XML and Databases

Chapter 7: XML Schema lll:
Keys and Derived Types

Prof. Dr. Stefan Brass
Martin-Luther-Universitat Halle-Wittenberg
Winter 2022/23

http://www.informatik.uni-halle.de/~brass/xml22/

7-1/47

http://www.informatik.uni-halle.de/~brass/xml22/

Objectives

After completing this chapter, you should be able to:

use keys and key references in an XML Schema.

compare keys in XML Schema with keys in the relational
model.

declare derived complex types in XML schema.

compare type derivation in XML schema with subclasses
in XML schema.

respect the possible existence of derived types when
developing programs to process XML data.

7-2 /47

Integrity Constraints
°

Contents

@ Integrity Constraints

© Keys
© Key References
@ Derived Complex Types

© Documentation

7-3/47

Integrity Constraints
[IeTole}

Integrity Constraints (1)

@ DTDs have ID/IDREF to permit a unique identification of
nodes and links between elements.

@ This mechanism is quite restricted:

e The identification must be a single XML name.

A number cannot be used as identification. Composed keys are not
supported. DTDs do not allow further restrictions of the possible

values, e.g. one cannot enforce a certain format for the names.

e The scope is global for the entire document.

One cannot state that the uniqueness only has to hold within an
element (e.g., representing a relation). One cannot specify any

constraints of the element type that is referenced with IDREF.
e This works only for attributes, not for elements.

7-4 /47

Integrity Constraints
[o] Yole}

Integrity Constraints (2)

@ XML Schema has mechanisms corresponding to keys and
foreign keys in relational databases that solve the problems
of ID/IDREF.

They are more complex than the relational counterparts, because the
hierarchical structure of XML is more complex than the flat tables of the
relational model. The simplicity of the relational model was one of its big

achievements. This is given up in XML databases.

@ The facets correspond to CHECK-constraints that restrict
the value set of a single column.
Not all SQL conditions that refer to only one column can be expressed
with facets. On the other hand, patterns in XML Schema are much more

powerful than SQL's LIKE-conditions. It is strange that patterns refer to

the external representation.

7-5 /47

Integrity Constraints
ooeo

Integrity Constraints (3)

@ Otherwise, XML Schema 1.0 is not very powerful with
respect to constraints. This changed in Version 1.1.
E.g., CHECK-constraints in relational databases can state logical conditions
between the column values of a table row, e.g. if one column has a certain
value then another column must be not null. The facets of XML Schema

constrain only single values.

@ For example, XML Schema itself requires that the
type-attribute of element is mutually exclusive with
simpleType/complexType-child elements.

@ This constraint cannot be specified in XML Schema 1.0.

One would expect that the schema for XML Schema can express the

necessary req uirements.

7-6 /47

Integrity Constraints
oooe

Integrity Constraints (4)

@ XML Schema 1.1 (released April 5, 2012) introduced an
Element assert that permits to specify arbitrary
conditions in XPath 2.0.

However, there are not very many XML Schema 1.1 implementations yet.

@ For instance, one can compare two attribute values of an
element (attribute min must be < max):

<xs:complexType name="intRange">
<xs:attribute name="min" type="xs:int"/>
<xs:attribute name="max" type="xs:int"/>
<xs:assert test="@min le O@max"/>
</xs:complexType>

[https://www.w3.0rg/TR/2012/REC-xmlschemall-1-20120405/]

7-7 /47

https://www.w3.org/TR/2012/REC-xmlschema11-1-20120405/

Keys
°

Contents

© Keys

7-8 /47

Keys
®0000000000000

Unique/Key Constraints (1)

@ Consider again the example:

<?xml version=’1.0’ encoding=’I1S50-8859-1’7>
<GRADES-DB>
<STUDENTS>
<STUDENT>
<SID>101</SID>
<FIRST>Ann</FIRST>
<LAST>Smith</LAST>
</STUDENT>

</STUDENTS>

</GRADES-DB>

7-9 /47

Keys
0O®000000000000

Unique/Key Constraints (2)

@ SID-values uniquely identify the children of STUDENTS:

<xs:element name="STUDENTS">
<xs:complexType>
<xs:sequence>
<xs:element ref="STUDENT"
minOccurs="0" maxOccurs="unbounded"/>
</xs:sequence>
</xs:complexType>
<xs:unique name="STUDENTS_KEY">
<xs:selector xpath="x"/>
<xs:field xpath="SID"/>
</xs:unique>
</xs:element>

7-10/ 47

Keys
0O®00000000000

Unique/Key Constraints (3)

@ There are three components to a unique-constraint
(basically corresponds to relation, row, column(s)):

o The scope, which delimits the part of the XML
document, in which the uniqueness must hold.

Every element of the type in which the unique-constraint is defined

is one such scope.

o The elements which are identified.

The XPath-expression in selector specifies how to get from a

scope-element to these elements (“target node set”).

e The values which identify these elements.

The XPath-expressions in one or more field-elements specify how

to get from the identified elements to the identifying values.

7-11/47

Keys
000®0000000000

Unique/Key Constraints (4)

@ In the example:

o The scope is the STUDENTS-element.

In the example, there is only one STUDENTS-element. If there were
more than one, the uniqueness has to hold only within each single

element.

o The elements that are identified are the children of
STUDENTS (the STUDENT-elements).

One could also write xpath="STUDENT".

e The value that identifies the elements is the value of the
SID-child.

7-12 /47

Keys
0000@000000000

Unique/Key Constraints (5)

@ The correspondence of the scope to a relation is not exact:

o In the example, it is also possible to define the entire
document as scope, but to select only STUDENT-elements
(see next slide).

o In contrast to the ID-type, it is no problem if other keys
contain the same values.

Even if the scope is global, the uniqueness of values must hold only

within a key (i.e. one could say that the scope is the key).

@ Only values of simple types can be used for unique
identification.

7-13 /47

Keys
00000@00000000

Unique/Key Constraints (6)

@ SID-values uniquely identify STUDENT-elements:

<xs:element name="GRADES-DB'">
<xs:complexType>
<xs:sequence>
<xs:element ref="STUDENTS"/>
<xs:element ref="EXERCISES"/>
<xs:element ref="RESULTS"/>
</xs:sequence>
</xs:complexType>
<xs:unique name="STUDENTS_KEY">
<xs:selector xpath="STUDENTS/STUDENT"/>
<xs:field xpath="SID"/>
</xs:unique>
</xs:element>

7-14 / 47

Keys
00000080000000

Unique/Key Constraints (7)

@ Example with composed key:

<xs:element name="GRADES-DB">
<xs:complexType>
<xs:sequence>
<xs:element ref="STUDENTS"/>
<xs:element ref="EXERCISES"/>
<xs:element ref="RESULTS"/>
</xs:sequence>
</xs:complexType>
<xs:unique name="EXERCISES KEY">
<xs:selector xpath="EXERCISES/x*"/>
<xs:field xpath="CAT"/>
<xs:field xpath="ENO"/>
</xs:unique>
</xs:element>

7-15 /47

Keys
0000000@000000

Unique/Key Constraints (8)

@ Suppose we store the data in attributes:

<EXERCISE CAT="H’ EN0O=’1’
TOPIC="Rel. Algeb.’ MAXPT=’10’/>

@ Attributes as fields are marked with “@":

<xs:element name="GRADES-DB">

<xs:unique name="EXERCISES_KEY">
<xs:selector xpath="EXERCISES/*"/>
<xs:field xpath="@CAT"/>
<xs:field xpath="@ENQ"/>
</xs:unique>
</xs:element>

7-16 / 47

Keys
00000000 ®00000

Unique/Key Constraints (9)

@ Example with exercise info nested in categories:

<EXERCISES>
<CATEGORY CAT="H">
<EX ENO="1" TOPIC="Rel. Algeb." MAXPT="10"/>
<EX ENO="2" TOPIC="SQL" MAXPT="10"/>
</CATEGORY>
<CATEGORY CAT="M">
<EX ENO="1" TOPIC="SQL" MAXPT="14"/>
</CATEGORY>
</EXERCISES>

@ XML Schema supports only a subset of XPath.
In particular, one cannot access ancestors in xs:field.
But the unique identification of EX needs CAT.

7-17 /47

Keys
000000000e0000

Unique/Key Constraints (10)

@ The problem is solved by defining two keys:

e One key ensures that the CAT-value uniquely identifies
CATEGORY-elements.

e The other key is defined within the CATEGORY element
type (thus, there is one instance of the key, i.e. scope,
for every category element). This key ensures the unique
identification of EX-elements by the ENO within each
CATEGORY element.

@ However, in this way no foreign keys can be specified that
reference EX-elements by CAT and ENO.

7-18 /47

Keys
0000000000000

Unique/Key Constraints (11)

@ Key on CATEGORY:

<xs:element name="GRADES-DB">

<xs:unique name="CATEGORY_KEY">
<xs:selector xpath="EXERCISES/CATEGORY"/>
<xs:field xpath="Q@CAT"/>
</xs:unique>
</xs:element>

The XPath-expression in selector could also be EXERCISES/*

(because EXERCISES has only CATEGORY-elements as children).

One could define the key also under EXERCISES (instead of GRADES-DB)
since the document contains only one element of type EXERCISES, and all

elements to be identified are nested within this element.

7-19 /47

Keys
00000000000e00

Unique/Key Constraints (12)

@ Key on EX-elements within CATEGORY:
<xs:element name="CATEGORY">

<xs:unique name="EX_KEY">

<xs:selector xpath="x"/>

<xs:field xpath="QENQ"/>
</xs:unique>
</xs:element>

@ It is no problem that there are two EX-elements with the
same ENO (e.g., 1) as long as they are nested within
different CATEGORY-elements.

@ This is similar to a weak entity.

7-20 /47

Keys
000000000000e0

Unique/Key Constraints (13)

@ For a given “context node” (in which the key is defined),
the selector defines a “target node set”.

@ For each node in the target node set, the
XPath-expression in each field must return 0 or 1 values.
It is an error if more than one value is returned.

@ The target nodes, for which each field has a value (that is
not nil), form the “qualified node set”.

@ The unique identification is required only for the qualified
node set. Multiple elements with undefined or partially
defined key values can exist.

7-21/47

Keys
0000000000000e

Unique/Key Constraints (14)

@ If one writes xs:key instead of xs:unique,
the fields must exist.

e In this case, it is an error if the XPath-expression in
xs:field returns no values.

e And it is always an error if it returns more than one value.

Furthermore, neither the identified nodes nor the identifying fields

may be nillable.
@ Note that value equality respects the type:

o For a field of type integer, "03" and "3" are the same
(so the uniqueness would be violated).

o For a field of type string, they are different.

7-22 /47

Key References
°

Contents

© Key References

7-23 /47

Key References
®0000

Key References (1)

@ A “key reference” identity constraint corresponds to a
foreign key in relational databases.

@ It demands that certain (tuples of) values must appear as
identifying values in a key constraint.

“Key constraint” means key or unique.
@ Example: For each SID-value in a RESULT element, there

must be a STUDENT-element with the same SID (one can
store points only for known students).

As in relational databases, it is not required that the two fields have the

same name.

7-24 /47

Key References
0®000

Key References (2)

@ SID-values in RESULT reference SID-values in STUDENT:

<xs:element name="GRADES-DB">

<xs:key name="STUDENT_ KEY">
<xs:selector xpath="STUDENTS/STUDENT"/>
<xs:field xpath="SID"/>

</xs:key>

<xs:keyref name="RESULT_ REF_STUDENT"
refer="STUDENT_KEY">
<xs:selector xpath="RESULTS/RESULT"/>
<xs:field xpath="SID"/>
</xs:keyref>

</xs:element>

7-25 /47

Key References
00®00

Key References (3)

@ The referenced key must be defined in the same node or
in a descendant node (i.e. “below”) the node in which the
foreign key constraint is defined.

| would have required the opposite direction, because on the way up, there
could be only one instance of the referenced key, on the way down, there
can be several (see below). But the committee certainly had reasons,

probably related to the parsing/checking algorithms.

@ The standard explains that “node tables” which map key
values to the identified nodes are computed bottom-up.

The standard talks of “key sequence” instead of “key values” to include

also composed keys (with more than one field).

7-26 /47

Key References
0000

Key References (4)

@ It is possible that several instances of the referenced key
exist below the foreign key.

@ In that case, the union of the node tables is taken, with
conflicting entries removed.

l.e. if two instances of the referenced key contain the same key value with
different identified nodes, that key value is removed from the table: It
cannot be referenced (the reference would not be unique).

The situation is even more complicated, if the key is defined in an element
type that has descendants of the same type. Then key value-node pairs
originating in the current node take precedence over pairs that come from
below. Values that come from below are only entered in the node table if

they do not cause a conflict.

7-27 /47

Key References
0o00e

Key References (5)

o Fields of key and foreign key are matched by position in
the identity constraint definition, not by name (as in
relational databases).

@ Normally, the types of corresponding fields (of the key
and the foreign key) should be the same.

@ However, if the types of both columns are derived from
the same primitive type, it might still work (for values in
the intersection of both types).

@ But values of unrelated types are never identical: E.g. the

string “1" is different from the number “1".

7-28 /47

Derived Complex Types
°

Contents

@ Derived Complex Types

7-29 /47

Derived Complex Types
®00000000000

Derived Complex Types (1)

@ There are two ways to derive complex types:

e by extension, e.g. adding new elements at the end of the
content model, or adding attributes,

e by restriction, e.g. removing optional elements or
attributes, or restricting the data type of attributes, etc.

@ Derived simple types are always restrictions.

One can extend a simple type by adding attributes, but then it becomes a

complex type.

7-30 /47

Derived Complex Types
O®0000000000

Derived Complex Types (2)

@ Extension looks very similar to subclass definitions in
object-oriented languages.
There all attributes from the superclass are inherited to the subclass, and

additional attributes can be added.

@ However, a basic principle in object-oriented languages is
that a value of a subclass can be used wherever a value of
the superclass is needed.

@ In XML, it depends on the application, whether it breaks
if there are additional elements/attributes.

Since XML Schema has this feature, future applications should be

developed in a way that tolerates possible extensions.

7-31/47

Derived Complex Types
008000000000

Derived Complex Types (3)

o Additional attributes are probably seldom a problem, since
attributes are typically accessed by name (not in a loop).

@ It was tried to minimize the problems of additional child
elements by allowing them only at the end of the content
model.

e Formally, the content model of the extended type is
always a sequence consisting of

e the content model of the base type,

o the added content model (new child elements).

7-32 /47

Derived Complex Types
000®00000000

Derived Complex Types (4)

@ Consider a type for STUDENT-elements:

<xs:complexType name="STUDENT_TYPE">
<xs:sequence>
<xs:element name="SID" type="SID_TYPE"/>
<xs:element name="FIRST" type="xs:string"/>
<xs:element name="LAST" type="xs:string"/>
<xs:element name="EMAIL" type="xs:string"
minOccurs="0"/>
</xs:sequence>
</xs:complexType>

@ Suppose that exchange students must in addition contain
the name of the partner university.

7-33 /47

Derived Complex Types
0000@0000000

Derived Complex Types (5)

@ Example for type extension:

<xs:complexType name="EXCHANGE_STUDENT_TYPE">
<xs:complexContent>
<xs:extension base="STUDENT_ TYPE">
<xs:sequence>
<xs:element name="PARTNER UNIV"
type="UNIV_TYPE"/>
</xs:sequence>
</xs:extension>
</xs:complexContent>
</xs:complexType>

@ The effective content model is now:
((SID, FIRST, LAST, EMAIL?), (PARTNER_UNIV))

7-34 /47

Derived Complex Types
00000@000000

Derived Complex Types (6)

@ In the same way, one can add attributes. Suppose that
STUDENT_TYPE2 has attributes SID, FIRST, LAST, EMAIL
(and empty content).

@ Then a new attribute is added as follows:

<xs:complexType name="EXCHANGE_ STUDENT_ TYPE2">
<xs:complexContent>
<xs:extension base="STUDENT TYPE2">
<xs:attribute name="PARTNER_ UNIV"
type="UNIV_TYPE" use="required"/>
</xs:extension>
</xs:complexContent>
</xs:complexType>

7-35 /47

Derived Complex Types
000000800000

Derived Complex Types (7)

@ Let us return to the case where STUDENT has child
elements SID, FIRST, LAST, EMAIL

@ The type of EMAIL might be a simple type:

<xs:simpleType name="EMAIL_TYPE">
<xs:restriction base="xs:string">
<xs:maxLength value="80"/>
</xs:restriction>
</xs:simpleType>

@ Suppose that an attribute must be added that indicates
whether emails can be formatted in HTML or must be

plain text.

7-36 /47

Derived Complex Types
0000000@0000

Derived Complex Types (8)

@ When an attribute is added to a simple type, one gets a
complex type:

<xs:complexType name="EMAIL_TYPE2">
<xs:simpleContent>
<xs:extension base="EMAIL TYPE">
<xs:attribute name="HTML_OK"
type="xs:boolean" use="optional"/>
</xs:extension>
</xs:simpleContent>
</xs:complexType>

@ Example (element EMAIL of type EMAIL_TYPE2):

<EMAIL HTML_OK="false'">brass@acm.org</EMAIL>

7-37/47

Derived Complex Types
00000000e000

Derived Complex Types (9)

@ If one uses restriction to define a derived type, it is
guaranteed that every value of the derived type is also a
valid value of the original type.

@ If one wants to restrict a content model, one must repeat
the complete content model.

l.e. also the unmodified parts must be listed. The restricted content model
does not have to be structurally identical. E.g. groups with only a single
element can be eliminated (if minOccurs and maxOccurs are both 1), a
sequence group with minOccurs="1" and maxOccurs="1" can be merged
with an enclosing sequence group, the same for choice-groups. However,
for all and choice groups, subgroups must be listed in the same order,

although the sequence is semantically not important.

7-38 /47

Derived Complex Types
000000000800

Derived Complex Types (10)

o If one wants to restrict an attribute, it suffices to repeat
only this attribute.

@ Consider again STUDENT TYPE2 with attributes SID,
FIRST, LAST, EMAIL. The optional attribute EMAIL can
be removed as follows:

<xs:complexType name="STUDENT TYPE3">
<xs:complexContent>
<xs:restriction base="STUDENT TYPE2">
<xs:attribute name="EMAIL"
use="prohibited"/>
</xs:restriction>
</xs:complexContent>
</xs:complexType>

7-39 /47

Derived Complex Types
0000000000 e0

Derived Complex Types (11)

@ The same change for the type STUDENT with child
elements SID, FIRST, LAST, EMAIL (minOccurs="0"):

<xs:complexType name="STUDENT_TYPE4">
<xs:complexContent>
<xs:restriction base="STUDENT_ TYPE">
<Xs:sequence>
<xs:element name="SID" type="SID_TYPE"/>
<xs:element name="FIRST" type="xs:string"/>
<xs:element name="LAST" type="xs:string"/>
</xs:sequence>
</xs:restriction>
</xs:complexContent>
</xs:complexType>

7-40 / 47

Derived Complex Types
00000000000e

Derived Complex Types (12)

@ Possible restrictions for complex types:

o Optional attribute becomes required/prohibited.

o The cardinality of elements or model groups becomes
more restricted (minOccurs T, maxOccurs |).

o Alternatives in choice-groups are reduced.

o A restricted type can be chosen for an attribute or a
child element.

o A default value can be changed.
e An attribute or element can get a fixed value.

o Mixed content can be forbidden.

7-41 /47

Documentation
°

Contents

© Documentation

7-42 /47

Documentation
[Jelele]

Documentation, App. Info (1)

@ Documentation about the schema can be stored within
the XML Schema definition.

And not only as XML comments: Many XML tools suppress comments,

and very little formatting can be done there.

@ This is one purpose of the annotation element type,
which is allowed
e as first child of every XML Schema element type

But it cannot be nested, i.e. it cannot be used within annotation or

its children documentation and appinfo.

e anywhere as child of schema and redefine.

There, multiple annotation elements are allowed. Inside all other

element types, only one annotation element is permitted.

7-43 /47

Documentation
0®00

Documentation, App. Info (2)

@ Many relational databases also have the possibility to
store comments about tables and columns in the data
dictionary.

Of course, this is usually pure text, quite short and without formatting.

@ The other purpose of the annotation element is to store
information for tools (programs) that process XML
Schema information within the schema.

E.g. tools that compute a relational schema from an XML schema, and
map data between the two, or tools that generate form-based data entry

programs out of the schema data.

@ This makes XML Schema extensible.

7-44 /47

Documentation
ocoeo

Documentation, App. Info (3)

@ Example:

<xs:schema
xmlns:xs="http://www.w3.0rg/2001/XMLSchema"

xmlns:doc="http://doc.org/d1"

xmlns:xsi=
"http://www.w3.org/2001/XMLSchema-instance"

xsi:schemalocation=
"http://doc.org/dl doc.xsd">

<xs:element name="GRADES-DB">
<xs:annotation>
<xs:documentation xml:lang="en">

<doc:title>Grades Database</doc:title>
This is the root element.

<xs:complexType>

7-45 /47

Documentation
[oeYe] }

Visualization of Schema Structure

¥ Altova XMLSpy - [ex2.xsd]
File Edit Project #ML DTDySchema Schemadesign X5LfXQuery Authentic Convert Wiew

Browser WSDL S0OAP Tools Window Help -8 X
O =@ - & X B] [[x B G|

E

,STUDENT &
e —

GRADES-DB & {EXERCISE
0.m

Text Gnd _Scl_lemaj\#_SD [Authentic Browser
.EHZ Hsd 4 b

XMLSpy V2DD? sp2 Registered to SteFan Brass (Prlvate) .1998 -2007 Altova

I S Y B 7-46 / 47

Documentation
°

References

@ Harald Schéning, Walter Waterfeld: XML Schema.
In: Erhard Rahm, Gottfried Vossen: Web & Datenbanken, Seiten 33-64.
dpunkt.verlag, 2003, ISBN 3-89864-189-9.

@ Priscilla Walmsley: Definitive XML Schema.
Prentice Hall, 2001, ISBN 0130655678, 560 pages.

@ W3C Architecture Domain: XML Schema.
[http://www.w3.org/XML/Schemal]

@ David C. Fallside, Priscilla Walmsley: XML Schema Part 0: Primer.
W3C, 28. October 2004, Second Edition.
[http://www.w3.0rg/TR/xmlschema-0/]

@ Henry S. Thompson, David Beech, Murray Maloney, Noah Mendelsohn:
XML Schema Part 1: Structures.
W3C, 28. October 2004, Second Edition
[http://www.w3.0rg/TR/xmlschema-1/]

@ Paul V. Biron, Ashok Malhotra: XML Schema Part 2: Datatypes.
W3C, 28. October 2004, Second Edition
[http://www.w3.0rg/TR/xmlschema-2/]

@ [http://www.w3schools.com/schema/]

7-47 /47

http://www.w3.org/XML/Schema
http://www.w3.org/TR/xmlschema-0/
http://www.w3.org/TR/xmlschema-1/
http://www.w3.org/TR/xmlschema-2/
http://www.w3schools.com/schema/

	Integrity Constraints
	Introduction to Integrity Constraints in XML Schema

	Keys
	Unique/Key Constraints

	Key References
	Key References (Foreign Keys)

	Derived Complex Types
	Derived Complex Types

	Documentation
	Annotations
	References

