl:value-of select="e"/> is replaced by the value
of the XPath-expression e, converted to string.

The node, for which the template is applied, is the context node for
evaluating e. The result of value-of is always a string (text node).
[https://www.w3.org/TR/1999/REC-xslt-19991116#value-of]

If several nodes are selected, only the first (in document order)
is chosen, and its string-value is taken.

As explained above for xsl:text, the attribute disable-output-escaping

can be used to suppress the translation of characters like < to <.

Stefan Brass: XML and Databases 15. XSLT 15-45 / 86

https://www.w3.org/TR/1999/REC-xslt-19991116#value-of

Introduction Example Template Rules XPath 1.0 More XSLT Constructs

Template Instantiation (9)

apply-templates:

<xsl:apply-templates select="e"/> is replaced by
the result of doing the “template rule” transformation
recursively for all nodes that in the result of the
XPath-expression e. See Slide 34.

If select is missing, all child nodes are selected.
xsl:apply-templates can contain xsl:sort →81 and xsl:with-param

→84. Furthermore, it has an attribute mode →83.
[https://.../REC-xslt-19991116#section-Applying-Template-Rules]

Of course, a template can contain any number of calls to
xsl:apply-templates, not only one.

Stefan Brass: XML and Databases 15. XSLT 15-46 / 86

https://www.w3.org/TR/1999/REC-xslt-19991116#section-Applying-Template-Rules

Introduction Example Template Rules XPath 1.0 More XSLT Constructs

Template Instantiation (10)
xsl:copy:

<xsl:copy>C</xsl:copy> copies the current node
(the node for which the template was called) and replaces
its children by the result of evaluating C .

I.e. the node is copied, but not its children or attributes. The copied node
can be any kind, it does not have to be an element node.
[https://www.w3.org/TR/1999/REC-xslt-19991116#copying]

The identity transformation can be specified as:
<xsl:template match="@*|node()">

<xsl:copy>
<xsl:apply-templates select="@*|node()"/>

</xsl:copy>
</xsl:template>

Stefan Brass: XML and Databases 15. XSLT 15-47 / 86

https://www.w3.org/TR/1999/REC-xslt-19991116#copying

Introduction Example Template Rules XPath 1.0 More XSLT Constructs

Template Instantiation (11)

xsl:copy-of:

<xsl:copy-of select="e"/> copies the result of
evaluating e into the result of the template, including all
descendant nodes.

[https://www.w3.org/TR/1999/REC-xslt-19991116#copy-of]

I.e. xsl:copy-of can be used to copy portions of the
input XDM tree into the output.

The input XDM tree is subject to the removal of pure whitespace text
nodes, as defined by <xsl:strip-space elements="A B C"/> (whitespace
text nodes that are children of the named elements A, B and C will be
removed), see [https://www.w3.org/TR/1999/REC-xslt-19991116#strip].

Stefan Brass: XML and Databases 15. XSLT 15-48 / 86

https://www.w3.org/TR/1999/REC-xslt-19991116#copy-of
https://www.w3.org/TR/1999/REC-xslt-19991116#strip

Introduction Example Template Rules XPath 1.0 More XSLT Constructs

Template Instantiation (12)

xsl:element:

<xsl:element name="n">C</xsl:element>
generates an element node with name n and content that
is the result of evaluating C .

[http://.../REC-xslt-19991116#section-Creating-Elements-with-
xsl:element]

One can use {e} in the attribute value of name to include
XPath-expressions that are evaluated and replaced by the
result (converted to a string).

I.e. the attribute value is interpreted as “attribute value template”. This
possibility to compute the element name is probably the reason for using
xsl:element, because otherwise one could have written simply the
element itself.

Stefan Brass: XML and Databases 15. XSLT 15-49 / 86

https://www.w3.org/TR/1999/REC-xslt-19991116#section-Creating-Elements-with-xsl:element
https://www.w3.org/TR/1999/REC-xslt-19991116#section-Creating-Elements-with-xsl:element

Introduction Example Template Rules XPath 1.0 More XSLT Constructs

Template Instantiation (13)

xsl:attribute:

<xsl:attribute name="n">C</xsl:attribute>
generates an attribute node with name n and the result of
evaluating C as value.

One can use {e} in the attribute value of name (see xsl:element above).
The result of evaluating C must be a text node (e.g., element nodes
cannot become an attribute value).
[https://www.w3.org/TR/1999/REC-xslt-19991116#creating-attributes]

The generated attribute node is assigned to the enclosing
element.

Attribute nodes must come first in the content, they cannot be added,
e.g., after a text node.

Stefan Brass: XML and Databases 15. XSLT 15-50 / 86

https://www.w3.org/TR/1999/REC-xslt-19991116#creating-attributes

Introduction Example Template Rules XPath 1.0 More XSLT Constructs

Template Instantiation (14)

Summary:
There are constructor elements for each node type:

xsl:element

xsl:attribute

xsl:text

xsl:processing-instruction
[http://.../REC-xslt-19991116#section-Creating-Processing-
Instructions]

xsl:comment
[https://.../REC-xslt-19991116#section-Creating-Comments]

Obviously, these are similar to the computed constructors in XQuery.
Literal elements, attributes and text in the template are copied to the
result, this corresponds to the direct element constructors of XQuery.

Stefan Brass: XML and Databases 15. XSLT 15-51 / 86

https://www.w3.org/TR/1999/REC-xslt-19991116#section-Creating-Processing-Instructions
https://www.w3.org/TR/1999/REC-xslt-19991116#section-Creating-Processing-Instructions
https://www.w3.org/TR/1999/REC-xslt-19991116#section-Creating-Comments

Introduction Example Template Rules XPath 1.0 More XSLT Constructs

Template Rule Selection (1)

A template with XPath-expression p in the attribute
“match” is applicable to a node n

if there is some ancestor a of n

such that n is an element of the nodes selected by p
evaluated with context node a.

For instance, “/GRADES-DB/STUDENT” matches

a STUDENT-node within the top GRADES-DB node,

not a GRADES-DB node with a STUDENT child node.

There are priority rules if several templates match.
See below and
[https://www.w3.org/TR/1999/REC-xslt-19991116#conflict].

Stefan Brass: XML and Databases 15. XSLT 15-52 / 86

https://www.w3.org/TR/1999/REC-xslt-19991116#conflict

Introduction Example Template Rules XPath 1.0 More XSLT Constructs

Template Rule Selection (2)

Only a subset of XPath 1.0 is allowed as pattern, basically
a |-union of path expressions using

/, //,
At the beginning for absolute paths and as separators of the steps.

child::, attribute::

Of course, the child axis does not have to be specified explicitly, and
the attribute axis can be abbreviated to “@”.

node tests (name and type tests) and

predicates [...].
Inside predicates, the full XPath 1.0 can be used.
[https://www.w3.org/TR/1999/REC-xslt-19991116#patterns]

Stefan Brass: XML and Databases 15. XSLT 15-53 / 86

https://www.w3.org/TR/1999/REC-xslt-19991116#patterns

Introduction Example Template Rules XPath 1.0 More XSLT Constructs

Template Rule Selection (3)

Each template has a priority.

One can specify a priority explicitly:
<xsl:template match="STUDENT[1]" priority="2.0">

If one does not specify a priority, the default is:

−0.5 if it is just a node test without a name, e.g. * or
@* or text().

−0.25 if it is a wildcard with a namespace,
e.g. abc:*

0 if it is a name, e.g. STUDENT or @EMAIL.

+0.5 for all more complex patterns.

Stefan Brass: XML and Databases 15. XSLT 15-54 / 86

Introduction Example Template Rules XPath 1.0 More XSLT Constructs

Template Rule Selection (4)

If a pattern is composed with |, then the template is
treated like several templates, one for each alternative.

E.g. if the pattern is “STUDENT|EXERCISE[1]”, the
template rule has priority

0, if applied to a STUDENT-element, and

0.5, if applied to the first EXERCISE-child of its parent.

Stefan Brass: XML and Databases 15. XSLT 15-55 / 86

Introduction Example Template Rules XPath 1.0 More XSLT Constructs

Template Rule Selection (5)

A stylesheet can be composed out of several files:
<xsl:import href="lib.xsl">

Template rules from files that are imported earlier have
lower “import precedence” than templates from later
imported files.

Template rules in the main file have the highest “import precedence”.
[xsl:apply-imports] can be used for applying overridden rules.

For template rule selection, “import precedence” is
considered first, and priority second.

It is an error if that still leaves more than one template rule. However, the
XSLT processor may recover by selecting the later rule.

Stefan Brass: XML and Databases 15. XSLT 15-56 / 86

https://www.w3.org/TR/1999/REC-xslt-19991116#apply-imports

Introduction Example Template Rules XPath 1.0 More XSLT Constructs

Built-In Template Rules (1)

Built-in template rule for descending in the tree if there is
no other match:

<xsl:template match="*|/">
<xsl:apply-templates/>

</xsl:template>

When apply-templates is specified without the attribute select, it
processes all child nodes of the current node (element nodes, text nodes,
comment nodes and PI nodes).

Built-in rules have the lowest possible import precedence.
Thus, if there is another rule matching the node, this
other rule is chosen.

Stefan Brass: XML and Databases 15. XSLT 15-57 / 86

Introduction Example Template Rules XPath 1.0 More XSLT Constructs

Built-In Template Rules (2)

The following rule prints text nodes and values of
attribute nodes when/if they are selected:

<xsl:template match="text()|@*">
<xsl:value-of select="."/>

</xsl:template>

Note that the above default rule applies the templates only to child nodes,
not the attribute nodes.

There is also a rule for processing instructions and
comment nodes that returns an empty node set:

<xsl:template
match="processing-instruction()|comment()"/>

Stefan Brass: XML and Databases 15. XSLT 15-58 / 86

Introduction Example Template Rules XPath 1.0 More XSLT Constructs

Possible Non-Termination

A template can contain xsl:apply-templates with a
select-expression that matches not only for child or
descendant nodes, but any node in the input document
(including itself).

<xsl:template match="STUDENT>

<xsl:apply-templates select="."/>

</xsl:template>

XSLT is computationally complete.
One can simulate any Turing machine (or other computation model) in it.
[http://www.unidex.com/turing/utm.htm]

Stefan Brass: XML and Databases 15. XSLT 15-59 / 86

http://www.unidex.com/turing/utm.htm

Introduction Example Template Rules XPath 1.0 More XSLT Constructs

Contents

1 Introduction

2 Example

3 Template Rules

4 XPath 1.0

5 More XSLT Constructs

Stefan Brass: XML and Databases 15. XSLT 15-60 / 86

Introduction Example Template Rules XPath 1.0 More XSLT Constructs

Restrictions in XPath 1.0 (1)

In this course, the main emphasis is on XPath 2.0.

However, the XSLT-implementation of many browsers
supports only XSLT 1.0.

Therefore, if one wants to write style sheets which are
executed in the browser, one should use only XPath 1.0.

Axis and location paths are basically the same.
Node type tests have been expanded in XPath 2.0 (because of XML
Schema).

Stefan Brass: XML and Databases 15. XSLT 15-61 / 86

Introduction Example Template Rules XPath 1.0 More XSLT Constructs

Restrictions in XPath 1.0 (2)
XPath 1.0 is not based on sequences as XPath 2.0. The
available data types are:

string

number (floating point)
There is no integer type in XPath 1.0. Note that the type “number”
contains an error value (NaN: “not a number”), positive and negative
infinity, and a positive and a negative zero.

boolean

node set
Instead of sequences, XPath 1.0 has only node sets. Often the nodes
must be ordered, this is done in document order. Some rules in
XPath 2.0 become clearer if one remembers that the designers tried
to remain compatible with the node sets from XPath 1.0.

Stefan Brass: XML and Databases 15. XSLT 15-62 / 86

Introduction Example Template Rules XPath 1.0 More XSLT Constructs

Restrictions in XPath 1.0 (3)

Variables can be defined only outside the path expression
(in XSLT, not in XPath). Therefore, there is no for,
some, every, :=.

There is also no if.

except und intersect are not available in XPath 1.0.
union is also not available, but | is (which does ∪).

Since the type system is much more restriced (not based
on XML Schema), there are no type tests of type
conversions.

E.g. no instance of, treat as castable, cast.

Stefan Brass: XML and Databases 15. XSLT 15-63 / 86

Introduction Example Template Rules XPath 1.0 More XSLT Constructs

Operators in XPath 1.0

Prio Operator Assoc.
1 or left
2 and left
3 =, != left
4 <, <=, >, >= left
5 +, - left
6 *, div, mod left
7 - (unary) right
8 | left
9 /, // left

10 [] left

Stefan Brass: XML and Databases 15. XSLT 15-64 / 86

Introduction Example Template Rules XPath 1.0 More XSLT Constructs

Functions in XPath 1.0 (1)

Node Set Functions:

number last(): Context size.

number position(): Context position.

number count(node-set x): Number of nodes in x .

node-set id(object x):
Nodes with one of the IDs specified by x .

object means that x can be of any type. If x is a string containing a single
ID, a node with that ID is taken. Otherwise x is converted to a sequence of
strings, which can also contain several IDs separated by whitespace.

Stefan Brass: XML and Databases 15. XSLT 15-65 / 86

Introduction Example Template Rules XPath 1.0 More XSLT Constructs

Functions in XPath 1.0 (2)

Node Set Functions, continued:

string local-name(node-set? x):
Node name without namespace prefix.

The first node in the input node set is taken (in document order). The
argument is optional. If the function is called without argument, the local
name of the context node is returned.

string namespace-uri(node-set? x):
Namespace URI of (first) argument node.

string name(node-set? x):
Name of (first) node in x with namespace prefix.

Stefan Brass: XML and Databases 15. XSLT 15-66 / 86

Introduction Example Template Rules XPath 1.0 More XSLT Constructs

Functions in XPath 1.0 (3)

String Functions:

string string(object? x): Conversion to string.
For a node set, the string-value of the first node in the set is taken. If the
argument is omitted, the context node is taken.

string concat(string s1, string s2, string∗ sn):
String concatenation.

boolean starts-with(string x, string y):
y is prefix of x .

boolean contains(string x, string y):
y is substring of x .

Stefan Brass: XML and Databases 15. XSLT 15-67 / 86

Introduction Example Template Rules XPath 1.0 More XSLT Constructs

Functions in XPath 1.0 (4)

String Functions, continued:

string substring-before(string x, string y):
Prefix of x until first occurrence of y .

The empty string is returned if x does not contain y .
E.g. substring-before("abcbc", "b") = "a".

string substring-after(string x, string y):
Suffix of x after first occurrence of y .

E.g. substring-after("abcbc", "b") = "cbc".

string substring(string s, number p, number? l):
Substring of s starting at position p with length l .

E.g. substring("abcde", 2, 3) = "bcd". If l is omitted: entire rest.

Stefan Brass: XML and Databases 15. XSLT 15-68 / 86

Introduction Example Template Rules XPath 1.0 More XSLT Constructs

Functions in XPath 1.0 (5)

String Functions, continued:

number string-length(string? s):
Number of characters in s.

string normalize-space(string? s):
s with sequences of whitespace characters reduced to a
single space, and leading/trailing whitespace removed.

string translate(string s, string x, string y):
s with the i-th character in x replaced by the i-th
character in y (or removed if string-length(y) < i).

Stefan Brass: XML and Databases 15. XSLT 15-69 / 86

Introduction Example Template Rules XPath 1.0 More XSLT Constructs

Functions in XPath 1.0 (6)

Boolean Functions:

boolean boolean(object x): Conversion to boolean.
See “effective boolean value”: E.g. node set is true iff it is not empty.

boolean not(boolean b): Negation.

boolean true(): Constant value “true”.

boolean false(): Constant value “false”.

boolean lang(string l):
Language of the context node is l .

E.g. if xml:lang = "en-us" is specified in an ancestor node of the context
node (and no other language is specified in between), lang("en") is true.
If no language is specified, lang returns false.

Stefan Brass: XML and Databases 15. XSLT 15-70 / 86

Introduction Example Template Rules XPath 1.0 More XSLT Constructs

Functions in XPath 1.0 (7)

Number Functions:

number number(object? x): Conversion to a number.
If a string has no numeric format, it is converted to the special floating
point value “NaN” (“not a number”, error value).

number sum(node-set x):
Sum of the result of converting the string-value of each
node in x to a number.
number floor(number x): Largest integer ≤ x .
number ceiling(number x): Smallest integer ≥ x .
number round(number x):
x rounded to nearest integer (.5 is rounded up).

Stefan Brass: XML and Databases 15. XSLT 15-71 / 86

Introduction Example Template Rules XPath 1.0 More XSLT Constructs

Contents

1 Introduction

2 Example

3 Template Rules

4 XPath 1.0

5 More XSLT Constructs

Stefan Brass: XML and Databases 15. XSLT 15-72 / 86

Introduction Example Template Rules XPath 1.0 More XSLT Constructs

Variables (1)

XPath 1.0 has no constructs that can introduce new
variables, or assign a value to a variable.

But one can use $x to access the value of a variable x
defined in the given context.

In XSLT 1.0, a variable can be declared and assigned a
value as follows:

<xsl:variable name="version" select="1"/>

One can use this e.g. with
<xsl:value-of select="$version"/>

Stefan Brass: XML and Databases 15. XSLT 15-73 / 86

Introduction Example Template Rules XPath 1.0 More XSLT Constructs

Variables (2)

It is also possible to define the variable value in the
content. This is processed as a template:
<xsl:variable name="table_headline">

<tr><th>Student</th><th>Points</th></tr>
</xsl:variable>

One can use this result tree fragment as follows:
<xsl:copy-of select="$table_headline"/>

Note: <xsl:variable name="n" select="2"> is not
the same as <xsl:variable name="n">2</xsl:variable>.

In the first case, the value is the number 2, in the second case a node with
value 2. E.g. //student[$n] works in the first case, but in the second, one
must write //student[position()=$n].

Stefan Brass: XML and Databases 15. XSLT 15-74 / 86

Introduction Example Template Rules XPath 1.0 More XSLT Constructs

Variables (3)

Variable declarations can appear on the top level, i.e. as
child of xsl:stylesheet. Then they are global and can
be accessed everywhere.

If they are defined by a template, this is evaluated with the root node of
the input document as context node.

Variable declarations can also be written inside a template,
then they are local, and the variable can be accessed only
within that template.

And only after it is defined. This is different from global variables, which
are available even before their point of definition (but cycles are
forbidden). [https://www.w3.org/TR/1999/REC-xslt-19991116#variables]

Stefan Brass: XML and Databases 15. XSLT 15-75 / 86

https://www.w3.org/TR/1999/REC-xslt-19991116#variables

Introduction Example Template Rules XPath 1.0 More XSLT Constructs

Variables (4)

A defined variable cannot be assigned a new value
(i.e. it should be understood like a constant).

A global variable can be shadowed by a local variable in a template.

This permits very different evaluation algorithms, e.g. on
parallel hardware.

The language is declarative (functional), not imperative.

Of course, a variable within a template gets a new value
for each template invocation:

<xsl:template match="STUDENT">
<xsl:variable name="no" select="position()"/>
...

Stefan Brass: XML and Databases 15. XSLT 15-76 / 86

Introduction Example Template Rules XPath 1.0 More XSLT Constructs

Repetition: for-each (1)

With the for-each construct, one can embed a template
directly into another template:

<xsl:template match="GRADES-DB">

<xsl:for-each select="STUDENT">

<xsl:value-of select="@LAST"/>,
<xsl:value-of select="@FIRST"/>

</xsl:for-each>

</xsl:template>

[https://www.w3.org/TR/1999/REC-xslt-19991116#for-each]

Stefan Brass: XML and Databases 15. XSLT 15-77 / 86

https://www.w3.org/TR/1999/REC-xslt-19991116#for-each

Introduction Example Template Rules XPath 1.0 More XSLT Constructs

Repetition: for-each (2)

The XPath-expression in select determines a
node set n1, . . . , nk , just as with apply-templates.

The contents of the for-each element is instantiated
once for each node ni as current node, the corresponding
node lists (result tree fragments) are concatenated as the
value of the for-each.

Note that there is no variable, only the implicit context.

If one uses apply-templates with a separate template,
that becomes a reusable component.

Like a procedure. In contrast, for-each is like putting the procedure body
directly into the place where it is called.

Stefan Brass: XML and Databases 15. XSLT 15-78 / 86

Introduction Example Template Rules XPath 1.0 More XSLT Constructs

Conditional Processing (1)

xsl:if makes part of a template conditional, i.e. the
contents of xsl:if is inserted only when a condition is true.

[https://.../REC-xslt-19991116#section-Conditional-Processing]

E.g. comma-separated list of student last names:

<xsl:template match="GRADES-DB">
<for-each select="STUDENT">

<value-of select="@LAST"/>
<xsl:if test="not(position()=last())"

>,</xsl:if>
</for-each>

</xsl:template>

Stefan Brass: XML and Databases 15. XSLT 15-79 / 86

https://www.w3.org/TR/1999/REC-xslt-19991116#section-Conditional-Processing

Introduction Example Template Rules XPath 1.0 More XSLT Constructs

Conditional Processing (2)

An “else if”-chain, e.g.
“if(c1) then s1 else if(c2) then s2 else s3”

is written in XSLT as
<xsl:choose>

<xsl:when test="c1">s1</xsl:when>
<xsl:when test="c2">s2</xsl:when>
<xsl:otherwise>s3</xsl:otherwise>

</xsl:choose>

The content model of xsl:choose is xsl:when+,xsl:otherwise?. The
template within the first xsl:when with a test-condition that evaluates to
true is chosen (evaluated). If all are false, the content of xsl:otherwise is
evaluated (if missing, it is treated as empty).
[http://.../REC-xslt-19991116#section-Conditional-Processing-with-xsl:choose]

Stefan Brass: XML and Databases 15. XSLT 15-80 / 86

https://www.w3.org/TR/1999/REC-xslt-19991116#section-Conditional-Processing-with-xsl:choose

Introduction Example Template Rules XPath 1.0 More XSLT Constructs

Sorting (1)

One can specify that apply-tempates and for-each
should construct the result not in document order of the
selected nodes, but in a specific sort order.

E.g. print students alphabetically sorted by last name, and
by first name if last names are equal:

<xsl:template match="GRADES-DB">

<apply-templates select="STUDENT">
<sort select="@LAST"/>
<sort select="@FIRST"/>

</apply-templates>

</xsl:template>

Stefan Brass: XML and Databases 15. XSLT 15-81 / 86

Introduction Example Template Rules XPath 1.0 More XSLT Constructs

Sorting (2)

Attributes of xsl:sort to modify the sort order:

data-type="number" for numerical order.
The default is data-type="text", which means that the selected
values are converted to strings. With data-type="number", they are
converted to numbers. All attributes are “attribute value
templates”: one can use {...}.
[https://www.w3.org/TR/1999/REC-xslt-19991116#sorting]

order="descending" means an inverse sort order from
large to small values. Default: "ascending".

lang="de" select a language-specific sort order.

case-order="upper-first" requests a sort order like
A a B b Alternative: "lower-first".

Stefan Brass: XML and Databases 15. XSLT 15-82 / 86

https://www.w3.org/TR/1999/REC-xslt-19991116#sorting

Introduction Example Template Rules XPath 1.0 More XSLT Constructs

Modes

xsl:template and xsl:apply-templates have an
optional attribute mode which can be set to a name.

Possibly with namespace prefix (QName).
[http://.../REC-xslt-19991116#modes]

xsl:apply-templates applies only templates with a
matching mode value, i.e.

either both have a mode value specified, and the values
are equal, or

both have no mode specified.

I.e. the mode is something like a function name, and
match specifies the argument type.

Stefan Brass: XML and Databases 15. XSLT 15-83 / 86

https://www.w3.org/TR/1999/REC-xslt-19991116#modes

Introduction Example Template Rules XPath 1.0 More XSLT Constructs

Template Parameters
One can pass a parameter to a called template:
<xsl:apply-templates select="//RESULT[@CAT=’E’]">

<xsl:with-param name="type" select="’Exam’"/>
</xsl:apply-templates>

The parameter definition is very similar to a variable definition.
[http://.../REC-xslt-19991116#section-Passing-Parameters-to-Templates]

A template that uses the parameter value must declare it
at the beginning of the content:
<xsl:templates match="RESULT>

<xsl:param name="type" select="’Unknown’"/>

The defined value is a default value. The parameter can be accessed as a
variable $type in XPath.
[https://www.w3.org/TR/1999/REC-xslt-19991116#variables]

Stefan Brass: XML and Databases 15. XSLT 15-84 / 86

https://www.w3.org/TR/1999/REC-xslt-19991116#section-Passing-Parameters-to-Templates
https://www.w3.org/TR/1999/REC-xslt-19991116#variables

Introduction Example Template Rules XPath 1.0 More XSLT Constructs

Named Templates
xsl:template has an optional attribute name.
There can be only one template with a given name.

Templates from imported stylesheets can be overridden.
[https://.../REC-xslt-19991116#section-Defining-Template-Rules]

One can call a named template as follows:
<xsl:call-template name="t">

<xsl:with-param name="p" select="e"/>
</xsl:call-template>

This does not change the current node.
In contrast to xsl:apply-templates, there is no attribute select for
specifying a new current node list. So the context is the same as in the
calling template.
[https://www.w3.org/TR/1999/REC-xslt-19991116#named-templates]

Stefan Brass: XML and Databases 15. XSLT 15-85 / 86

https://www.w3.org/TR/1999/REC-xslt-19991116#section-Defining-Template-Rules
https://www.w3.org/TR/1999/REC-xslt-19991116#named-templates

Introduction Example Template Rules XPath 1.0 More XSLT Constructs

References
James Clark (Editor): XSL Transformations (XSLT), Version 1.0
W3C Recommendation, 16 November 1999
[https://www.w3.org/TR/1999/REC-xslt-19991116]

Michael Kay (Editor): XSL Transformations (XSLT), Version 2.0
W3C Recommendation, 23 January 2007
[http://www.w3.org/TR/xslt20/]

Michael Kay (Editor): XSL Transformations (XSLT), Version 3.0
W3C Candidate Recommendation, 19 November 2015
[http://www.w3.org/TR/xslt-30/]

Michael Kay: XSLT 2.0 and XPath 2.0 Programmer’s Reference (Programmer
to Programmer) Wiley, 4th Ed. (June 3, 2008), ISBN-10: 0470192747, 1376 pages.

Wikipedia (English): XSLT
[https://en.wikipedia.org/wiki/XSLT]

Robert Tolksdorf: Vorlesung XML-Technologien (Web Data and Interoperability),
Kapitel 6: XSLT: Transformation von XML-Dokumenten.
Freie Universität Berlin, AG Netzbasierte Informationssysteme, 2015.
[http://blog.ag-nbi.de/wp-content/uploads/2015/05/06 XSLT.pdf]

w3schools: XSLT Element Reference.
[http://www.w3schools.com/xml/xsl elementref.asp]

Stefan Brass: XML and Databases 15. XSLT 15-86 / 86

https://www.w3.org/TR/1999/REC-xslt-19991116
http://www.w3.org/TR/xslt20/
http://www.w3.org/TR/xslt-30/
https://en.wikipedia.org/wiki/XSLT
http://blog.ag-nbi.de/wp-content/uploads/2015/05/06_XSLT.pdf
http://www.w3schools.com/xml/xsl_elementref.asp

	Introduction
	Introduction

	Example
	Example XSLT Stylesheet

	Template Rules
	Template Rules: Details

	XPath 1.0
	Restrictions in XPath 1.0

	More XSLT Constructs
	More XSLT Constructs
	References

