
XML and Databases

Chapter 16: JSON

Prof. Dr. Stefan Brass

Martin-Luther-Universität Halle-Wittenberg

Winter 2019/20

http://www.informatik.uni-halle.de/˜brass/xml19/

16. JSON 16-1 / 23

http://www.informatik.uni-halle.de/~brass/xml19/


Objectives

After completing this chapter, you should be able to:

compare JSON with XML.

write syntactically correct JSON documents.

explain some features of XQuery 3.1 that were introduced
to support JSON.

16. JSON 16-2 / 23



Contents

1 Introduction

2 JSON Syntax

3 XQuery 3.1 Support for JSON

16. JSON 16-3 / 23



Introduction (1)

JSON (“JavaScript Object Notation”) is a standard file
format for data interchange like XML.

JSON is pronounced like “Jason” or like “JAY-sawn”.
The story of JSON is explained by its inventor, Douglas Crockford, in:
[https://www.youtube.com/watch?v=-C-JoyNuQJs]
He says, he did not invent it, but discovered it, because it is valid JavaScript.
The first JSON message was sent in 2001.

It was developed for data exchange between applications
running in the browser and the server.

In the meantime, it is used also for many other applications.

It is tree-structured just as XML, and one can translate
data in both directions quite easily.

16. JSON 16-4 / 23

https://www.youtube.com/watch?v=-C-JoyNuQJs


Introduction (2)

The current version of the JSON standard is from 2017:

ecma Standard ECMA-404:
The JSON Data Interchange Syntax.
[https://www.ecma-international.org/wp-content/uploads/

ECMA-404 2nd edition december 2017.pdf
The standard has 16 pages, but the real text of the standard is on
5 pages. The first edition is from October 2013:
[https://.../uploads/ECMA-404 1st edition october 2013.pdf]

The syntax diagrams are also on:
[https://www.json.org/json-en.html] (English)
[https://www.json.org/json-de.html] (German)

This page is nicer than the standard and contains also links
to implementations for many different programing languages.

16. JSON 16-5 / 23

https://www.ecma-international.org/wp-content/uploads/ECMA-404_2nd_edition_december_2017.pdf
https://www.ecma-international.org/wp-content/uploads/ECMA-404_2nd_edition_december_2017.pdf
https://www.ecma-international.org/wp-content/uploads/ECMA-404_1st_edition_october_2013.pdf
https://www.json.org/json-en.html
https://www.json.org/json-de.html


Introduction (3)

JSON vs. XML:
JSON is a bit shorter, it does not need an end tag.

If one uses empty elements with data in attributes in XML, the advantage
of JSON is much smaller, or XML might even be slightly shorter.

For the programming language JavaScript, JSON is
simpler to use than XML.

For most other programming languages, both need a parser library.

The JSON standard is shorter than the XML standard.
The XML standard has 59 pages (including front matter and appendices).
It contains DTDs, Entities, CDATA sections, comments, encoding specifications
— all of which does not exist in JSON.

JSON might be more attractive to programmers, because
it uses known concepts like objects (tuples) and arrays.

16. JSON 16-6 / 23

https://www.w3.org/TR/2000/REC-xml-20001006.pdf


Introduction (4)

There are more alternatives, especially for configuration files.

For instance, YAML is quite well known.
[https://en.wikipedia.org/wiki/YAML]
[https://yaml.org/]
[https://yaml.org/spec/1.2.2/]

TOML, HOCON, . . .

The NoSQL-database MongoDB stores in principle JSON
documents, but it uses a binary format (BSON: “Binary
JSON”) and some extensions to JSON.

E.g., it has a data type for date values which is missing in JSON.
MongoDB and BSON also support different numeric types (such as
integer) in addition the the standard floating point number of JSON.
[https://bsonspec.org/spec.html]

16. JSON 16-7 / 23

https://en.wikipedia.org/wiki/YAML
https://yaml.org/
https://yaml.org/spec/1.2.2/
https://toml.io/en/
https://github.com/lightbend/config/blob/master/HOCON.md
https://bsonspec.org/spec.html


Contents

1 Introduction

2 JSON Syntax

3 XQuery 3.1 Support for JSON

16. JSON 16-8 / 23



Example (1)

The student grades database in JSON.
[https://users.informatik.uni-halle.de/˜brass/xml22/examples/ex1.json]

On the top level, the document is an object {...} with
three attributes/properties "STUDENTS", "EXERCISES",
and "RESULTS".

The value of each property is an array [...] with objects
corresponding to the table rows:

{ "STUDENTS": [
{"SID": 101,
"FIRST": "Ann",
"LAST": "Smith",
"EMAIL": "smith@acm.org"},

16. JSON 16-9 / 23

https://users.informatik.uni-halle.de/~brass/xml22/examples/ex1.json


Example (2)

Part 2/6 (remaining students, end of array):

{"SID": 102,
"FIRST": "Michael",
"LAST": "Jones"},

{"SID": 103,
"FIRST": "Richard",
"LAST": "Turner",
"EMAIL": "richard.turner@gmx.de"},

{"SID": 104,
"FIRST": "Maria",
"LAST": "Brown",
"EMAIL": "brown@hotmail.com"}

],

16. JSON 16-10 / 23



Example (3)

Part 3/6 (exercise list):
"EXERCISES": [

{"CAT": "H",
"ENO": 1,
"TOPIC": "Relational Algebra",
"MAXPT": 10},

{"CAT": "H",
"ENO": 2,
"TOPIC": "SQL",
"MAXPT": 10},

{"CAT": "M",
"ENO": 1,
"TOPIC": "SQL",
"MAXPT": 14}

],

16. JSON 16-11 / 23



Example (4)

Part 4/6 (results for exercises submitted by Ann Smith):
"RESULTS": [

{"SID": 101,
"CAT": "H",
"ENO": 1,
"POINTS": 10},

{"SID": 101,
"CAT": "H",
"ENO": 2,
"POINTS": 8},

{"SID": 101,
"CAT": "M",
"ENO": 1,
"POINTS": 12},

16. JSON 16-12 / 23



Example (5)

Part 5/6 (list of results submitted by Michael Jones):
{"SID": 102,
"CAT": "H",
"ENO": 1,
"POINTS": 9},

{"SID": 102,
"CAT": "H",
"ENO": 2,
"POINTS": 9},

{"SID": 102,
"CAT": "M",
"ENO": 1,
"POINTS": 10},

16. JSON 16-13 / 23



Example (6)

Part 6/6 (list of results submitted by Richard Turner):
{"SID": 103,
"CAT": "H",
"ENO": 1,
"POINTS": 5},

{"SID": 103,
"CAT": "M",
"ENO": 1,
"POINTS": 7}

]
}

These are 66 lines and 1019 characters. The XML version with data in
attributes [ex1.xml] has 23 lines and 917 characters. The XML version with
data as element content [ex2.xml] has 101 lines and 1698 characters.

16. JSON 16-14 / 23

https://users.informatik.uni-halle.de/~brass/xml22/examples/ex1.xml
https://users.informatik.uni-halle.de/~brass/xml22/examples/ex1.xml


Example (7)

Formatting after “pretty printing” with https://jsonlint.com/:
{

"STUDENTS": [{
"SID": 101,
"FIRST": "Ann",
"LAST": "Smith",
"EMAIL": "smith@acm.org"

},
{

"SID": 102,
"FIRST": "Michael",
"LAST": "Jones"

},
...

],

16. JSON 16-15 / 23

https://jsonlint.com/


Example (8)

This is a direct translation of the relational database
structure:

The database is an object consisting of relations.

The relations are represented as arrays of tuples.

The tuples are objects containing the data values.
With the columns as names of the properties/attributes.

Of course, as in XML, other nestings are possible:

One could nest an array with the results for a particular
student as a property of the student object.

One could nest an array with the results for a particular
exercise as a property of the exercise object.

16. JSON 16-16 / 23



JSON Syntax (1)

JSON has only six data types:

Strings (in double quotes): "abc"

Numbers (floating point numbers): -1.23e4

Boolean values: true and false

The null value: null

Objects (containing name/value-pairs): {"a":1, "b":2}

Arrays: [1, 2, 3]

A JSON value is a value of one of these six data types.
Often, a JSON document contains an object on the top level, but this is
not required, any JSON value (with optional whitespace before and after it)
can be a JSON document. The old RFC 4627 required an object or array
on top level, and there are security concerns with arrays (leaving only objects).

16. JSON 16-17 / 23

https://www.rfc-editor.org/rfc/rfc4627
https://haacked.com/archive/2009/06/25/json-hijacking.aspx/


JSON Syntax (2)

Strings are enclosed in double quotes: "...".
Double quotes inside the string must be escaped as e.g. in Java: \".
Control characters are excluded. Thus strings must end on the same line.

The following escape sequences are understood:
\": Quotation mark.
\\: Backslash (“reverse solidus”).
\/: Slash (“solidus”).
\n: Linefeed.
\r: Carriage return.
\t: Tabulator (“horizontal tab”).
\b: Backspace.
\f: Formfeed.
\uh1h2h3h4: UTF-16 unicode value (four hexadecimal digits).

16. JSON 16-18 / 23



JSON Syntax (3)

The escape sequence \/ can help to mask HTML end tags
like </script> in string constants.

The browser might assume that a quote was missing. C and Java have no \/.

White space (space, tab, linefeed, carriage return) is
allowed between each two tokens.

The names in name/value pairs (inside objects {...})
must be written as string constants.

I.e. the "..." are required. (In JavaScript, the quotes are not required, but
only if the name is no reserved word. By requiring the quotes, the JSON
specification does not need to include a list of reserved words or explain
what are valid letters in Unicode to be used in identifiers. The name can
be any string, including characters that are not letters or digits.)

16. JSON 16-19 / 23



JSON Syntax (4)

Empty Arrays and empty objects are possible.

A comma after the last array element is forbidden.
C and Java would allow this, because an automatic generation does not
need to treat the last element specially, and the later addition of further
elements is simplified.

An arbitrary nesting is possible, e.g. one can also nest
objects in objects.

The values in name/value-pairs can be of any of the six data types. The
same is true for array elements.

One syntax check for JSON documents is:
[https://jsonlint.com/]

16. JSON 16-20 / 23

https://jsonlint.com/


Contents

1 Introduction

2 JSON Syntax

3 XQuery 3.1 Support for JSON

16. JSON 16-21 / 23



XQuery 3.1 Support for JSON

16. JSON 16-22 / 23



References

[https://www.json.org/json-en.html]
[https://www.json.org/json-de.html]

ecma Standard ECMA-404: The JSON Data Interchange Syntax.
[https://www.ecma-international.org/wp-content/uploads/

ECMA-404 2nd edition december 2017.pdf

SELFHTML: JSON
[https://wiki.selfhtml.org/wiki/JSON]

[https://www.w3schools.com/js/js json intro.asp]

[https://en.wikipedia.org/wiki/JSON]
[https://de.wikipedia.org/wiki/JavaScript Object Notation]

Douglas Crockford: The JSON Saga.
[https://www.youtube.com/watch?v=-C-JoyNuQJs]

Seva Safris: A Deep Look at JSON vs. XML, Part 1: The History of Each Standard.
[https://www.toptal.com/web/json-vs-xml-part-1]
Part 2: The Strengths and Weaknesses of Both.
[https://www.toptal.com/web/json-vs-xml-part-2]

You’ve been Haacked: JSON Hijacking.
[https://haacked.com/archive/2009/06/25/json-hijacking.aspx/]

16. JSON 16-23 / 23

https://www.json.org/json-en.html
https://www.json.org/json-de.html
https://www.ecma-international.org/wp-content/uploads/ECMA-404_2nd_edition_december_2017.pdf
https://www.ecma-international.org/wp-content/uploads/ECMA-404_2nd_edition_december_2017.pdf
https://wiki.selfhtml.org/wiki/JSON
https://www.w3schools.com/js/js_json_intro.asp
https://en.wikipedia.org/wiki/JSON
https://de.wikipedia.org/wiki/JavaScript_Object_Notation
https://www.youtube.com/watch?v=-C-JoyNuQJs
https://www.toptal.com/web/json-vs-xml-part-1
https://www.toptal.com/web/json-vs-xml-part-2
https://haacked.com/archive/2009/06/25/json-hijacking.aspx/

	Introduction
	Introduction

	JSON Syntax
	JSON Syntax

	XQuery 3.1 Support for JSON
	XQuery 3.1 Support for JSON
	References


