
Introduction Unessential Syntax Basic Definitions Node Types, Example

XML and Databases

Chapter 9: XDM — XPath/XQuery
Data Model

Prof. Dr. Stefan Brass

Martin-Luther-Universität Halle-Wittenberg

Winter 2022/23

http://www.informatik.uni-halle.de/˜brass/xml22/

Stefan Brass: XML and Databases 9. XDM: XPath/Xquery Data Model 9-1 / 82

http://www.informatik.uni-halle.de/~brass/xml22/

Introduction Unessential Syntax Basic Definitions Node Types, Example

Objectives

After completing this chapter, you should be able to:

draw the XDM (XPath/XQuery Data Model) Tree
representation for a given XML document.

explain the most important XDM node types and their
essential properties.

define “document order”.

mention some details, in which XML data files with the
same XDM tree might differ.

Stefan Brass: XML and Databases 9. XDM: XPath/Xquery Data Model 9-2 / 82

Introduction Unessential Syntax Basic Definitions Node Types, Example

Contents

1 Introduction

2 Unessential Syntax

3 Basic Definitions

4 Node Types, Example

Stefan Brass: XML and Databases 9. XDM: XPath/Xquery Data Model 9-3 / 82

Introduction Unessential Syntax Basic Definitions Node Types, Example

Introduction (1)

XML documents can be understood as an external
representation of a tree. This tree is the real information
content of the document.

Such as 3, 03 and +3 are all the same number, there are some variations
possible in XML documents that are considered as unimportant and not
represented in the tree, see below. [From the XPath Specification:] “XPath
operates on the abstract, logical structure of an XML document, rather
than its surface syntax.”

The tree is (usually) the result of parsing the XML
document, and possibly validating it.

The validation (wrt DTD/schema) might change the tree, e.g. add default
values. The result is called “PSVI” (post-schema-validation infoset). The
tree might also be directly constructed via API calls.

Stefan Brass: XML and Databases 9. XDM: XPath/Xquery Data Model 9-4 / 82

Introduction Unessential Syntax Basic Definitions Node Types, Example

Introduction (2)

Query and transformation languages (e.g. XPath, XQuery,
XSLT) are defined in terms of such a tree.

Also parser interfaces, such as DOM, have a tree
structured view of the document.

There are several standards:

XML Information Set (Infoset)

XQuery and XPath Data Model (XDM)

Document Object Model (DOM)

Although all view XML documents as trees, they are different.

Stefan Brass: XML and Databases 9. XDM: XPath/Xquery Data Model 9-5 / 82

Introduction Unessential Syntax Basic Definitions Node Types, Example

Introduction (3)

The XML Information Set (Infoset) Recommentation
states: “This specification provides a set of definitions for
use in other specifications that need to refer to the
information in an XML document.”

It only lays the foundation (a common reference framework)
for other specifications.

It talks about “information items” (with properties),
not nodes or objects.

This information could be made available to applications
also through an event-based interface.

Stefan Brass: XML and Databases 9. XDM: XPath/Xquery Data Model 9-6 / 82

Introduction Unessential Syntax Basic Definitions Node Types, Example

Introduction (4)

The XDM specification states

how to construct an XDM instance from an infoset

how to construct an XDM instance from a PSVI
(post-schema-validation infoset)

how to construct an infoset from an XDM instance.

In this way, the XDM specification can use certain notions
already defined in the infoset specification.

Stefan Brass: XML and Databases 9. XDM: XPath/Xquery Data Model 9-7 / 82

Introduction Unessential Syntax Basic Definitions Node Types, Example

Introduction (5)

There is not a one-to-one correspondence between XML
infosets and instances of the XDM. E.g.:

XML Infoset permits trees that contain unparsed general
entities, XDM assumes that they are fully expanded.

In XML Infoset (as in XML) the document node can
have only one element child, XDM permits several
element child nodes (and also text nodes as children,
which are not in Infoset).

Stefan Brass: XML and Databases 9. XDM: XPath/Xquery Data Model 9-8 / 82

Introduction Unessential Syntax Basic Definitions Node Types, Example

Introduction (6)

Examples for differences Infoset vs. XDM, cont.:

XDM permits document fragments, sequences of
document nodes, sequences of atomic values, and
sequences mixing nodes and atomic values. All this is
not in the Infoset standard.

Necessary as intermediate values for functions.

In Infoset, attribute information items have a property
“specified”, which permits to check whether an
attribute value was actually specified or defaulted. In
XDM, this is indistinguishable.

Stefan Brass: XML and Databases 9. XDM: XPath/Xquery Data Model 9-9 / 82

Introduction Unessential Syntax Basic Definitions Node Types, Example

Introduction (7)

Whereas the Infoset standard can be understood without
knowing XML Schema, XDM requires at least some
knowledge of it.

Theoretically, it should be possible to understand XDM without knowing
the details of XML syntax. After all, what is really important are the data
structures, not how they are represented externally. However, the
dependency on XML schema then becomes a problem.

It would be possible that an XML DBMS uses the
interface defined in the XDM standard as an API for
working with query results.

However, applications probably expect a DOM interface (which they would
use when accessing XML data in a file via an XML parser).

Stefan Brass: XML and Databases 9. XDM: XPath/Xquery Data Model 9-10 / 82

Introduction Unessential Syntax Basic Definitions Node Types, Example

Contents

1 Introduction

2 Unessential Syntax

3 Basic Definitions

4 Node Types, Example

Stefan Brass: XML and Databases 9. XDM: XPath/Xquery Data Model 9-11 / 82

Introduction Unessential Syntax Basic Definitions Node Types, Example

Unessential Details (1)

Not all syntactic details of an XML document are
contained in the internal tree representation.

For instance, there is no way to find out whether an
attribute value was written with ’ or ". Only the value
itself is made available to the application.

When a document is parsed, internally modified (e.g., by
XSLT) and printed (“serialized”) again, this information is
most probably not available.

The output style might be configurable, but at least the same type of
quotes will be used for all attributes (increases uniformity).

Stefan Brass: XML and Databases 9. XDM: XPath/Xquery Data Model 9-12 / 82

Introduction Unessential Syntax Basic Definitions Node Types, Example

Unessential Details (2)

Syntactic Details that are not in the Information Set:

Certain white space:

in tags (except in attribute values),
Note that this means that all nice formatting of long tags split
between multiple lines is lost.

outside the document element,

immediately following the target name of a processing
instruction.

Order of attributes within a start tag.

Kind of quotation marks (’ or ") used for attribute values.

Stefan Brass: XML and Databases 9. XDM: XPath/Xquery Data Model 9-13 / 82

Introduction Unessential Syntax Basic Definitions Node Types, Example

Unessential Details (3)

Details that are not in the Infoset, continued:

Kind of line delimiter used (LF, CR, CR-LF).

The difference between the two forms of an empty
element: <E/> vs. <E></E>.

Whether a character is represented as a character
reference.

Boundaries of CDATA marked sections.

Boundaries of general parsed entities.

System and public ID of the document type.

Stefan Brass: XML and Databases 9. XDM: XPath/Xquery Data Model 9-14 / 82

Introduction Unessential Syntax Basic Definitions Node Types, Example

Unessential Details (4)

Details that are not in the Infoset, continued:

Most information from the DTD:

content models,
grouping and ordering of attribute declarations,
comments in the DTD,
order of declarations,
location of declarations (internal/external),
boundaries of conditional sections and parameter entities
in the DTD,
ignored declarations (including redefinition).
default value of attributes (unless used).

Stefan Brass: XML and Databases 9. XDM: XPath/Xquery Data Model 9-15 / 82

Introduction Unessential Syntax Basic Definitions Node Types, Example

Unessential Details (5)

Problem with pattern-Facet:

In XDM, only the internal representation of data values is
stored (i.e. the value itself, not the lexical representation).

Thus, the differences between distinct lexical representations of the same
value are considered unessential (e.g. 3, +3, 03).

However, the pattern-facet refers to the lexical
representation.

It is not guaranteed that when a value is printed, a lexical
representation is constructed that satisfies the pattern.

Stefan Brass: XML and Databases 9. XDM: XPath/Xquery Data Model 9-16 / 82

Introduction Unessential Syntax Basic Definitions Node Types, Example

Unessential Details (6)
Problem with QName-Type:

In XML schema,

the external representation of QName values consists of a
prefix and a local name, whereas

the internal representation consists of a namespace URI
and a local name.

In XDM, such values are a triple consisting of

a prefix (possibly empty),

a namespace URI (possibly empty/absent),
If the URI is empty, the prefix must be empty. (converse allowed.)

a local name.
Stefan Brass: XML and Databases 9. XDM: XPath/Xquery Data Model 9-17 / 82

Introduction Unessential Syntax Basic Definitions Node Types, Example

Unessential Details (7)

Problem with QName-Type, continued:

The reason for making the prefix part of the value is to
simplify the printing of QName-values (i.e. the mapping
from internal to external representation).

For QName-values that are part of a document, a prefix
could always be determined (but it might be not unique).

However, the data model also permits atomic QName
values that are not part of a document.

Stefan Brass: XML and Databases 9. XDM: XPath/Xquery Data Model 9-18 / 82

Introduction Unessential Syntax Basic Definitions Node Types, Example

Unessential Details (8)

Problem with QName-Type, continued:

Two values are (mostly?) treated as equal if they differ
only in the prefix.

This ensures that the new definition is compatible with the old one.

The XDM standard lists numerous consistency rules to
ensure that if a QName-value appears in a context that
can have a namespace declaration, there really is one for
this prefix-URI pair.

Including a default namespace declaration if the prefix is empty, but the
URI is not. Furthermore, QName values with prefix are forbidden in attribute
nodes without parent.

Stefan Brass: XML and Databases 9. XDM: XPath/Xquery Data Model 9-19 / 82

Introduction Unessential Syntax Basic Definitions Node Types, Example

Contents

1 Introduction

2 Unessential Syntax

3 Basic Definitions

4 Node Types, Example

Stefan Brass: XML and Databases 9. XDM: XPath/Xquery Data Model 9-20 / 82

Introduction Unessential Syntax Basic Definitions Node Types, Example

Type System (1)

XDM is based on the type system of XML Schema.

However, a few new types were introduced in the type
hierarchy of XML Schema.

Some of these types are needed for documents (or parts
of documents) that where not validated.

Partial validation occurs in case of wildcards with skip or lax mode. In
XDM, every value has a type.

The new types are in the XML Schema namespace, they
will probably be added in the next version.

Stefan Brass: XML and Databases 9. XDM: XPath/Xquery Data Model 9-21 / 82

Introduction Unessential Syntax Basic Definitions Node Types, Example

Type System (2)

The new types are (continued on next page):

untyped: For element nodes that have not been
validated.

untypedAtomic: For attribute values that have not been
validated, and text (e.g. element content) that has not
been assigned a more specific type.

anyAtomicType: A base type for all atomic types.
XML Schema only has anySimpleType, which also contains list and
union types. XDM only contains atomic types (but permits
sequences). anySimpleType is the base type of anyAtomicType.

Stefan Brass: XML and Databases 9. XDM: XPath/Xquery Data Model 9-22 / 82

Introduction Unessential Syntax Basic Definitions Node Types, Example

Type System (3)

New types, continued:

dayTimeDuration: Derived from duration with a
pattern that permits only days, hours, minutes, seconds
(including fractional seconds).

In this way, it can be represented as the total number of seconds.

yearMonthDuration: Derived from duration by
permitting only year and month components.

In this way, it can be internally represented as the total number of
months. It might be inconsistent with XML Schema that it does not
have the prefix “g”.

Stefan Brass: XML and Databases 9. XDM: XPath/Xquery Data Model 9-23 / 82

Introduction Unessential Syntax Basic Definitions Node Types, Example

Type System (4)

In addition, it seems that the XDM committee had a
slightly different view on dateTime values than the XML
Schema committee:

In the XDM data model, these values are represented as
7-tuples consisting of year, month, day, hour, minute,
second, timezone.

XML Schema explains them with two time axis (one for
UTM, the other for local time) measured in seconds.
The specific timezone is lost.

XDM: “Leap seconds are not supported.”

Stefan Brass: XML and Databases 9. XDM: XPath/Xquery Data Model 9-24 / 82

Introduction Unessential Syntax Basic Definitions Node Types, Example

Type System (5)

anyType

anySimpleTypeuntyped user-defined
complex types

anyAtomicType IDREFS · · · user-defined
list/union types

untypedAtomic string decimal · · ·

Stefan Brass: XML and Databases 9. XDM: XPath/Xquery Data Model 9-25 / 82

Introduction Unessential Syntax Basic Definitions Node Types, Example

Basic Definitions (1)
Atomic Types:

An atomic type is a primitive simple type or a type
derived by restriction from such a type.

There are 23 primitive simple types: string, boolean, decimal, float,
double, duration, dateTime, time, date, gYearMonth, gYear,
gMonthDay, gDay, gMonth, hexBinary, base64Binary, anyURI, QName,
NOTATION, untyped, untypedAtomic, anyAtomicType, dayTimeDuration,
yearMonthDuration.

Types derived by union or list are not atomic.
XDM does not need values that have list or union types. Values of list type
are represented as a sequence (see below), values of union type are
assigned the more specific type the concrete value belongs to (or one of
these types, if there are several). Union types are needed for static type
declarations, but XDM is about concrete values.

Stefan Brass: XML and Databases 9. XDM: XPath/Xquery Data Model 9-26 / 82

Introduction Unessential Syntax Basic Definitions Node Types, Example

Basic Definitions (2)

Type Identification:

Types are identified by QNames (expanded by the prefix
as explained above), e.g.
(xs, ’http://www.w3.org/2001/XMLSchema’, integer)

This also holds for user-defined types: The namespace is
the target namespace of the schema.

For anonymous types, the processor must construct a
unique name.

This name is implementation-dependent.

Stefan Brass: XML and Databases 9. XDM: XPath/Xquery Data Model 9-27 / 82

Introduction Unessential Syntax Basic Definitions Node Types, Example

Basic Definitions (3)

Atomic Value:

An atomic value is a value in the value space of an
atomic type and is labelled with the name of that type.

The standard uses this notation in an example:
xs:anyURI("http://www.example.com/catalog.xml")

This basically looks like a call to a constructor function for the type. It is
understood that xs is bound to http://www.w3.org/2001/XML-Schema.

Working with pairs of type ID and binary value is
common in dynamically typed (“untyped”) programming
languages (similar to “variant record”).

Stefan Brass: XML and Databases 9. XDM: XPath/Xquery Data Model 9-28 / 82

Introduction Unessential Syntax Basic Definitions Node Types, Example

Basic Definitions (4)

Node:

A node is an object with a unique identity and properties.
I.e. there can be distinct nodes that agree in all properties. This unique
identity is intrinsic to the data model, it is different from the unique
identity assigned by the user to some nodes with an attribute of type ID.

There are seven kinds of nodes (subclasses):
document, element, attribute, text, processing instruction
and (possibly) namespace nodes.

The node properties are explained below.

Stefan Brass: XML and Databases 9. XDM: XPath/Xquery Data Model 9-29 / 82

Introduction Unessential Syntax Basic Definitions Node Types, Example

Basic Definitions (5)

Item:

An item is either a node or an atomic value.

Type System, continued:

attribute

document element text processing-instruction

comment

node xs:anyAtomicType

item
: union type

Stefan Brass: XML and Databases 9. XDM: XPath/Xquery Data Model 9-30 / 82

Introduction Unessential Syntax Basic Definitions Node Types, Example

Basic Definitions (6)

Sequence:

A sequence is an ordered collection of zero or more items
(a list). It may contain duplicates.

A sequence may contain a mixture of nodes and atomic values. The same
node may be contained in several sequences.

Every instance of the data model is a sequence.
An instance of a data model (e.g., the relational model) is usually a
database state. However, an XML database might store several (or even
many) documents (when one parses a document, one gets an XDM
instance). Furthermore, data values returned from functions are also
instances of the XDM.

Stefan Brass: XML and Databases 9. XDM: XPath/Xquery Data Model 9-31 / 82

Introduction Unessential Syntax Basic Definitions Node Types, Example

Basic Definitions (7)

Sequences, continued:

Sequences replace the node-sets in XPath 1.0.

Node-sets could not contain duplicates, whereas
sequences can.

One must now explicitly use a function for duplicate
removal.

Also in SQL, DISTINCT must be used explicitly.

The elements of a node set had a fixed order (“document
order”, see below), in sequences any order is possible.

Stefan Brass: XML and Databases 9. XDM: XPath/Xquery Data Model 9-32 / 82

Introduction Unessential Syntax Basic Definitions Node Types, Example

Basic Definitions (8)

Sequences, continued:

Sequences cannot contain sequences.

If a sequence is inserted into another sequence, it is
automatically “unnested”.

The structure is “flattened”.

Sequences of length one (“singleton sequences”) and
items (atomic values or nodes) are identified.

Empty sequences are used like a null value.
(e.g., for non-applicable properties).

Stefan Brass: XML and Databases 9. XDM: XPath/Xquery Data Model 9-33 / 82

Introduction Unessential Syntax Basic Definitions Node Types, Example

Contents

1 Introduction

2 Unessential Syntax

3 Basic Definitions

4 Node Types, Example

Stefan Brass: XML and Databases 9. XDM: XPath/Xquery Data Model 9-34 / 82

Introduction Unessential Syntax Basic Definitions Node Types, Example

Nodes: Subclasses

XDM has seven Kinds of Nodes:

document

element

attribute

text

namespace (may be left out in implementation)

processing instruction

comment

Stefan Brass: XML and Databases 9. XDM: XPath/Xquery Data Model 9-35 / 82

Introduction Unessential Syntax Basic Definitions Node Types, Example

Nodes: Properties (1)

Nodes have properties. Each kind of node has a different
set of properties. In addition, the standard defines
accessor functions for these properties.

In most cases, the correspondence is 1:1, and property
and accessor function have the same name. But there are
exceptions.

Was this confusing duplication was really necessary? Of course, it is
standard in object-oriented programming to have stored values in the
objects (the properties) and accessor functions. However, at least in the
case of the properties “string-value” and “typed-value” the standard
explains that it might not be necessary to store both. Also the
string-value of element nodes (a property) can be computed from the
string values of its descendants (so it should not be stored).

Stefan Brass: XML and Databases 9. XDM: XPath/Xquery Data Model 9-36 / 82

Introduction Unessential Syntax Basic Definitions Node Types, Example

Nodes: Properties (2)

The XDM standard defines 17 such accessor functions,
but it is not required that these are really made available
to the user as functions on the nodes.

Currently, an implementation of XDM is always part of a larger
implementation (e.g., an XSLT or XQuery implementation). Therefore, it is
not necessary to prescribe the internal interface used to access nodes.
These functions are only a proposal or an illustration of the information
that should somehow be made available.

For instance, in XPath, only some of the properties can
actually be used as functions, some are implicitly used by
the path expressions.

Stefan Brass: XML and Databases 9. XDM: XPath/Xquery Data Model 9-37 / 82

Introduction Unessential Syntax Basic Definitions Node Types, Example

Nodes: Properties (3)

Example:

XDM defines an accessor function “node-kind” that
returns the kind of the node as string.

Internally in an implementation, it might be more appropiate to use an
enumeration value than a string.

There is no corresponding property.
The accessor functions can be seen as pure virtual functions declared in
the abstract superclass “node” and implemented in each subclass. Then it
is easy to return a constant value in each implementation.

There is no XPath function with this name.
However, most “axis” return only nodes of a single kind, otherwise the
“node test” can be used to check for a specific kind of node.

Stefan Brass: XML and Databases 9. XDM: XPath/Xquery Data Model 9-38 / 82

Introduction Unessential Syntax Basic Definitions Node Types, Example

Nodes: Properties (4)

All accessor functions are defined on all seven kinds of nodes
(whereas the properties are specific to each kind of node).

This corresponds to the view that the accessor functions are declared in
the abstract superclass “node”.

If an accessor function corresponds to a property that is
not applicable to the current node, it returns the empty
sequence.

The empty sequence is used here as a kind of “null value”.

Stefan Brass: XML and Databases 9. XDM: XPath/Xquery Data Model 9-39 / 82

Introduction Unessential Syntax Basic Definitions Node Types, Example

Nodes: Tree Structure (1)

Nodes form a tree, basically by parent and children
properties.

Also the namespaces and attributes properties, see below.

Every node except document nodes can have a parent.
Since the data model also permits document fragments, the
parent-property can be empty (i.e. return the empty sequence).
Otherwise, the value of the parent-property is a node of type document or
element. The other node types can appear in the tree only as leaves.

Document and element nodes can have children.
This property is a list of element, text, processing instruction, and
comment nodes.

Stefan Brass: XML and Databases 9. XDM: XPath/Xquery Data Model 9-40 / 82

Introduction Unessential Syntax Basic Definitions Node Types, Example

Nodes: Tree Structure (2)

Note that attribute and namespace nodes cannot
appear in the children list, but they can have a parent.

Nodes of these types are attached to their parent via
specific properties:

The property attributes (of element nodes) is a
sequence of attribute nodes.

The property namespaces (of element nodes) is a
sequence of namespace nodes.

Only element nodes have these properties.

Stefan Brass: XML and Databases 9. XDM: XPath/Xquery Data Model 9-41 / 82

Introduction Unessential Syntax Basic Definitions Node Types, Example

Nodes: Tree Structure (3)

The data model defines integrity constraints that ensure
that the properties are consistent, e.g.

If a node X of type element, text, comment, or
processing instruction has a node Y as parent, X
must appear among the children of Y .

And vice versa: If X appears among the children of Y ,
then Y must be the parent of X .

Similar rules hold for attribute/namespace nodes.

Stefan Brass: XML and Databases 9. XDM: XPath/Xquery Data Model 9-42 / 82

Introduction Unessential Syntax Basic Definitions Node Types, Example

Nodes: Tree Structure (4)

Node Kind Can be parent Can be Child
document yes no
element yes yes
attribute no no (see below)
text no yes
processing-instruction no yes
comment no yes
namespace no no (see below)

Note that “can be parent” (i.e. possibly appearing as value of the property
“parent”) is the same as having a property “children”. In contrast, “can be
child” (i.e. possibly appearing as value of the property “children”) is not the
same as having a property “parent”. The exception are attribute and namespace
nodes: They cannot be children, but have a parent. The converse link (from
parent) is via the properties attributes and namespaces.

Stefan Brass: XML and Databases 9. XDM: XPath/Xquery Data Model 9-43 / 82

Introduction Unessential Syntax Basic Definitions Node Types, Example

Nodes: Tree Structure (5)

Node

Child
∗
{list}

1 Parent

N.Sp. Text PI Com. Elem. Doc. Attr.
1
parent

∗1
parent

∗

Stefan Brass: XML and Databases 9. XDM: XPath/Xquery Data Model 9-44 / 82

Introduction Unessential Syntax Basic Definitions Node Types, Example

Text Nodes

The following constraints ensure that there are no
superfluous text nodes:

The children property can never return a sequence
that contains two consecutive text nodes.

If two text nodes would appear directly one after the other, they
must be merged.

The children property can never return a sequence
that contains empty text nodes.

Empty text nodes are permitted when they do not have a parent.

Stefan Brass: XML and Databases 9. XDM: XPath/Xquery Data Model 9-45 / 82

Introduction Unessential Syntax Basic Definitions Node Types, Example

Whitespace (1)

Whitespace between elements is a bit difficult:

It is often inserted for better readability, but it is not
semantically important.

E.g., when an element type is declared with pure element content, a
validation is possible, even if there is additional whitespace between
the elements.

But if an element has mixed content, even whitespace
between elements might be important.

Therefore, the XML standard specifies that such
whitespace must be passed to the application.

The application might then ignore it.

Stefan Brass: XML and Databases 9. XDM: XPath/Xquery Data Model 9-46 / 82

Introduction Unessential Syntax Basic Definitions Node Types, Example

Whitespace (2)

The XML Infoset standard specifies that character
information items have an optional boolean property
“element content whitespace”.

This is true for unimportant whitespace characters
(appearing in elements with pure element content).

Validating parsers must provide this property.

If the XDM instance is constructed from an infoset that
provides this property, text nodes are removed if they
consist entirely of whitespace for which this property is
true.

Stefan Brass: XML and Databases 9. XDM: XPath/Xquery Data Model 9-47 / 82

Introduction Unessential Syntax Basic Definitions Node Types, Example

Whitespace (3)

If a schema is used for validation (i.e. the XDM is
constructed from a PSVI), text nodes that consist entirely
of whitespace are removed if they are children of an
element node whose “content-type” property is not
"mixed".

In short:

If a validation is done (with respect to a DTD or a
schema), there will be no text nodes for whitespace
between element content.

If the XDM instance is built without validation, such
text nodes are constructed.

Stefan Brass: XML and Databases 9. XDM: XPath/Xquery Data Model 9-48 / 82

Introduction Unessential Syntax Basic Definitions Node Types, Example

Whitespace (4)

Some related Remarks:

XSLT permits to define a set of elements for which pure
whitespace child nodes should be removed:

<xsl:strip-space elements="..."/>

With xml:space="preserve" one can specify in the
XML data file that whitespace should be preserved.

The other value is "default" which means that the application can do
what it wants with the whitespace. This attribute is already introduced in
the XML standard. For validating parsers, it must be declared.

Stefan Brass: XML and Databases 9. XDM: XPath/Xquery Data Model 9-49 / 82

Introduction Unessential Syntax Basic Definitions Node Types, Example

Example (1)

<?xml version="1.0" encoding="ISO-8859-1"?>
<!-- Simple Example -->
<?xml-stylesheet type="text/xsl" href="ex.xsl"?>
<STUDENT SID="101">

<FIRST>Ann</FIRST>
<LAST>Smith</LAST>

</STUDENT>

The stylesheet declaration is an example for a processing instruction. The
stylesheet could e.g. translate these XML data to XHTML for display in a web
browser.
Note that whitespace outside the document element (in this case, STUDENT) is
already removed in the XML infoset from which the XDM instance can be
constructed. Thus, although XDM permits text nodes as children of the
document node, this is not used (if the instance is constructed this way).

Stefan Brass: XML and Databases 9. XDM: XPath/Xquery Data Model 9-50 / 82

Introduction Unessential Syntax Basic Definitions Node Types, Example

Example (2)

<?xml version="1.0" encoding="ISO-8859-1"?>
<!-- Simple Example -->
<?xml-stylesheet type="text/xsl" href="ex.xsl"?>
<STUDENT SID="101">

<FIRST>Ann</FIRST>
<LAST>Smith</LAST>

</STUDENT> D

PC E1 A

T1 E2 T2 E3 T3

T4 T5Note: Namespace nodes
not shown, see below.

Note: This is the version with
whitespace text nodes
(no validation).

Stefan Brass: XML and Databases 9. XDM: XPath/Xquery Data Model 9-51 / 82

Introduction Unessential Syntax Basic Definitions Node Types, Example

Example (3)

With validation, there are no whitespace text nodes:

D

PC E1 A

E2 E3

T4 T5Note: Namespace nodes
not shown, see below.

Stefan Brass: XML and Databases 9. XDM: XPath/Xquery Data Model 9-52 / 82

Introduction Unessential Syntax Basic Definitions Node Types, Example

Example (4)
D: Document node (root).

node-kind = "document"

children = (C, P, E1)

C: Comment node.

node-kind = "comment"

parent = D

P: Processing instruction (Stylesheet information).

node-kind = "processing-instruction"

parent = D

node-name = "xml-stylesheet"

string-value = ’type="text/xsl" href="ex.xsl"’

Stefan Brass: XML and Databases 9. XDM: XPath/Xquery Data Model 9-53 / 82

Introduction Unessential Syntax Basic Definitions Node Types, Example

Example (5)

E1: Element node (STUDENT).

node-kind = "element"

parent = D

children = (T1, E2, T2, E3, T3)

node-name = "STUDENT"

attributes = (A)

E2: Element node (FIRST).

node-kind = "element"

parent = E1

children = (T4)

node-name = "FIRST"

Stefan Brass: XML and Databases 9. XDM: XPath/Xquery Data Model 9-54 / 82

Introduction Unessential Syntax Basic Definitions Node Types, Example

Example (6)
E3: Element node (LAST).

node-kind = "element"

parent = E1

children = (T5)

node-name = "LAST"

T1: Text node (whitespace after <STUDENT ...>).
This node appears only if the XDM instance is constructed without
validation (or if STUDENT has a mixed content model). The same applies to
T2 and T3.

node-kind = "text"

parent = E1

string-value = "\n " (note: \n is not XML syntax)
Stefan Brass: XML and Databases 9. XDM: XPath/Xquery Data Model 9-55 / 82

Introduction Unessential Syntax Basic Definitions Node Types, Example

Example (7)
T2: Text node (whitespace after </FIRST>).

node-kind = "text"

parent = E1

string-value = "\n "

T3: Text node (whitespace after </LAST>).
node-kind = "text"

parent = E1

string-value = "\n"

T4: Text node (contents of <FIRST>).
node-kind = "text"

parent = E2

string-value = "Ann"
Stefan Brass: XML and Databases 9. XDM: XPath/Xquery Data Model 9-56 / 82

Introduction Unessential Syntax Basic Definitions Node Types, Example

Example (8)
T5: Text node (contents of <LAST>).

node-kind = "text"

parent = E3

string-value = "Smith"

A: Attribute node (for SID="101")

node-kind = "attribute"

parent = E1

node-name = "SID"

string-value = "101"

In addition, there are three namespace nodes
(one attached to each element node), see below.

Stefan Brass: XML and Databases 9. XDM: XPath/Xquery Data Model 9-57 / 82

Introduction Unessential Syntax Basic Definitions Node Types, Example

Namespace Nodes (1)

Although the example contains no explicit namespaces,
the prefix xml is always bound to

http://www.w3.org/XML/1998/namespace

For each namespace declaration, a namespace node is
attached to each element node that is in scope of that
namespace declaration.

I.e. not only to the element that explicitly contains the namespace
declaration, but also to all descendants, as long as the same prefix is not
bound to another URI (or to the empty URI which “undefines” the prefix).

Stefan Brass: XML and Databases 9. XDM: XPath/Xquery Data Model 9-58 / 82

Introduction Unessential Syntax Basic Definitions Node Types, Example

Namespace Nodes (2)

Namespace nodes cannot be shared between elements.
They have a link to a specific element node in the parent property.

Thus, the example contains already three namespace
nodes.

E.g. N1: Namespace node for STUDENT-Element:

node-kind = "namespace"

parent = E1

node-name = "xml"

string-value =
"http://www.w3.org/XML/1998/namespace"

Stefan Brass: XML and Databases 9. XDM: XPath/Xquery Data Model 9-59 / 82

Introduction Unessential Syntax Basic Definitions Node Types, Example

Namespace Nodes (3)

Namespace nodes are accessible in XPath 1.0 by the
namespace axis.

In XPath 2.0, use of the namespace axis is deprecated.
In XQuery 1.0, it does not exist.

Instead, one should use XPath functions.

These functions do not permit access to the node
identity or parent node of a namespace node.

Then, namespace nodes can be shared between element
nodes.

Stefan Brass: XML and Databases 9. XDM: XPath/Xquery Data Model 9-60 / 82

Introduction Unessential Syntax Basic Definitions Node Types, Example

Namespace Nodes (4)

Because of the problem with namespace nodes, XDM has
two alternative accessor functions (both correspond to
the property “namespaces”):

namespace-nodes: This returns a sequence of
namespace nodes.

If namespace nodes are not needed, this accessor does not have to
be implemented.

namespace-bindings: This returns the namespace
declarations valid at an element node as a set of
prefix/URI pairs.

The standard says that the representation is
implementation-dependent, but declares the return type as sequence
of xs:string.

Stefan Brass: XML and Databases 9. XDM: XPath/Xquery Data Model 9-61 / 82

Introduction Unessential Syntax Basic Definitions Node Types, Example

Document Order (1)

The document order is a total order on nodes.

Within a tree, the root node is the first node.
This actually follows from the other rules.

Every node occurs before all its children and descendants.

The relative order of siblings is the order in which they
occur in the children property of their parent.

Children and descendants of a node occur before
following siblings.

Stefan Brass: XML and Databases 9. XDM: XPath/Xquery Data Model 9-62 / 82

Introduction Unessential Syntax Basic Definitions Node Types, Example

Document Order (2)

Namespace nodes immediately follow the element node
with which they are associated.

The relative order of namespace nodes is implementation defined, but
stable (i.e. if two namespace nodes of the same element node are
compared several times, the result is always the same).

After the namespace nodes, (or the element node, if there
are no namespace nodes), the attribute nodes
immediately follow.

The relative order of attribute nodes is implementation defined, but stable.

Stefan Brass: XML and Databases 9. XDM: XPath/Xquery Data Model 9-63 / 82

Introduction Unessential Syntax Basic Definitions Node Types, Example

Document Order (3)

Alternative definitions:

The document order is simply the sequence of a
pre-order traversal of the tree, with the namespace and
attribute nodes listed immediately after their element node.

The document order is simply the order of the begin of
the start of a node value in the XML document
(assuming that namespaces are defined before other
attributes).

Stefan Brass: XML and Databases 9. XDM: XPath/Xquery Data Model 9-64 / 82

Introduction Unessential Syntax Basic Definitions Node Types, Example

Document Order (4)

The relative order of nodes of different trees is
implementation-defined (but stable) with the following
restriction:

If one node of tree T1 appears between one node of
tree T2, all nodes of tree T1 must appear before all
nodes of tree T2.

I.e. the document order on the nodes of several trees can
be derived from some order on the trees and the order of
the nodes within each tree.

Stefan Brass: XML and Databases 9. XDM: XPath/Xquery Data Model 9-65 / 82

Introduction Unessential Syntax Basic Definitions Node Types, Example

Document Order (5)

D

PC E1 A

N1

T1 E2 T2 E3 T3

T4 T5
N2 N3

Document order: D, C, P, E1, N1, A, T1, E2, N2, T4,
T2, E3, N3, T5, T3 (unique in this example).

Stefan Brass: XML and Databases 9. XDM: XPath/Xquery Data Model 9-66 / 82

Introduction Unessential Syntax Basic Definitions Node Types, Example

Exercise

Please draw the XDM tree:

<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE html PUBLIC

"-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">
<head>

<title>My first XHTML document</title>
</head>
<body>

<h1>Greeting</h1>
<p>Hi, W3C!</p>

</body>
</html>

Stefan Brass: XML and Databases 9. XDM: XPath/Xquery Data Model 9-67 / 82

Introduction Unessential Syntax Basic Definitions Node Types, Example

String/Typed Value (1)

Three important accessor functions are:

string-value, with return type xs:string.

typed-value, with static (declared) return type
xs:anyAtomicType* (a sequence of atomic values).

The dynamic type of the actually returned values may be more
specific. The sequence that can possibly be returned is used for list
types.

type-name, with return type QName? (i.e. a qualified
name or the empty sequence).

This gives the real (dynamic) type of the value that typed-value

returns. Remember that atomic values have a type attached.

Stefan Brass: XML and Databases 9. XDM: XPath/Xquery Data Model 9-68 / 82

Introduction Unessential Syntax Basic Definitions Node Types, Example

String/Typed Value (2)

anyType

anySimpleTypeuntyped user-defined
complex types

anyAtomicType IDREFS · · · user-defined
list/union types

untypedAtomic string decimal · · ·

Stefan Brass: XML and Databases 9. XDM: XPath/Xquery Data Model 9-69 / 82

Introduction Unessential Syntax Basic Definitions Node Types, Example

String/Typed Value (3)

Document, element, and attribute nodes have properties
“string-value”, “typed-value”, “type-name”.

However, the corresponding accessor functions are also
important for the other node kinds:

For text, comment, and processing-instruction nodes,
they return the value of the “content” property,

for namespace nodes, they return the value of the “uri”
property.

For these four kinds of nodes, the typed-value is the same as the
string-value, the dynamic type of typed-value is xs:string.

Stefan Brass: XML and Databases 9. XDM: XPath/Xquery Data Model 9-70 / 82

Introduction Unessential Syntax Basic Definitions Node Types, Example

String/Typed Value (4)

For document nodes,

the string-value is simply the content of all text nodes
that are descendants of the document node,
concatenated in document order.

I don’t know why this is a property and not simply computed by the
accessor function.

The typed-value is the same, but with the type
xs:untypedAtomic.

In the above example, string-value of the document
node is "AnnSmith" (if validation is done) or
"\n Ann\n Smith\n" (without validation).

Stefan Brass: XML and Databases 9. XDM: XPath/Xquery Data Model 9-71 / 82

Introduction Unessential Syntax Basic Definitions Node Types, Example

String/Typed Value (5)

For an attribute node,

string-value is the normalized attribute value.
The normalization is defined in the XML standard (Section 3.3.3).
Basically, all whitespace characters are translated into space
characters (CR-LF line ends are translated to a single space). If the
data type of the attribute is known and is different from CDATA, also
leading and trailing spaces are removed, and sequences of space
characters are translated into a single space. If a schema is used for
validation, the schema normalized value is used (see facet
whiteSpace). In this case, any lexical representation of the typed
value can be returned (see below).

If no schema is avaliable, the typed-value is the
string-value as an xs:untypedAtomic.

Stefan Brass: XML and Databases 9. XDM: XPath/Xquery Data Model 9-72 / 82

Introduction Unessential Syntax Basic Definitions Node Types, Example

String/Typed Value (6)

Attribute nodes, continued:

If the XDM instance is constructed from a PSVI
(i.e. validation with respect to an XML schema was
done), the typed-value is the attribute value converted
to the type declared for that attribute.

If the document is invalid or only partially validated, the type is
xs:anySimpleType. If the validation was not attempted, or the
result is not known, the type is xs:untypedAtomic.
In case of a union type, the value is converted to the first member
type of the union for which it is valid. In case of a list type, the
value is a sequence of the atomic list members.

The property type-name returns this type.
For union types, it is the this type, not the actual member type.

Stefan Brass: XML and Databases 9. XDM: XPath/Xquery Data Model 9-73 / 82

Introduction Unessential Syntax Basic Definitions Node Types, Example

String/Typed Value (7)

String value of element nodes:

If the element is declared with a simple type as content,
the string-value is the schema normalized value of
the concatenation of all text node children.

If a schema is used, elements with a simple type as content are
treated equivalently to attributes.
Actually, any lexical representation of the typed value can be
returned (see below).

Otherwise, it is the concatenation of all descandant text
nodes (in document order).

Stefan Brass: XML and Databases 9. XDM: XPath/Xquery Data Model 9-74 / 82

Introduction Unessential Syntax Basic Definitions Node Types, Example

String/Typed Value (8)

Typed value of element nodes:

If the element is declared with a simple type as content,
the typed-value is the string-value converted to the
declared/actual type.

Because of xsi:type, there can be a difference between declared
and actual type (also for union types?). The standard needs one
page (Section 3.3.1.1) to explain what type is chosen. This case
(the element corresponds to an attribute) is the only interesting case
(the typed value is defined and different from string value).

If the element is declared as empty element, its
typed-value is the empty sequence.

Note that if it is declared e.g. with mixed content, but happens to
have empty content, the typed-value is the empty string.

Stefan Brass: XML and Databases 9. XDM: XPath/Xquery Data Model 9-75 / 82

Introduction Unessential Syntax Basic Definitions Node Types, Example

String/Typed Value (9)

Typed value of element nodes, continued:

If the element has mixed content or its type is unknown
(includes the construction from infoset, i.e. no validation
or DTD-validation) the typed-value is the string-value as
xs:untypedAtomic.

If the element is declared with pure element content, its
typed-value is undefined and trying to access it raises
an error.

Also in these cases, the type-name is defined.
In the usual case, it is the type declared in the schema for this element
type (or xs:untyped if there is no schema).

Stefan Brass: XML and Databases 9. XDM: XPath/Xquery Data Model 9-76 / 82

Introduction Unessential Syntax Basic Definitions Node Types, Example

String/Typed Value (10)

An implementation may store the string-value, the
typed-value, or both.

If it stores only the typed-value, it may return any lexical
representation of this value as string value.

For example, suppose that SID is declared as integer. Consider the input:
<STUDENT SID=" 00101">...</STUDENT>. The typed-value of the
attribute SID is the integer 101. An implementation may return "101" or
"00101" as string-value (or other equivalent representations).

If it stores only the string-value, it must convert the
string to the correct member union type.

Although type-name is probably only the union type. Also determining the
namespace URI for QName and NOTATION might not be trivial.

Stefan Brass: XML and Databases 9. XDM: XPath/Xquery Data Model 9-77 / 82

Introduction Unessential Syntax Basic Definitions Node Types, Example

is-id/is-idrefs

If there is only a DTD (no schema), type-name is
xs:untypedAtomic even for ID/IDREF(S)-attributes.

Even if there is no DTD, one can call an attribute xml:id to make clear
that it is a unique ID of the node.

But these attributes are of special importance.

Thus, boolean properties is-id and is-idrefs were
introduced to mark such attributes.

There is no property is-idref because a value in XDM is always a
sequence (possibly of length one). The property is-idrefs is true when
the attribute type is IDREF or IDREFS. The property is-id is true when
the atrribute is of type ID or is called xml:id. When there is a schema,
these properties can be true also for element nodes.

Stefan Brass: XML and Databases 9. XDM: XPath/Xquery Data Model 9-78 / 82

Introduction Unessential Syntax Basic Definitions Node Types, Example

Nilled

In XML Schema, xsi:nil="true" was introduced to
mark elements that have a NIL/Null value (different from
the empty content).

The element type must be declared as nillable.

The XDM property “nilled” is true for element nodes
when the node was validated according to a schema and
xsi:nil="true" was used.

The typed-value of nilled element nodes is the empty
sequence.

The type-name is not changed (it is the type declared for the element).

Stefan Brass: XML and Databases 9. XDM: XPath/Xquery Data Model 9-79 / 82

Introduction Unessential Syntax Basic Definitions Node Types, Example

Base URI (1)

Document, element, and processing instruction nodes
have a base URI property that can be used for resolving
relative URIs in them.

The base URI might be different for different parts of the document tree in
case external entities were expanded (or because of xml:base, see below).

The base URI is usually the URI of the input document
(or external entity). However, the value of an xml:base
attribute takes precedence.

The URI might contain characters that must be escaped
if a lexical/external representation is needed.

Stefan Brass: XML and Databases 9. XDM: XPath/Xquery Data Model 9-80 / 82

Introduction Unessential Syntax Basic Definitions Node Types, Example

Base URI (2)

If a processing instruction has a base URI different from
its parent, it is difficult/impossible to keep this in the
external representation.

For all other nodes, the xml:base attribute can be used. In this case, one
would have to write to that URI, which might be impossible or at least
unwanted. The problem is that one cannot use xml:base in processing
instructions.
This shows that the XML standards do not fit completely together. (newer
standards must live with design decisions done in older standards, already
in the SGML standard). Things would probably become simpler and more
consistent if a complete redesign were done).

The document node has also a document-uri.
This is an absolute URI that should be used to reload the document if
necessary.

Stefan Brass: XML and Databases 9. XDM: XPath/Xquery Data Model 9-81 / 82

Introduction Unessential Syntax Basic Definitions Node Types, Example

References
Mary Fernández, Ashok Malhotra, Jonathan Marsh, Marton Nagy, Norman
Walsh (Ed.):
XQuery 1.0 and XPath 2.0 Data Model (XDM).
W3C Recommendation, 23 January 2007,
[http://www.w3.org/TR/xpath-datamodel/]

Ashok Malhotra, Jim Melton, Norman Walsh (Ed.):
XQuery 1.0 and XPath 2.0 Functions and Operators.
W3C Recommendation, 23 January 2007.
[http://www.w3.org/TR/xpath-functions/]

John Cowan, Richard Tobin (Editors):
XML Information Set (Second Edition).
W3C Recommendation, 4 February 2004,
[http://www.w3.org/TR/xml-infoset]

Jonathan Marsh (Ed.): XML Base.
W3C Recommendation, 27 June 2001,
[http://www.w3.org/TR/xmlbase/]

G. Ken Holman: Definitive XSLT and XPath.
Prentice Hall, 2002, ISBN 0-13-065196-6, 373 pages.

Stefan Brass: XML and Databases 9. XDM: XPath/Xquery Data Model 9-82 / 82

http://www.w3.org/TR/xpath-datamodel/
http://www.w3.org/TR/xpath-functions/
http://www.w3.org/TR/xml-infoset
http://www.w3.org/TR/xmlbase/

	Introduction
	Introduction

	Unessential Syntax
	Internal Model vs. External Representation

	Basic Definitions
	Basic Definitions (Types, Sequences, …)

	Node Types, Example
	Node Types, Example
	References

