
XML and Databases

Chapter 13: XQuery I

Prof. Dr. Stefan Brass

Martin-Luther-Universität Halle-Wittenberg

Winter 2019/20

http://www.informatik.uni-halle.de/˜brass/xml19/

13. XQuery I 13-1 / 83

http://www.informatik.uni-halle.de/~brass/xml19/

Objectives

After completing this chapter, you should be able to:

read and understand queries in XQuery.

write queries to XML data in XQuery.

enumerate and explain the clauses of FLWOR expressions.

explain the use of direct and computed constructors.

compare XQuery with SQL.

13. XQuery I 13-2 / 83

Contents

1 Introduction

2 Basic Syntax, Constructors

3 FLOWR-Expressions

13. XQuery I 13-3 / 83

Introduction (1)

One can view XML as a data model, and every data
model should have a query language.

XPath permits to

select nodes in a given XML document, and to

compute values from the data in a document,
but it does not permit to generate new nodes.

An XML query language should be able to produce new
XML documents as result.

I.e. to transform given XML documents into documents that are differently
structured, contain only a subset of the data, or additional derived data.

13. XQuery I 13-4 / 83

Introduction (2)

Joins are very limited in XPath (semijoins) or can be
formulated only procedurally (with for-loops).

Note that many powerful constructs such as for-loops got into XPath only
in Version 2.0 during the development of XQuery. Although today, XPath
is sufficient for quite a lot of queries, the original XPath was much more
restricted.

One cannot sort in XPath.
Sometimes, although the result set can be determined by a simple Path
expression, one must use the more advanced FLWOR-expression (an XQuery
construct, see below) only for the purpose of sorting.

Of course, a good XML query language must be at least
as powerful as SQL.

13. XQuery I 13-5 / 83

Introduction (3)

The XML format is a common interface to a lot of
different data sources (documents, relational databases,
object repositories).

The data might be physically stored as XML, or might be only viable as
XML via a middleware.

An XML query language permits to combine data from
different sources.

This integrating function of an XML query language is natural and
important. While also SQL can be used in distributed databases, and there
exist relational interfaces to non-relational data, this is much more
vendor-dependent (and typically expensive).

13. XQuery I 13-6 / 83

History (1)

In December 1998, the W3C organized a workshop about
query languages for XML.

[http://www.w3.org/TandS/QL/QL98/].

There was a lot of research about query languages for
semi-structured data models and XML in particular
(e.g., Lorel, XQL, XML-QL, YATL, Quilt).

See, e.g.: XML Query Langauges, Experiences and Exemplars.
[http://www.w3.org/1999/09/ql/docs/xquery.html]

The XML Query Working Group started in 1999 the work
on a W3C standard XML query language.

[http://www.w3.org/XML/Query]

13. XQuery I 13-7 / 83

http://www.w3.org/TandS/QL/QL98/
http://www.w3.org/1999/09/ql/docs/xquery.html
http://www.w3.org/XML/Query

History (2)

XPath 1.0 and XSLT 1.0 became a W3C Recommendation
in November 1999.

While it seemed natural that XPath-like expressions
should be used also in XQuery, the XQuery committee
had quite different ideas for the exact details of syntax
and semantics.

XPath 1.0 came from the document processing community, not from the
database community. But having two similar languages that differed in
important details was obviously not good. This lead to difficult
negotiations and ultimately the development of XPath 2.0.

13. XQuery I 13-8 / 83

History (3)

XML Schema became a W3C recommendation in May 2001.

Steps of the XQuery standardization:

First Working Draft: February 15, 2001.

Last Call Working Draft: November 12, 2003
The last call period ended on February 15, 2004. Several updates
were published afterwards.

W3C Candidate Recommendation: Nov. 3, 2005
Update: June 8, 2006

W3C Proposed Recommendation: Nov. 21, 2006

W3C Recommendation: January 23, 2007

13. XQuery I 13-9 / 83

History (4)

The following eight documents were developed together:

XQuery 1.0

XQueryX 1.0: XML Syntax for XQuery 1.0

XPath 2.0

XSLT 2.0

XQuery 1.0/XPath 2.0 Data Model

XQuery 1.0/XPath 2.0 Formal Semantics

XQuery 1.0/XPath 2.0 Functions and Operators

XSLT 2.0/XQuery 1.0 Serialization

13. XQuery I 13-10 / 83

History (5)

Related documents (Working Group Notes):

XML Query Use Cases
[http://www.w3.org/TR/xquery-use-cases/]

XML Query (XQuery) Requirements
[http://www.w3.org/TR/xquery-requirements/]

Extensions (Candidate Rec. May/Aug. 2008):

XQuery and XPath Full Text 1.0
[http://www.w3.org/TR/xpath-full-text-10/]

XQuery Update Facility 1.0
[http://www.w3.org/TR/xquery-update-10/]

13. XQuery I 13-11 / 83

http://www.w3.org/TR/xquery-use-cases/
http://www.w3.org/TR/xquery-requirements/
http://www.w3.org/TR/xpath-full-text-10/
http://www.w3.org/TR/xquery-update-10/

New Versions of XQuery

XQuery 1.0 (Second Edition): December 14, 2010.
[https://www.w3.org/TR/2010/REC-xquery-20101214/]

XQuery 3.0 (renamed from XQuery 1.1 to align with the
family of “3.0” specifications): April 8, 2014.

[https://www.w3.org/TR/2014/REC-xquery-30-20140408/]
This adds many new features, e.g. a GROUP BY clause, window clauses,
try/catch, switch.

XQuery 3.1: March 21, 2017.
[https://www.w3.org/TR/xquery-31/]
Most important new features: Maps and Arrays. This was added to
support also JSON, not only XML.
See also: XPath and XQuery Functions and Operators 3.1.
[https://www.w3.org/TR/xpath-functions-31/]

13. XQuery I 13-12 / 83

https://www.w3.org/TR/2010/REC-xquery-20101214/
https://www.w3.org/TR/2014/REC-xquery-30-20140408/
https://www.w3.org/TR/xquery-31/
https://www.w3.org/TR/xpath-functions-31/

XQuery vs. XSLT

The two languages have overlapping, but not identical
goals.

XSLT was developed by the document processing
community. Main use: rendering XML documents.

Although it can also be used for selecting and restructuring data.

XQuery is a database language.

Databases store very many / very large documents:
indexes and query optimization are important (the data
does not fit completely into main memory).

The data is also more regularly structured (in most cases).

13. XQuery I 13-13 / 83

XQuery Implementations (1)

IPSI XQ
Written in Java. [http://sourceforge.net/projects/ipsi-xq]
[http://www.ipsi.fraunhofer.de/oasys/projects/ipsi-xq/]

AltovaXML
The engine used in XMLSpy is free (contains validator: DTD/Schema,
XSLT 1.0/2.0, XQuery). [http://www.altova.com/altovaxml.html]

Galax
Open source, from some authors/editors of the XQuery Specification.
[http://www.galaxquery.org/]

eXist (open source native XML database)
[http://exist.sourceforge.net/]
Online demo: [http://demo.exist-db.org/sandbox/sandbox.xql]

13. XQuery I 13-14 / 83

http://sourceforge.net/projects/ipsi-xq
http://www.ipsi.fraunhofer.de/oasys/projects/ipsi-xq/
http://www.altova.com/altovaxml.html
http://www.galaxquery.org/
http://exist.sourceforge.net/
http://demo.exist-db.org/sandbox/sandbox.xql

XQuery Implementations (2)

X-HIVE
Commercial XML-DBMS, Online demo evaluator.
[http://support.x-hive.com/xquery/] (select first any demo, then
“your own”). [http://support.x-hive.com/xquery/basicservlet?

de-
mo=demo0&xquery=xquery&todo=showframes]

Saxon (from Michael Kay)
M. Kay is editor of the XSLT 2.0 Spec. Basic version (without static type
checking and XQuery→Java compiler) is open source. Supports XSLT 2.0,
XPath 2.0, XQuery 1.0. [http://saxon.sourceforge.net/]

Qizx/open (open source Java implementation)
In Java. Limited version is free. [http://www.axyana.com/qizxopen/]
Online demonstration:
[http://www.xmlmind.com:8080/xqdemo/xquery.html]

13. XQuery I 13-15 / 83

http://support.x-hive.com/xquery/
http://support.x-hive.com/xquery/basicservlet?demo=demo0&xquery=xquery&todo=showframes
http://support.x-hive.com/xquery/basicservlet?demo=demo0&xquery=xquery&todo=showframes
http://support.x-hive.com/xquery/basicservlet?demo=demo0&xquery=xquery&todo=showframes
http://saxon.sourceforge.net/
http://www.axyana.com/qizxopen/
http://www.xmlmind.com:8080/xqdemo/xquery.html

Example Document (1)

STUDENTS
SID FIRST LAST EMAIL
101 Ann Smith · · ·
102 David Jones NULL
103 Paul Miller · · ·
104 Maria Brown · · ·

EXERCISES
CAT ENO TOPIC MAXPT
H 1 ER 10
H 2 SQL 10
M 1 SQL 14

RESULTS
SID CAT ENO POINTS
101 H 1 10
101 H 2 8
101 M 1 12
102 H 1 9
102 H 2 9
102 M 1 10
103 H 1 5
103 M 1 7

13. XQuery I 13-16 / 83

Example Document (2)

Translation to XML with data values in elements:

<?xml version=’1.0’ encoding=’ISO-8859-1’?>
<GRADES-DB>

<STUDENTS>
<STUDENT>

<SID>101</SID>
<FIRST>Ann</FIRST>
<LAST>Smith</LAST>

</STUDENT>
...

</STUDENTS>
...

</GRADES-DB>

13. XQuery I 13-17 / 83

First Example (1)

Print all results for Homework 1:

for $s in /GRADES-DB/STUDENTS/STUDENT,
$r in /GRADES-DB/RESULTS/RESULT

where $s/SID = $r/SID and
$r/CAT = ’H’ and
$r/ENO = 1

return <h1>{ $s/LAST, $r/POINTS }</h1>

Result:

<h1><LAST>Smith</LAST><POINTS>10</POINTS></h1>
<h1><LAST>Jones</LAST><POINTS>9</POINTS></h1>
<h1><LAST>Miller</LAST><POINTS>5</POINTS></h1>

13. XQuery I 13-18 / 83

First Example (2)

A characteristic feature of XQuery are
“FLWOR-expressions” (pronounced “Flower-expressions”).

This name is derived from the keywords for, let, where,
order by, return.

They are written “FLWOR-expressions”, and pronounced “Flower”,
although two characters are exchanged: where comes before order by.

The for-clause corresponds to FROM in SQL: It generates
a sequence of variable bindings.

The return-clause corresponds to SELECT in SQL: It
produces a piece of output for each variable binding that
satisfies the where-clause.

13. XQuery I 13-19 / 83

First Example (3)

Note that the order of the clauses in XQuery fits better
with the evaluation sequence: Also in SQL, FROM is
conceptually evaluated first, and SELECT last.

In XQuery, all keywords are written in lower case.
In contrast, SQL is case-insensitive. However, since case is important in
XML, the choice for XQuery seems natural. As XPath, XQuery has no
reserved words. It is possible to name an element for.

XPath 2.0 is a subset of XQuery, i.e. FLWOR-expressions
are not the only type of queries.

The for-loop in XPath is a simplified version (special case) of the
FLWOR-expression in XQuery.

13. XQuery I 13-20 / 83

First Example (4)

Expressions can be arbitrarily nested, also inside explicitly
given XML (direct element constructors).

< starts literal XML mode, and {...} marks sections that
must be evaluated:

<result>{ for ... where ... return ... }</result>

Result:

<result>
<h1><LAST>Smith</LAST><POINTS>10</POINTS></h1>
<h1><LAST>Jones</LAST><POINTS>9</POINTS></h1>
<h1><LAST>Miller</LAST><POINTS>5</POINTS></h1>

</result>

13. XQuery I 13-21 / 83

First Example (5)

Of course, the value of an XQuery expression is an XDM
sequence.

How this is printed (“serialized”) depends on the
implementation (most have options to control this).

E.g., it could be written into one long line, or indented
with one element per line:

<result>
<h1><LAST>Smith</LAST>

<POINTS>10</POINTS>
</h1>...

</result>

13. XQuery I 13-22 / 83

Contents

1 Introduction

2 Basic Syntax, Constructors

3 FLOWR-Expressions

13. XQuery I 13-23 / 83

Constructors: Overview

An important difference between XPath and XQuery is
that XQuery can generate new nodes, XPath can only
select nodes from given documents.

Creating new nodes is done by constructors.

There are two types of constructors in XQuery:

Direct constructors, which look like XML text.
There e.g. the node name is explicitly given.

Computed constructors, which have a new syntax, and
permit to compute e.g. the node name by an expression.

13. XQuery I 13-24 / 83

Direct Constructors (1)

A direct constructor looks like XML text that is directly
copied to the output, but one can embed XQuery
expressions to be evaluated in {...}.

For example, the XQuery expression
1+1={1+1}

is evaluated to 1+1=2.

Direct constructors are parsed by XQuery, they are not
copied character by character to the output.

The internal XDM representation of the output is constructed, thus
e.g. information about extra whitespace/line breaks inside tags is lost.

13. XQuery I 13-25 / 83

Direct Constructors (2)

If one needs curly braces “{” or “}” in the data, one must
double them: “{{” or “}}”.

Alternatively, one can use character references: { and }.

Because the direct constructor only mimics XML, but is
defined in the XQuery grammar, there is a slight
difference: When one encloses an attribute value inside ",
one can use "" to denote the character " inside the string.

Correspondingly, when one encloses it in ’, the apostrophe is written ’’.
This is the XQuery/XPath convention, not the XML convention.
There one must use an entity reference or a character reference.

13. XQuery I 13-26 / 83

Direct Constructors (3)

Furthermore, entity references and character references
are expanded, not copied to the output:

Only the predefined entities (<, >, &,
", ') can be used in entity references.

It might be that the output serialization uses these entity references
again if the character itself would be invalid (e.g. " inside a
"-delimited attribute value). But if it is not necessary to use the
entity reference, it will be printed in expanded form.

In the same way, character references are expanded
(e.g., a is replaced by “a”).

Again, the output must of course be valid XML, which might
require some form of escaping (entity / character references).

13. XQuery I 13-27 / 83

Direct Constructors (4)

XQuery comments (: ... :) cannot be used in the
direct element constructor, neither in the tags nor in the
content (except of course inside {...}).

In the tags they are a syntax error, in the content they are considered as
text data. Formally, comments can appear everywhere where “ignorable
whitespace” can appear. A few productions in the XQuery grammar are
marked with /* ws:explicit */. Inside these productions, the
nonterminal S (known form the XML grammar) is used to mark explicitly
where whitespace is allowed. This nonterminal does not match the XQuery
comment. The productions for the direct element constructor have this
explicit whitespace. In this way they are made more compatible with the
real XML grammar, although I personally do not see the advantage of
forbidding comments inside tags.

13. XQuery I 13-28 / 83

Direct Constructors (5)

Allowed occurrences of embedded XQuery expressions
({...}) inside direct element constructors:

The element name (element type) and the attribute
names must be given explicitly (a QName), and cannot
be computed with {...}.

If one wants to compute these, one must use the computed element
constructor (see below).

Embedded XQuery expressions ({...}) can be used only
inside the attribute value (inside "..." or ’...’) and in
the element content.

13. XQuery I 13-29 / 83

Direct Constructors (6)

If {...} is used in an attribute value, the constructed
attribute value is computed as follows:

The expressions inside {...} are evaluated and
atomization is applied to the result.

Thus, one gets a sequence of atomic values for each {...}.
These values are converted (with a cast) to strings, and
concatenated with a single space between each pair.

At the beginning and the end of the sequence, no space is inserted,
thus the empty sequence gives the empty string.

13. XQuery I 13-30 / 83

Direct Constructors (7)

Computation of attribute value, continued:

Then the explicitly given characters and the strings
resulting from each {...} are concatenated without
adding spaces.

Example:

is evaluated to .

If the attribute name is xml:id, the attribute value is
treated specially (as an ID).

13. XQuery I 13-31 / 83

Direct Constructors (8)

The content of a direct element constructor can contain
(between start tag and end tag):

Literal text (without the characters <, {, }, &),

entity references for the five predefined entities,

character references,

CDATA sections: <![CDATA[...]]>,

enclosed expressions: {...},

other direct constructors (for element, comment, and
processing instruction nodes).

13. XQuery I 13-32 / 83

Direct Constructors (9)

Even variable references are not interpreted inside the
content (or attribute value) of a direct element
constructor: The “$”-sign is treated as literal text.

For example
for $i in (1, 2, 3) return <a>$i

gives
<a>$i
<a>$i
<a>$i

Inside the constructor, one must write {$i} to get the
value of the variable $i.

13. XQuery I 13-33 / 83

Direct Constructors (10)

A sequence of whitespace characters (e.g. spaces, line
breaks) within the content of a direct element constructor
is considered “boundary whitespace” if it is delimited on
both sides by

the start or end of the content (i.e. the start tag or end
tag of the direct element constructor), or

and enclosed direct constructor (e.g. start and end tags
of direct element constructors), or

an enclosed expression {...}.
Space characters generated by character references, CDATA
sections, or enclosed expressions do not count as whitespace here.

13. XQuery I 13-34 / 83

Direct Constructors (11)

Boundary whitespace is

eliminated if the boundary whitespace policy in the
static context is “strip”,

and it is copied to content of the construced element
node if the boundary whitespace policy is “preserve”.

The boundary whitespace policy can be set with a
declaration in the prolog:

declare boundary-space preserve;

The default is implementation-defined.

13. XQuery I 13-35 / 83

Direct Constructors (12)

Exercise: How does this XQuery expression look like
without the boundary whitespace?
<a>

 xy
<c> {"xy"} </c>
<d> <!-- This is a space --> </d>
(: Be careful here! :)

The example shows also a direct comment constructor.
One cannot use enclosed expressions {...} in a direct comment
constructor. One must write the comment explicitly. But there is of course
also a computed comment constructor (see below).

13. XQuery I 13-36 / 83

Direct Constructors (13)

The content of a direct element constructor is evaluated
to a sequence of nodes as follows:

Each consecutive sequence of literal characters
(including characters from entity/character references
and CDATA sections) evaluates to a single text node.

Each nested direct constructor is evaluated, resulting in
a new node.

The parent property of this new node is set to the element node
that is currently being constructed. The standard also explains how
the base-uri-property is set (see Section 3.7.1.3).

13. XQuery I 13-37 / 83

Direct Constructors (14)

Evaluation of content of a direct element constructor,
continued:

Each enclosed expression {...} is evaluated to a
sequence of items.

For each subsequence of adjacent atomic values, a single
text node is constructed, containing the values converted
to strings with a single space inserted between each pair.

For each node in the sequence returned by {...}, a new
copy is made of this node and the entire subtree below
it. (see details below).

13. XQuery I 13-38 / 83

Direct Constructors (15)

Evaluation of content of direct element constructor, cont.:

A document node is replaced by its children.

Now there might be again adjacent text nodes, which
are merged into a single text node.

It is permitted that the resulting sequence contains
attribute nodes, but only at the very beginning.

These become attributes of the constructed element nodes
(in addition to the attributes explicitly specified in the
direct element constructor), the remaining nodes become
its children.

13. XQuery I 13-39 / 83

Direct Constructors (16)

The construction and copying of nodes is influenced by
the construction mode, which can be:

strip: a new document is constructed without the
information generated only by the validation.

So the new node as well as the copied element nodes receive the
type xs:untyped, and copied attribute nodes are treated as
xs:untypedAtomic. Properties nilled, is-id, and is-idrefs are
all set to false (except for attribute nodes called xml:id). All typed
values stored in the original nodes are converted to strings.

preserve: information from schema-validation of the
original document is preserved.

The new node gets the type xs:anyType, but all copied nodes retain
their original type. Properties like nilled are copied.

13. XQuery I 13-40 / 83

Direct Constructors (17)

Another parameter is the copy-namespaces mode.
It contains two components:

preserve means that the in-scope namespaces of the
original node are copied to its copy.

no-preserve: only namespaces used in the element name or its
attributes (i.e. the necessary namespaces) are copied. But if then
the typed value of the element or one of its attributes is of type
QName or NOTATION (“namespace sensitive”), an error occurs.

inherit means that in-scope namespaces from the
constructed node are inherited to its contents
(the copied nodes).

Possibly overridden by namespaces copied from original node.

13. XQuery I 13-41 / 83

Direct Constructors (18)

The following example shows that nodes are indeed copied,
getting a new identity:

let $x := <a/>
let $y := {$x}
let $z := $y/a
return if($x is $z) then "yes" else "no"

let is a clause of the FLWOR-expression that binds a
variable to the sequence on the right hand side.

The result is "no": Although $z is <a/> constructed from
$x, it has a new identity.

13. XQuery I 13-42 / 83

Computed Constructors (1)

A computed constructor starts with a keyword that
indicates the type of node to be constructed:
element, attribute, text,
processing-instruction, comment, document.

For node types with a name (element, attribute, PI),
a name specification follows.
This can be an explicitly given QName or an enclosed
expression {...} (“name expression of the constructor”).

Next, the content is defined by an expression in {...}
(“content expression”).

13. XQuery I 13-43 / 83

Computed Constructors (2)

E.g. the XQuery expression

element STUDENT {
element SID { 101 }
element FIRST { "Ann" }
element LAST { "Smith" }

}

gives
<STUDENT>

<SID>101</SID>
<FIRST>Ann</FIRST>
<LAST>Smith</LAST>

</STUDENT>
13. XQuery I 13-44 / 83

Computed Constructors (3)

One can also compute the element (type) name:
element { concat("S", "ID") } { 100+1 }

Atomization is applied to the name expression.
afterwards it must be of type xs:QName, xs:string, or xs:untypedAtomic.

Otherwise, the processing is done as for direct
constructors.

Especially, if the result of evaluating the content expression of an element
constructor starts with attribute nodes, these are assigned to the
constructed element node.

If the content expression is missing, the content is empty.
One must still write {} in this case.

13. XQuery I 13-45 / 83

Computed Constructors (4)

For attribute, text, comment, and PI constructors,
atomization is applied to the result of evaluating the
content expression.

The resulting atomic values are cast into strings and
concatenated with a single space inserted between each
pair (empty sequence → empty string).

For constructed attribute nodes the type annotation is
xs:untypedAtomic.

Constructed text nodes are automatically deleted when
their text is the empty string.

13. XQuery I 13-46 / 83

Contents

1 Introduction

2 Basic Syntax, Constructors

3 FLOWR-Expressions

13. XQuery I 13-47 / 83

FLWOR-Expressions (1)

An important construct of XQuery are
FLWOR-expressions (pronounced “Flower-expressions”):

for $〈var〉 in 〈ExprSingle〉, . . .
let $〈var〉 := 〈ExprSingle〉, . . .
where 〈ExprSingle〉
[stable] order by 〈OrderSpecList〉
return 〈ExprSingle〉

One can use for and let multiple times in arbitrary order.
At least one of the two is required.

ExprSingle is an XQuery expression without the “,” outside (...).

where and order by are optional.

13. XQuery I 13-48 / 83

FLWOR-Expressions (2)

The expressions in the for and let clauses are evaluted
to produce a sequence.

In case of the for clause, this is called the “binding sequence” for the
variable.

The for-clause iterates over the elements of sequence,
e.g.

for $i in (1, 2, 3) return <a>{$i}
gives

<a>1
<a>2
<a>3

13. XQuery I 13-49 / 83

FLWOR-Expressions (3)

In contrast, the let-clause assigns the entire sequence to
the variable, e.g.

let $i := (1, 2, 3) return <a>{$i}
gives <a>1 2 3

Here the sequence of atomic values is mapped to a single text node as
explained above for the constructors. But e.g.
let $i := (<a/>, , <c/>) return <x>{$i}</x>

gives <x><a/><c/></x>.
In contrast, for gives <x><a/></x><x></x><x><c/></x>.

13. XQuery I 13-50 / 83

FLWOR-Expressions (4)

Semantically, it makes no difference whether several
variables are bound in a single for/let-clause, or
whether the keyword is repeated each time.

This is of course the same rule as for the for-expressions in XPath.

For instance,

for $i in (’a’, ’b’), $j in (1, 2)
return element {$i} {$j}

is equivalent to:

for $i in (’a’, ’b’)
for $j in (1, 2)
return element {$i} { $j }

13. XQuery I 13-51 / 83

FLWOR-Expressions (5)

Both of the above queries produce the following result
(if ordering mode is ordered, see below):

<a>1
<a>2
1
2

This fits well with the nested for-loops: For each value of
the variable $i in the outer for loop (each element name),
the inner for loop (over $j) (the element content) is
repeated once.

13. XQuery I 13-52 / 83

FLWOR-Expressions (6)

Thus, the sequence in which variables are declared in the
for-clause is important.

In contrast, in SQL the sequence of variable declarations under FROM is
semantically not important.

If one exchanges the two variable declarations, i.e.

for $j in (1, 2), $i in (’a’, ’b’)
return element {$i} {$j}

the output is produced in a different order:

<a>1
1
<a>2
2

13. XQuery I 13-53 / 83

FLWOR-Expressions (7)

Together, the for and let clauses produce a sequence of
variable assignments (mapping each variable to a value,
i.e. an XDM sequence).

The XQuery standard uses the word “tuple” instead of
“variable assignment”.

I consider that unfortunate, because it makes the comparison with SQL
more difficult (where each variable is bound to a “tuple”). The standard
uses the word “variable binding” for the association between a single
variable and its value. A “tuple” consists of “variable bindings”. Of course,
it is formally true, that a tuple is the generalization of pair, triple, and so
on, and here several “variable bindings” are combined (a tuple can also be
seen as a mapping from names to values, which fits here, too, but usually
the names are column names).

13. XQuery I 13-54 / 83

FLWOR-Expressions (8)

The sequence of variable assignments generated by
for/let is called “tuple stream” in the standard.

There is a parameter called “ordering mode”, which can
be “ordered” or “unordered”.

This parameter is explained in detail on Slide 69 and following.

If the ordering mode is ordered, XQuery guarantees that
the tuple stream is in the sequence that corresponds to
the nested for-loops (see above).

Then the document order of the original document is
retained in the output of the query.

13. XQuery I 13-55 / 83

FLWOR-Expressions (9)

Next, the where-clause acts as a filter on the “tuple stream”
(sequence of variable assignments).

For each variable assignment, the expression under where
is evaluated, and its effective boolean value is determined.

If it is false, the variable assignment is deleted from the
sequence.

I.e. the remaining sequence of variable assignments contains only those
variable assignments for which the where-condition is true. The variable
assignments remain in the same relative order in which they were
generated by the for and let-clauses.

13. XQuery I 13-56 / 83

FLWOR-Expressions (10)

Because the effective boolean value is automatically
determined, one can easily check the existence of a node:

for $s in //STUDENT
where //RESULT[SID=$s/SID and CAT=’H’]
return $s/LAST

(students who submitted at least one homework).
Remember that the effective boolean value of a sequence that starts with a
node is true, whereas the effective boolean value of the empty sequence is
false. Other possible cases are singleton sequences of boolean type, of
string type including anyURI and untypedAtomic (only the empty string is
considered false), and of numeric type (only NaN and 0 are treated as
false). In all other cases, a type error occurs.

13. XQuery I 13-57 / 83

FLWOR-Expressions (11)

The where-clause is optional. As in SQL, it defaults
to “true” (no variable assignments are deleted).

If an “order by” clause is specified, the remaining
sequence of variable assignments is then sorted.

The order by-clause is explained on Slide 75 and following.

The last step is the return-clause (required): For each
variable assignment, the return-expression is evaluated,
and the resulting item sequences are concatenated in the
order given by the current sequence of variable assignments.

13. XQuery I 13-58 / 83

FLWOR-Expressions (12)

The length of the result sequence can differ from the
number of variable assignments considered, because the
return-expression can evaluate to a sequence of arbitrary
length (0, 1, or more).

In the following query, there is one variable assignment
per SQL exercise (2), but the output sequence contains
one entry per solution (5 = 2 + 3):

for $e in //EXERCISE[TOPIC=’SQL’]
return //RESULT[CAT=$e/CAT and ENO=$e/ENO]

13. XQuery I 13-59 / 83

FLWOR-Expressions (13)

All subexpressions of the FLWOR-expression are
“ExprSingle”, thus the operator “,” for sequence
concatenation can be used only inside (...).

The entire FLWOR-expression has a higher priority than
the comma operator, thus

for $i in (1, 2, 3)
return <a> {$i} ,

is not a syntax error, but returns
<a>1
<a>2
<a>3

13. XQuery I 13-60 / 83

FLWOR-Expressions (14)

If one uses constructors under return, all nodes are new
(entire subtrees are copied).

If one uses only standard XPath-expressions (e.g. variable
names), no copying is done.

This also necessary for the compatibility with XPath, which has simple
for-loops and never constructs new nodes (only new sequences).

For example, the following returns "yes":

let $x := (<a/>)
let $y := (for $x1 in $x return $x1)
let $z := (for $x2 in $x return $x2)
return if($y is $z) then "yes" else "no"

13. XQuery I 13-61 / 83

for-Clause: Details (1)

The scope of a variable declared with for or let extends
from the point just after the binding expression (which
defines the values for the variable) to the end of the
FLWOR-expression.

Thus, the variable can already be used in binding expressions
for other variables declared later in the same for-clause:

for $s in //STUDENT, $r in //RESULT[SID=$s/SID]
return element solved {$s/LAST, $r/CAT, $r/ENO}

13. XQuery I 13-62 / 83

for-Clause: Details (2)

This rule for the scope of variables fits with the equivalence
with nested for-loops.

It differs from SQL: There the variable declarations in the
FROM-clause are conceptually done in parallel.

Thus, one cannot use a tuple variable in a subquery later in the same
FROM-clause. This gives the query optimizer more freedom to determine the
join order.

It is legal (but bad style) to declare several variables with
the same name in a FLWOR-expression:
Each new declaration shadows the previously declared
variable for the rest of the FLWOR-expression.

13. XQuery I 13-63 / 83

for-Clause: Details (3)

One can define a “positional variable” associated with a
variable declared in a for-clause, e.g.

for $s at $i in //STUDENT
return element STUD {

attribute ID {$i},
$s/concat(LAST, ", ", FIRST)

}

$i contains the position of the current value for $s in the
binding sequence, i.e. the value of //STUDENT.

Positions are counted from 1. The result of the query is
shown on the next slide.

13. XQuery I 13-64 / 83

for-Clause: Details (4)

In the example, the positional variable is used to generate
new unique IDs for the students:

<STUD ID="1">Smith, Ann</STUD>
<STUD ID="2">Jones, David</STUD>
<STUD ID="3">Miller, Paul</STUD>
<STUD ID="4">Brown, Maria</STUD>

Other applications of positional variables include:

First-n queries (see below).

Sampling: E.g. take only every 10-th student:
$i mod 10 = 1

13. XQuery I 13-65 / 83

for-Clause: Details (5)

It is also possible to declare a type for the variable:
for $p as xs:decimal

in //RESULT[CAT=’H’ and ENO=1]/POINTS
return $p div 10

As I understand the standard, this is a type assertion
(like “treat as”), so it should give an error here
(an element node is not a decimal value).

Type assertions might be necessary to permit static type checking.

AltovaXML complains only if it cannot convert the value
to the required type (treats it as type cast).

Positional variables always have type xs:integer.

13. XQuery I 13-66 / 83

for-Clause: Details (6)

The for-clause consists of a comma-separated list of one
or more variable declarations, each consisting of:

The name of the variable (starting with “$”),

optionally, a type declaration, consisting of the keyword
“as” and a sequence type,

In the for-clause, the occurrence indicators ?, +, * are not relevant
because the variable is bound to single sequence elements.

optionally, a positional variable declaration, consisting of
the keyword “at” and a variable name,

the keyword “in”, and an “ExprSingle”.

13. XQuery I 13-67 / 83

let-Clause: Details

The let-clause consists of a comma-separated list of one
or more variable declarations with a slightly different
syntax than under for (to emphasize that the entire
sequence is bound to the variable):

Name of the variable (starting with “$”),

optionally, a type declaration, consisting of the keyword
“as” and a sequence type,

the symbol “:=”, and an “ExprSingle”.

Of course, positional variables make no sense in the
let-clause (and are therefore not permitted).

13. XQuery I 13-68 / 83

Ordering Mode (1)

The ordering mode has an important influence on the
semantics of XQuery expressions:

If it is ordered, the sequence of variable assignments
constructed by for/let is as above.

I.e. it corresponds to nested loops in the order or variable
declarations, and respects the document order.

If it is unordered, the implementation has more freedom
for query optimization: Especially, the sequence of
variable assignments generated by for and let is in an
implementation-defined order (unless the order by
clause is used).

13. XQuery I 13-69 / 83

Ordering Mode (2)

But the consequences of ordering mode unordered are
even more drastic, because

in XPath expressions, document order does not have to
be respected,

thus selecting specific positions becomes more or less
meaningless (nondeterministic).

E.g. /a/b[1] gives any b-child of a, not necessarily the
first.

But /a/b[3] is non-empty only if there are at least three b-children.

13. XQuery I 13-70 / 83

Ordering Mode (3)

Thus, ordering mode unordered is not only a question of
the output sequence, but can modify also the selected values.

Actually, that is not so astonishing, because the arbitrary nesting of
XQuery expressions means that as soon as one allows a different result
sequence in FLWOR-expressions, one could anyway get an entirely different
result for the entire query, not only a permutation. Everything in XQuery is
a sequence, and the exact order matters in many places.

When one uses the XPath function unordered(...)
only at this single point an arbitrary permutation is
allowed (not everywhere inside as with the ordering
mode). E.g. positions inside remain meaningful.

13. XQuery I 13-71 / 83

Ordering Mode (4)

Whether the nondeterminism is bad, depends on the data
(it might have been better to declare this in the schema
instead of in the query):

If, e.g., the data are a dump from a relational database,
the order of the rows is meaningless.

It only occurs because the data must be written to a file in some
order. The problem is that XML permits to use this order and that
XML makes the impression that the order might mean something.

Then nobody would use positions in the query or other
constructs that depend on the order.

And one does not want to pay a price for getting a specific order if
that order is anyway irrelevant.

13. XQuery I 13-72 / 83

Ordering Mode (5)

The ordering mode is part of the static context and be
set in the prolog, e.g.

declare ordering ordered
and locally inside the query with the expressions

ordered {...}, and
I.e. for evaluating “...”, the ordering mode is set to “ordered”.

unordered {...}.
Note the difference to unordered(...), the XPath function.

The default value is implementation-defined.
This seems unfortunate, because it immediately causes portability
problems: The ordering mode is important for nearly every query.

13. XQuery I 13-73 / 83

Ordering Mode (6)

E.g. suppose that the homework results are stored in the
document in order of submission (i.e. new entries are
always appended at the end).

If one wants to print all student names in the sequence in
which they submitted Homework 1, this can be done as
follows:

ordered {
for $r in //RESULT, $s in //STUDENT
where $r/CAT = ’H’ and $r/ENO = 1

and $r/SID = $s/SID
return $s/LAST

}

13. XQuery I 13-74 / 83

order by Clause (1)

With the order by clause, one can sort the tuple stream
(variable assignments) generated by for/let.

After passing the filter of the where-clause and before the return-clause is
evaluated.

This is done by defining one or more expressions, the
values of which are used for sorting, e.g.

for $s in //STUDENT, $r in //RESULT[SID=$s/SID]
where $r/CAT = ’H’ and $r/ENO = 1
order by $r/POINTS
return $s/LAST

13. XQuery I 13-75 / 83

order by Clause (2)

More specifically, the expression(s) are evaluated for each
variable assignment, and atomization is applied.

After that, each expression must return a sequence of length ≤ 1 (for a
given variable assignment), i.e. a single value or the empty sequence.
Otherwise (longer sequence) a type error occurs.

Values of type untypedAtomic are treated as string.

Then the values of each expression (for all variable
assignments) must be comparable: The comparison is
done with the operator gt of the least common supertype
that has such an operator.

13. XQuery I 13-76 / 83

order by Clause (3)

Suppose that n expressions are used as sort criteria, and
the values for variable assignment A are (x1, . . . , xn), and
for variable assignment B, the values are (y1, . . . , yn).

Then A comes after B in the sort order if there is
i ∈ {1, . . . , n} such that:

neither xj > yj nor yj > xj for j = 1, . . . , i − 1,

xi > yi .

I.e. the result of the first expression has highest priority, the second
expression decides the relative order of two variable assignments when the
values of the first expression are equal/uncomparable, and so on.

13. XQuery I 13-77 / 83

order by Clause (4)

For each expression, one can specify ascending or
descending:

ascending is the default: The least value is listed at the
beginning, the greatest at the end.

descending selects the inverse order: The maximum
value is listed first, and then successively smaller values,
until the minimum value.

The abbreviations asc and desc known from SQL are not
supported in XQuery.

13. XQuery I 13-78 / 83

order by Clause (5)

Another difference to SQL is that XQuery does not require
that the values used for sorting are also printed.

However, modern SQL DBMS do not actually have this requirement.

For each column, one can specify

empty greatest: The empty sequence is listed last in
ascending order (first in descending order).

And NaN comes immediately before the empty sequence in
ascending order (immediately after it in descending order).

empty least: The empty sequence comes first in
ascending order, last in descending order.

13. XQuery I 13-79 / 83

order by Clause (6)

Thus, the order by clause consists of a
comma-separated list of one or more “order specs”,
each of which consists of

an “ExprSingle” (values used for sorting),

optionally, one of the keywords “ascending” or
“descending”,

optionally, one of the phrases “empty greatest” or
“empty least”,

optionally, the keyword “collation” and an URI literal
(this defines the sort order for strings).

13. XQuery I 13-80 / 83

order by Clause (7)

Finally, instead of “order by”, one can also write
“stable order by”.

This means that if the sort criteria give no decision, the
original order of the variable assignments must be kept
(derived from the document order and the
sequence/nesting of for-loops).

Of course, if an order by clause is specified, this takes
precedence over the ordering mode “unordered”.

13. XQuery I 13-81 / 83

order by Clause (8)

Strings are sorted differently from numbers,
e.g. the string "12" is sorted before the string "9".

Already the first character is different and decides the sort order.

If one uses a document without schema, or an XQuery
system without validation, the type of (attribute or
element) values is untypedAtomic.

This is converted to string for comparison.

Thus, “order by $r/POINTS” will not work. One has to
write “order by number($r/POINTS)”.

Alternative: xs:integer(...).

13. XQuery I 13-82 / 83

References

Scott Boag, Don Chamberlin, Mary F. Fernńndez, Daniela Florescu, Jonathan
Robie, Jérôme Siméon (Eds.):
XQuery 1.0: An XML Query Language.
W3C Recommendation 23 January 2007.
[http://www.w3.org/TR/xquery/]

Wolfgang Lehner, Harald Schöning:
XQuery. Grundlagen und fortgeschrittene Methoden.
dpunkt.verlag, 2004, ISBN 3-89864-266-6, 290 Seiten.
[http://www.xquery-buch.de/]

Howard Katz (Ed.), Don Chamberlin, Denise Draper, Mary Fernández, Michael
Kay, Jonathan Robie, Michael Rys, Jérôme Siméon, Jim Tivy, Philip Wadler:
XQuery from the Experts. A Guide to the W3C XML Query Language.
Pearson Education Inc., 2004, ISBN 0-321-18060-7, 484 pages.

Jim Melton, Stephen Buxton:
Querying XML: XQuery, XPath, and SQL/XML in Context.
Morgan Kaufmann/Elsevier, 2006, ISBN 1-55860-711-0, 815 pages.

Rudolf Jansen:
XQuery: Eine praxisorientierte Einführung.
Software & Support Verlag GmbH, 2004, ISBN 3-935042-65-5, 167 Seiten.

13. XQuery I 13-83 / 83

http://www.w3.org/TR/xquery/
http://www.xquery-buch.de/

	Introduction
	Introduction

	Basic Syntax, Constructors
	Basic Syntax, Constructors

	FLOWR-Expressions
	FLOWR-Expressions
	References

