
Lexical Syntax Sequences Comparison Operators Arithmetic Logic for, if Data Types

XML and Databases

Chapter 10: XPath II:
Expressions

Prof. Dr. Stefan Brass

Martin-Luther-Universität Halle-Wittenberg

Winter 2019/20

http://www.informatik.uni-halle.de/˜brass/xml19/

Stefan Brass: XML and Databases 10. XPath II: Expressions 1/79

http://www.informatik.uni-halle.de/~brass/xml19/

Lexical Syntax Sequences Comparison Operators Arithmetic Logic for, if Data Types

Objectives

After completing this chapter, you should be able to:

write XPath expressions for a given application.

explain what is the result of a given XPath expression
with respect to a given XML data file.

explain how comparisons are done, and why XPath has
two sets of comparison operators (e.g. = vs. eq).

define “atomization”, “effective boolean value”.

enumerate some axes and explain abbreviations.

explain features needed for static type checking.

Stefan Brass: XML and Databases 10. XPath II: Expressions 2/79

Lexical Syntax Sequences Comparison Operators Arithmetic Logic for, if Data Types

Inhalt

1 Lexical Syntax

2 Sequences

3 Comparison Operators

4 Arithmetic

5 Logic

6 for, if

7 Data Types

Stefan Brass: XML and Databases 10. XPath II: Expressions 3/79

Lexical Syntax Sequences Comparison Operators Arithmetic Logic for, if Data Types

Lexical Syntax (1)

XPath has no reserved words. Thus, there are no
restrictions for element names.

The context helps to detect special names:

Axes are followed by “::”.

Functions, sequence types, if: followed by “(”.

for, some, and every are followed by “$”.

Operators such as “and” are distinguished from element
names by the preceding symbol (Is a continuation with
an element name possible?).

Some “keywords”, e.g. “cast as”, deliberately consist of two parts.

Stefan Brass: XML and Databases 10. XPath II: Expressions 4/79

Lexical Syntax Sequences Comparison Operators Arithmetic Logic for, if Data Types

Lexical Syntax (2)

Some more ambiguities:

If a name immediately follows /, and is not followed
by ::, it is assumed that it is an element name.

Thus, in / union /*, the word “union” is an element type name. If
one wants the ∪-operator, one must write (/) union /*.

If +, *, ? follow a sequence type, it is assumed that they
are an occurrence indicator (belonging to the type).

E.g. 4 treat as item() + - 5 is implicitly parenthesized as
(4 treat as item()+) - 5, not as
(4 treat as item()) + -5.

Stefan Brass: XML and Databases 10. XPath II: Expressions 5/79

Lexical Syntax Sequences Comparison Operators Arithmetic Logic for, if Data Types

Lexical Syntax (3)

Variable names are marked by prefixing them with “$”,
e.g. “$x”, “$p:x” (a variable name is a QName).

XPath 2.0 allows whitespace between “$” and the QName, 1.0 not.

Note that in contrast to some interpreted languages,
variables are not simply replaced by their value, before the
expression is parsed.

E.g. even if $x has the value “BOOK”, //$x does not
mean //BOOK, but gives a type error.

One has to use //*[local-name(.)=$x].

Stefan Brass: XML and Databases 10. XPath II: Expressions 6/79

Lexical Syntax Sequences Comparison Operators Arithmetic Logic for, if Data Types

Lexical Syntax (4)

Whitespace is possible between each two tokens.

The next token is always the longest sequence of
characters that can comprise a token.

This is the usual rule in programming languages.

E.g. x-1 is only a single XML name (names can contain
hyphens). If one wants “the value of child element x
minus 1” one must use spaces: x - 1.

The space before the “1” is not necessary: an integer literal contains no
sign (but there is a unary “-”). Note that “x+1” is possible without spaces
(XML names cannot contain “+”).

Stefan Brass: XML and Databases 10. XPath II: Expressions 7/79

Lexical Syntax Sequences Comparison Operators Arithmetic Logic for, if Data Types

Lexical Syntax (5)

There are three types of numeric literals:

A sequence of digits , e.g. “123456”, has type
xs:integer.

A sequence of digits containing a single “.”,
e.g. “12.34”, has type xs:decimal.

The “.” can be at the beginning, e.g. “.3”, at the end, e.g. “1.”, or
somewhere between the digits, e.g. “3.14159”.

A number in scientific notation, e.g. “1.2E-7”, or “1e9”
or “.3E+8”, has type xs:double.

In XPath 1.0, all numeric literals had type double.

Stefan Brass: XML and Databases 10. XPath II: Expressions 8/79

Lexical Syntax Sequences Comparison Operators Arithmetic Logic for, if Data Types

Lexical Syntax (6)

A string literal is

a sequence of characters enclosed in ’, or

a sequence of characters enclosed in ".

If the delimiter appears within the sequence, it must be
doubled, e.g. ’Stefan’’s’.

The possibility to include the string delimiter by doubling it is new in
XPath 2.0.

Special characters (other than the delimiters) can be
included in the string by using the escaping mechanism of
the host language, e.g. character or entity references in
XML.

Stefan Brass: XML and Databases 10. XPath II: Expressions 9/79

Lexical Syntax Sequences Comparison Operators Arithmetic Logic for, if Data Types

Lexical Syntax (7)

XPath is used in XSLT as XML attribute values.

Then character and entity references are expanded before
the XPath processor sees the input.

Thus, it does not help to use an entity reference to include the string
delimiter in the string literal. This was probably the reason for using a
different mechanism than XML uses for attribute values: There the
doubling is not supported, one must use an entity/character reference. Of
course, if the delimiter of the XML attribute value that contains the XPath
expression is used inside the XPath expression, it must be written as a
character or entity reference. E.g. select="’"’’’" contains the
XPath expression ’"’’’, which yields the string "’.

Also, whitespace in attribute values is normalized.
XPath sees only a single space. Use character or entity references.

Stefan Brass: XML and Databases 10. XPath II: Expressions 10/79

Lexical Syntax Sequences Comparison Operators Arithmetic Logic for, if Data Types

Lexical Syntax (8)

Constructor functions can be used to denote constant
values of other types, e.g.

xs:date("2007-06-30")

The string must use the lexical syntax defined in XML Schema.

This can also be used for special floating point values,
e.g. positive infinity (result of an overflow):

xs:double("INF")

The boolean values can be written as calls to the built-in
functions true() and false().

Stefan Brass: XML and Databases 10. XPath II: Expressions 11/79

Lexical Syntax Sequences Comparison Operators Arithmetic Logic for, if Data Types

Lexical Syntax (9)

Comments are delimited in XPath with smilies “(:” and “:)”,
e.g.

(: This is a comment :)

Comment delimiters known from other languages did not work in XPath.
E.g. /* and // have already an important meaning in XPath, -- can
appear in XML names. The end of line is removed by attribute value
normalization. Braces {...} are used in XSLT for attribute value
templates, and have an important role in XQuery.

Comments can be nested.
Thus, one can “comment out” a section of code that itself contains a
comment. Note however, that when the lexical scanner is in “comment
mode”, it ignores the beginning of string constants. Thus (: ":)" :)

gives a syntax error, although ":)" in itself is ok.

Stefan Brass: XML and Databases 10. XPath II: Expressions 12/79

Lexical Syntax Sequences Comparison Operators Arithmetic Logic for, if Data Types

Inhalt

1 Lexical Syntax

2 Sequences

3 Comparison Operators

4 Arithmetic

5 Logic

6 for, if

7 Data Types

Stefan Brass: XML and Databases 10. XPath II: Expressions 13/79

Lexical Syntax Sequences Comparison Operators Arithmetic Logic for, if Data Types

Accessing the Context

The context item is written as “.”.
This is also new in XPath 2.0. In XPath 1.0, “.” was only an abbreviation
for “self::node()”.

The context position is returned by the built-in function
position().

When iterating over a sequence, the first item has the position 1 (not 0 as
in C-style arrays).

The context size is returned by the built-in function
last().

Stefan Brass: XML and Databases 10. XPath II: Expressions 14/79

Lexical Syntax Sequences Comparison Operators Arithmetic Logic for, if Data Types

Sequence Constructor (1)

The comma operator “,” is used as sequence constructor,
e.g. 1, 2 is the sequence consisting of 1 and 2.

Formally, E1, E2 is the concatenation of sequences E1
and E2.

Remember that in XDM everything is a sequence, even the numbers 1

and 2 in the previous example are formally identified with the
corresponding singleton sequences. Vice versa, one could also say that E1,

E2 first constructs a sequence of length 2 with (the values of) E1 and E2 as
items, but since sequences can never contain other sequences, the result is
then flattened.

Stefan Brass: XML and Databases 10. XPath II: Expressions 15/79

Lexical Syntax Sequences Comparison Operators Arithmetic Logic for, if Data Types

Sequence Constructor (2)

Since the comma is also used for other syntactic purposes
(e.g. in the function argument list), the expression E1, E2
must be enclosed in parentheses (...) in many contexts.

The formal grammar has a symbol “exprSingle” that is an arbitrary
expression, but without “,” on the outermost level.

() denotes the empty sequence.

Note the flattening rules. E.g. (1, (), (2, 3)) is a
legal expression, but it evaluates to (1, 2, 3).

In XDM, sequences can never contain other sequences.

Stefan Brass: XML and Databases 10. XPath II: Expressions 16/79

Lexical Syntax Sequences Comparison Operators Arithmetic Logic for, if Data Types

Numeric Range Constructor

m to n generates the sequence of integers from m to n
(inclusive).

If n ≤ m, the result is the empty sequence. The arguments m and n must
be integers, or belong to a subtype of integer, or be untyped and
convertable to integer. If one of the arguments is of another type (or is the
empty sequence), an error occurs.

E.g. 1 to 5 generates (1, 2, 3, 4, 5).

A good implementation will not actually materialize the
complete sequence, but instead construct a loop over the
elements (“lazy construction”).

Stefan Brass: XML and Databases 10. XPath II: Expressions 17/79

Lexical Syntax Sequences Comparison Operators Arithmetic Logic for, if Data Types

Set Operations

E1 | E2 returns the union of the sequences E1 and E2.
One can equivalently write E1 union E2.

The input sequences must consist of nodes only, or a type error is raised.
The result is a sequence of nodes in document order without duplicates
(the closest a sequence can come to a true set). These rules also apply to
the other set operations intersect and except.

E1 intersect E2 returns the set of nodes that are
contained in both, E1 and E2.

E1 except E2 is the set of nodes that occur in E1, but
not in E2.

intersect and except have equal priority. They bind stronger (have
higher priority) than union and |.

Stefan Brass: XML and Databases 10. XPath II: Expressions 18/79

Lexical Syntax Sequences Comparison Operators Arithmetic Logic for, if Data Types

Inhalt

1 Lexical Syntax

2 Sequences

3 Comparison Operators

4 Arithmetic

5 Logic

6 for, if

7 Data Types

Stefan Brass: XML and Databases 10. XPath II: Expressions 19/79

Lexical Syntax Sequences Comparison Operators Arithmetic Logic for, if Data Types

Atomization (1)

In contexts where atomic values are needed (e.g., in the
arguments to arithmetic operators), XPath applies a type
coercion called “atomization”.

It also has a built-in function data(s) that returns the
result of applying atomization to the input sequence s.

For example, consider (ge means ≥):
//RESULT[@POINTS ge 8]

@POINTS selects an attribute node, but for the
comparison, its value (an integer) must be determined.

Stefan Brass: XML and Databases 10. XPath II: Expressions 20/79

Lexical Syntax Sequences Comparison Operators Arithmetic Logic for, if Data Types

Atomization (2)

The result of atomization is computed by looping over
the input sequence:

If the current list item is an atomic value, it is appended
to the output sequence.

If the current list item is a node that has a typed value,
this typed value is appended to the output.

The typed value might consist of zero, one, or more atomic values.

Otherwise (node with typed value undefined), an error is
raised.

This happens only for elements that are declared with pure element
content, when they were validated against a schema.

Stefan Brass: XML and Databases 10. XPath II: Expressions 21/79

Lexical Syntax Sequences Comparison Operators Arithmetic Logic for, if Data Types

Comparison Operators (1)

XPath has three kinds of comparison operators:

Value comparison operators: eq, ne, lt, le, gt, ge.

Node comparison operators: is, <<, >>.

General comparison operators: =, !=, <, <=, >, >=.

XPath 1.0 had only the general comp. operators.
The behaviour of these operators can sometimes cause surprises, and
makes optimization difficult. Therefore, a safer set of operators was
introduced in XPath 2.0.

Note that when XPath expressions appear in XML
attribute values, “<” must be written “<”.

Stefan Brass: XML and Databases 10. XPath II: Expressions 22/79

Lexical Syntax Sequences Comparison Operators Arithmetic Logic for, if Data Types

Comparison Operators (2)

Type checking for value comparison:

First, atomization is applied to both operands. Let the
result be x and y .

If x or y is a sequence consisting of more than one item,
a type error occurs.

If x or y is the empty sequence, the result is the empty
sequence (later treated like false).

untypedAtomic is converted to string.

Derived types are converted to the base type.

Now the types must be identical, or both must be
numeric. Otherwise a type error occurs.

Stefan Brass: XML and Databases 10. XPath II: Expressions 23/79

Lexical Syntax Sequences Comparison Operators Arithmetic Logic for, if Data Types

Comparison Operators (3)

For documents that are not validated against a schema,
one must use explicit type conversions.

E.g.. if the typed value of @POINTS has the type
untypedAtomic, a comparison like

@POINTS ge 8
generates a type error, because 8 is an integer, and
@POINTS is converted to a string.

Note that e.g. @FIRST eq "Ann" would work.
Solution: use “number(@POINTS)” or “xs:integer(@POINTS)”. Of course,
validating the document against a schema would be better.

Stefan Brass: XML and Databases 10. XPath II: Expressions 24/79

Lexical Syntax Sequences Comparison Operators Arithmetic Logic for, if Data Types

Comparison Operators (4)

Meaning of value comparison operators:

eq: equal (=).

ne: not equal (6=).

lt: less than (<).

le: less than or equal (≤).

gt: greater than (>).

ge: greater than or equal (≥).

For details, please look into the standard.
E.g. for date and time types, the implicit timezone is used, instead of the
partial order that XML Schema defines.

Stefan Brass: XML and Databases 10. XPath II: Expressions 25/79

Lexical Syntax Sequences Comparison Operators Arithmetic Logic for, if Data Types

Comparison Operators (5)

Node comparison (is, <<, >>):

Both operands must be a single node or the empty
sequence (else a type error occurs).

If one is the empty sequence, the result is the empty
sequence (often treated like false).

x is y is true if x and y are the same node.

x << y is true if x comes before y in document order.
If the nodes are in different documents, the order is implementation
dependent, but stable.

x >> y is true if x comes after y .

Stefan Brass: XML and Databases 10. XPath II: Expressions 26/79

Lexical Syntax Sequences Comparison Operators Arithmetic Logic for, if Data Types

Comparison Operators (6)

General comparison operators (=, !=, . . .):

Both operands are atomized, yielding sequences x and y
of atomic values.

Now all possible combinations of xi ∈ x and yj ∈ y are
compared according to the rules on the next slide. If one
comparison yields true, the result is true. If the all return
false, the result is false.

Actually, a comparison might also generate a runtime error (type
error). If the runtime error happens before a comparison yields true,
the result is the runtime error. If the processor detects the true value
first, it will most probably not do any further comparisons. One
cannot rely on any particular order of the comparisons.

Stefan Brass: XML and Databases 10. XPath II: Expressions 27/79

Lexical Syntax Sequences Comparison Operators Arithmetic Logic for, if Data Types

Comparison Operators (7)

General comparison operators, continued:

If xi and yj are both of type untypedAtomic, they are
converted to string. If one, e.g. xi , is of type
untypedAtomic and the other (yj) is of a more specific
type, xi is converted to the type of yi .

Unless the type of yj is numeric, then double is chosen for xi . E.g. if
xi is the string ”0.3” and yj is the integer 0, this rule ensures that xi

is not converted to an integer.

After these conversions, xi and yj are compared with the
corresponding value comparison operator (e.g. eq if the
general operator was =).

Stefan Brass: XML and Databases 10. XPath II: Expressions 28/79

Lexical Syntax Sequences Comparison Operators Arithmetic Logic for, if Data Types

Comparison: Surprises (1)
In XPath 1.0,

1 = true(),
When comparing a number with a boolean value, the number is first
converted to a boolean: Every number except 0 and NaN becomes
true. (The priority list of types for =/!= comparison in XPath 1.0 is
boolean, number, string.)

true() = "true",
When comparing a string with a boolean value, the string is
converted to boolean. Every string except "" is converted to true.

1 != "true", i.e. the transitivity of = is violated!
When comparing a string and a number, the string is converted to a
number. In this case, "true" is converted to NaN.

In XPath 2.0, these are all type errors.
Stefan Brass: XML and Databases 10. XPath II: Expressions 29/79

Lexical Syntax Sequences Comparison Operators Arithmetic Logic for, if Data Types

Comparison: Surprises (2)

However, such a situation can also be constructed in
XPath 2.0 when no schema validation was done:

Let the context node be
<X A="1" B="1.0"/>

@A = 1 is true,
@A has type untypedAtomic, thus a numeric comparison is done: @A

is converted to double, then 1 is also converted to double.

1 = @B is true,
As above, a numeric comparison is done.

@A = @B is false (transitivity is violated).
If both operands have type untypedAtomic, then a string
comparison is done (both are converted to string).

Stefan Brass: XML and Databases 10. XPath II: Expressions 30/79

Lexical Syntax Sequences Comparison Operators Arithmetic Logic for, if Data Types

Comparison: Surprises (3)

The implicit existential quantification in the general
comparison operators can cause surprises:

$x != 1 and $x = 1 can be true at the same time.
E.g., consider $x = (1, 2). This also shows that $x != 1 is not
the same as not($x = 1). In this example, not($x = 1) is false.

$x = $x does not always hold.
If $x is the empty sequence, the implicit existential quantification is
obviously false, even if the quantified condition is a tautology.

Transitivity of = and other relations can be violated even
in schema validated documents.

E.g. (1) = (1,2) and (1,2) = (2) are true, but (1) = (2) is
false.

Stefan Brass: XML and Databases 10. XPath II: Expressions 31/79

Lexical Syntax Sequences Comparison Operators Arithmetic Logic for, if Data Types

Exercise (1)

<?xml version="1.0"?>
<BOOKLIST>

<BOOK ISBN="0-13-014714-1" PAGES="1074">
<AUTHOR FIRST="Paul" LAST="Prescod"/>
<AUTHOR FIRST="Charles" LAST="Goldfarb"/>
<TITLE>The XML Handbook - 2nd Edition</TITLE>
<PUBL DATE="19991112">Prentice Hall</PUBL>
<NOTE>Contains CD.</NOTE>

</BOOK>
<BOOK ISBN="1-56592-709-5" PAGES="107">

<AUTHOR FIRST="Robert" LAST="Eckstein"/>
<TITLE>XML Pocket Reference</TITLE>
<PUBL DATE="19991001">O’Reilly</PUBL>

</BOOK>
</BOOKLIST>

Stefan Brass: XML and Databases 10. XPath II: Expressions 32/79

Lexical Syntax Sequences Comparison Operators Arithmetic Logic for, if Data Types

Exercise (2)

What will be the result of this expression?
/BOOKLIST/BOOK[AUTHOR/LAST="Goldfarb"]

Would this work with “eq” instead of “=”?
“/” binds stronger (has higher priority) than “=” and “eq”.

Please write an XPath expression for:

Print the last names of the author of the “XML Pocket
Reference” (book title).

Assume that the context node is the document node and that it suffices
to select the attribute nodes, and not necessarily take their value.

Stefan Brass: XML and Databases 10. XPath II: Expressions 33/79

Lexical Syntax Sequences Comparison Operators Arithmetic Logic for, if Data Types

Inhalt

1 Lexical Syntax

2 Sequences

3 Comparison Operators

4 Arithmetic

5 Logic

6 for, if

7 Data Types

Stefan Brass: XML and Databases 10. XPath II: Expressions 34/79

Lexical Syntax Sequences Comparison Operators Arithmetic Logic for, if Data Types

Arithmetic Operators (1)

+: Addition
The arithmetic operators and numeric functions (see below) have four
versions with signature T × T → T , where T is one of: xs:integer,
xs:decimal, xs:float, and xs:double. Of course, one can also substitute
a derived type for one of these types, but the result will be the base type.
E.g., if one adds two values of type xs:positiveInteger, the result is of
type xs:integer. Furthermore, type promotion is done: If values of two
different numeric types are added, the one earlier in the above list is
converted to the one later in the list, e.g. for 1 + 2e3, the value 1 (of type
xs:integer) is converted to xs:float, and then a floating point addition
is done. In XPath 1.0, all numbers were considered as double values.

-: Subtraction
The operators + and - exist in unary and in binary form. The unary + is
new in XPath 1.0 (it was added for compatibility with XML Schema).

Stefan Brass: XML and Databases 10. XPath II: Expressions 35/79

Lexical Syntax Sequences Comparison Operators Arithmetic Logic for, if Data Types

Arithmetic Operators (2)

*: Multiplication

div: Division
The symbol / could not be used (otherwise: ambiguous path expressions).
As an exception to the signature T × T → T , the result type for integer
operands is xs:decimal. The other three cases are as usual.

idiv: Integer Division
This operator exists with signatures T × T → xs:integer where T is one
of the four numeric types xs:integer, xs:decimal, xs:float, and
xs:double. The result of division is truncated, e.g. 9 idiv 5 = 1.

mod: Remainder of the integer division (modulo)
This has again signature T × T → T . Except for error conditions and
special floating point values, (x idiv y) * y + (x mod y) = x holds.

Stefan Brass: XML and Databases 10. XPath II: Expressions 36/79

Lexical Syntax Sequences Comparison Operators Arithmetic Logic for, if Data Types

Inhalt

1 Lexical Syntax

2 Sequences

3 Comparison Operators

4 Arithmetic

5 Logic

6 for, if

7 Data Types

Stefan Brass: XML and Databases 10. XPath II: Expressions 37/79

Lexical Syntax Sequences Comparison Operators Arithmetic Logic for, if Data Types

Logical Conditions (1)
and: Conjunction (both operands must be true).

The effective boolean value of the operands is automatically determined.
For instance, (), "", 0 are treated like false. A sequence that starts with a
node, a non-empty string, and a non-zero number (except NaN) are treated
like true.
Note that atomization is not applied to the operands. So an attribute node
is treated like true, even if its value is the boolean value false. One could
explicitly call data(...) or do a comparison.
In XPath 1.0, it was guaranteed that the right operand was evaluated only
if the left operand was true. In XPath 2.0, this is no longer guaranteed, so
that the query optimizer gets more freedom (e.g., there might be an index
for the condition on the right side). However, one can use an if-expression
to avoid possible run-time errors. Basically, A and B is equivalent to
if A then B else false().

or: Disjunction (at least one operand is true).
Stefan Brass: XML and Databases 10. XPath II: Expressions 38/79

Lexical Syntax Sequences Comparison Operators Arithmetic Logic for, if Data Types

Logical Conditions (2)
true(): Constant truth value “true”.

Formally, this is a function without parameters, that always returns the
value “true”. Because XPath has no reserved words, the parentheses are
necessary to remove the ambiguity (see Slide 59).

false(): Constant truth value “false”.

not(C): Negation of condition C .
Again, this is formally a function, not an operator (so the parentheses are
necessary). The function mainly translates true to false and false to true.
However, before this, it automatically computes the effective boolean value
of the argument. So the argument of the function is declared as an
arbitrary sequence (item()*), not as xs:boolean. However, certain inputs
can generate a type error (see “effective boolean value” in Chapter 9).

=, <, . . . can be used on boolean values (false<true).
Stefan Brass: XML and Databases 10. XPath II: Expressions 39/79

Lexical Syntax Sequences Comparison Operators Arithmetic Logic for, if Data Types

Logical Conditions (3)

An existential quantifier (∃, “there is”) over a sequence is
written as

some v in S satisfies Cwhere

v is a variable (starting with “$”)

S is an expression that generates a sequence of values
that are assigned to v one by one,

C is an expression, of which the effective boolean value
is determined for each such variable assignment: If it is
true for at least one assignment, the value of the entire
some-expression is true.

Stefan Brass: XML and Databases 10. XPath II: Expressions 40/79

Lexical Syntax Sequences Comparison Operators Arithmetic Logic for, if Data Types

Logical Conditions (4)

For instance, the following is true:
some $i in (1, 2, 3) satisfies $i > 2

A universal quantifier (∀, “for all”) over a sequence is
written as

every v in S satisfies C

If the binding sequence S should be empty,

some is false (there is no satisfying assignment)

every is true (no counterexample can be found)

Note that the focus is not changed when C is evaluated.
Thus, it (more or less) must contain v .

Stefan Brass: XML and Databases 10. XPath II: Expressions 41/79

Lexical Syntax Sequences Comparison Operators Arithmetic Logic for, if Data Types

Logical Conditions (5)

Nondeterministic outcome for runtime errors:

An implementation can check the different variable
assignments in an arbitrary order.

It can also stop as soon as the truth value of the entire
expression is clear.

I.e. when it found one value in S for which the some-quantified
condition C was true, it is clear that the some-expression is true. In
the same way, if C was false once, an every-condition is false.

If the evaluation of C for some assignment would cause
a runtime error, but the evaluation stops before this
assignment, one cannot rely on the fact that this will
always be the case.

Stefan Brass: XML and Databases 10. XPath II: Expressions 42/79

Lexical Syntax Sequences Comparison Operators Arithmetic Logic for, if Data Types

Logical Conditions (6)

One can quantify several variables in a single some or
every expression:

some v1 in S1, ..., vn in Sn satisfies C

Then conceptually all possible combinations of values are
tested (e.g., in a nested loop).

As explained above, it can stop earlier, if the result is clear.

If Si or C use the comma-operator, it must be inside
parentheses.

The scope of vi includes Sj for j > i and C (i.e. the entire
rest of the expression after Si can use vi).

Stefan Brass: XML and Databases 10. XPath II: Expressions 43/79

Lexical Syntax Sequences Comparison Operators Arithmetic Logic for, if Data Types

Exercise (1)

<?xml version=’1.0’ encoding=’ISO-8859-1’?>
<GRADES-DB>

<STUDENT>
<SID>101</SID>
<FIRST>Ann</FIRST>
<LAST>Smith</LAST>

</STUDENT>...
<RESULT>

<SID>101</SID>
<CAT>H</CAT>
<ENO>1</ENO>
<POINTS>10</POINTS>

</RESULT>...

Stefan Brass: XML and Databases 10. XPath II: Expressions 44/79

Lexical Syntax Sequences Comparison Operators Arithmetic Logic for, if Data Types

Exercise (2)

Please write the following queries in XPath:

What is the SID of Ann Smith?
It suffices that the SID element is selected. If necessary, one can
explicitly call data(...) to perform an atomization.

Please print the last names of all students who got more
than 8 points for Homework 1.

Note that this exercise already requires a (semi-)join. One can apply
the some-quantifier to get a name for one of the needed nodes, and
use the context/focus for the other node.

What is the error in
//EXERCISE[some $r in //RESULT satisfies

POINTS = MAXPT]

Stefan Brass: XML and Databases 10. XPath II: Expressions 45/79

Lexical Syntax Sequences Comparison Operators Arithmetic Logic for, if Data Types

Inhalt

1 Lexical Syntax

2 Sequences

3 Comparison Operators

4 Arithmetic

5 Logic

6 for, if

7 Data Types

Stefan Brass: XML and Databases 10. XPath II: Expressions 46/79

Lexical Syntax Sequences Comparison Operators Arithmetic Logic for, if Data Types

For Expressions (1)

The for-Expression can be used to map every element of
an input sequence to zero, one or more elements of an
output sequence:

for v in S return E

The variable v is bound to each element of the input
sequence S in turn, and the expression E is evaluated.
The resulting sequences are concatenated. For example:

for $i in (1, 2, 3) return $i * 10
returns (10, 20, 30).

Stefan Brass: XML and Databases 10. XPath II: Expressions 47/79

Lexical Syntax Sequences Comparison Operators Arithmetic Logic for, if Data Types

For Expressions (2)

I.e. in the expression
for v in S return E

the variable v loops over the sequence S, and in each
iteration, the result of evaluating the expression E is
appended to the output sequence.

Often, the expression E will evaluate to single values (sequences of
length 1), then each element in the input sequence is mapped to the
element in the output sequence at the same position.
Of course, E nearly always contains variable v . Note that the context
position is not changed during the iteration. Only v changes.

for can be nicely combined with the numeric range
constructor, e.g.: for $i in 1 to 3 return $i*10

Stefan Brass: XML and Databases 10. XPath II: Expressions 48/79

Lexical Syntax Sequences Comparison Operators Arithmetic Logic for, if Data Types

For Expressions (3)

One can also let several variables run over different
sequences, then all combinations are considered:

for v1 in S1, v2 in S2 return E

A typical implementation are nested loops, but the query
optimizer can of course choose a different, more efficent
evaluation strategy.

But the order in the output sequence cannot be changed, unless this is
input for a function that does not need a specific order (e.g., count).

The above expression is equivalent to
for v1 in S1 return (for v2 in S2 return E)

Stefan Brass: XML and Databases 10. XPath II: Expressions 49/79

Lexical Syntax Sequences Comparison Operators Arithmetic Logic for, if Data Types

For Expressions (4)

for binds stronger than the comma operator (sequence
constructor). Thus, if S or E contain the comma
operator, it must be inside parentheses.

In for v1 in S1, v2 in S2 return E
the scope of the variable v1 consists of S2 and E . The
scope of variable v2 consists only of E .

I.e. one can use v1 when defining the values for v2. This is compatible with
the nested version of a for-expression with several variables.

for-expressions are a simplified version of
FLWR-expressions in XQuery. They are new in XPath 2.0.

Stefan Brass: XML and Databases 10. XPath II: Expressions 50/79

Lexical Syntax Sequences Comparison Operators Arithmetic Logic for, if Data Types

For Expressions (5)

The path expression book/author is equivalent to
for $b in book return $b/author

In general, differences between / and for are:

/ uses the implict context, for explicit variables.
for can use several variables, / has always only one context item.

/ works only on nodes, for on arbitrary data.

/ sorts the result in document order and eliminates
duplicates, for does not do this.

Stefan Brass: XML and Databases 10. XPath II: Expressions 51/79

Lexical Syntax Sequences Comparison Operators Arithmetic Logic for, if Data Types

If Expressions (1)

The expression
if(C) then E1 else E2

is evaluated as follows:

First, the effective boolean value of C is determined (no
atomization is done).

If the effective boolean value of C is true, E1 is
evaluated, and its value is the value of the entire
if-expression.

It is guaranteed that E2 is not evaluated in this case.

Otherwise, the value of E2 is returned.
In this case, E1 is not evaluated.

Stefan Brass: XML and Databases 10. XPath II: Expressions 52/79

Lexical Syntax Sequences Comparison Operators Arithmetic Logic for, if Data Types

If Expressions (2)

The guarantee that the other branch is not evaluated is
important if it could cause a runtime error.

If the expressions E1 or E2 contain the comma operator, it
must be inside parentheses.

Since there is no “fi” (or “end if”), a comma in E2 could cause an
ambiguity, when the expression is used in a function call. In E1 it would be
no problem, but there it is excluded for reasons of symmetry.

Note that the else-part is not optional. One often sees
“else ()”.

This avoids the “dangling else” ambiguity that occurs in many
programming languages.

Stefan Brass: XML and Databases 10. XPath II: Expressions 53/79

Lexical Syntax Sequences Comparison Operators Arithmetic Logic for, if Data Types

Operator Precedences (1)

Prio Operator Assoc.
1 , (comma) left
2 for, some, every, if left
3 or left
4 and left
5 eq,ne,lt,le,gt,ge,=,!=,<,<=,>,>=,is,<<,>> left
6 to left
7 +, - left
8 *, div, idiv, mod left
9 union, | left

10 intersect, except left

(continued on next slide)
Stefan Brass: XML and Databases 10. XPath II: Expressions 54/79

Lexical Syntax Sequences Comparison Operators Arithmetic Logic for, if Data Types

Operator Precedences (2)

(continued from previous slide)

Prio Operator Assoc.
11 instance of left
12 treat left
13 castable left
14 cast left
15 - (unary), + (unary) right
16 ?, *, + (Occurrence Indicators) left
17 /, // left
18 [], (), {} left

Stefan Brass: XML and Databases 10. XPath II: Expressions 55/79

Lexical Syntax Sequences Comparison Operators Arithmetic Logic for, if Data Types

Summary: New Constructs

The following constructs are new in XPath 2.0:

for, some, every, if, eq, ne, lt, le, gt, ge, is, <<,
>>, intersect, except, idiv, to, ,

In XPath 1.0, no variables could be bound inside the expression
(only variables declared in the XSLT context could be used).

Function calls in path expressions.

A much richer type system (conformant with XML
Schema), stricter type checking.

XPath 1.0 had only four data types: node set, boolean, number,
string. XPath 2.0 can also work with user-defined types.

Arbitrary sequences instead of node sets.

A much larger function library (see next section).

Stefan Brass: XML and Databases 10. XPath II: Expressions 56/79

Lexical Syntax Sequences Comparison Operators Arithmetic Logic for, if Data Types

Syntax: Surprise (1)

The following XPath expression is legal:
for div div

E.g., if the context node is
<X><for>8</for> <div>2</div></X>

the result is 4 or 4.0 (= 8/2).
The expression consists of the operator div, applied to the results of the
path expressions for (left operand) and div (right operand). The path
expression for returns the child node with name for. Since this is input
to div, it is atomized, this results in the value 8 or 8.0 (if for is declared
with simple content of a numeric type, or if the document was no
schema-validated: Then the value is "8", but of type untypedAtomic, so it
can be converted to the number 8.0).

Stefan Brass: XML and Databases 10. XPath II: Expressions 57/79

Lexical Syntax Sequences Comparison Operators Arithmetic Logic for, if Data Types

Syntax: Surprise (2)

The following XPath expression is legal:

Exercise: What is the result if the context node is
<X><Y>3</Y></X>

Stefan Brass: XML and Databases 10. XPath II: Expressions 58/79

Lexical Syntax Sequences Comparison Operators Arithmetic Logic for, if Data Types

Exercise

What is the meaning of:

@WEEKDAY = (’Sat’, ’Sun’)

$x idiv 1

(@QUANTITY, 1)[1]

if @GUEST = true() then... else ... vs.
if @GUEST then... else ...

true vs. true()

not(*)

not /A vs. not(/A)

Stefan Brass: XML and Databases 10. XPath II: Expressions 59/79

Lexical Syntax Sequences Comparison Operators Arithmetic Logic for, if Data Types

Inhalt

1 Lexical Syntax

2 Sequences

3 Comparison Operators

4 Arithmetic

5 Logic

6 for, if

7 Data Types

Stefan Brass: XML and Databases 10. XPath II: Expressions 60/79

Lexical Syntax Sequences Comparison Operators Arithmetic Logic for, if Data Types

Type Casts (1)

For some pairs of types T1 and T2, some values v1 of
type T1 can be converted to a value v2 of type T2.

For instance, if T1 is xs:string or xs:untypedAtomic,
and v1 conforms to the lexical representation of T2 as
defined in the XML Schema Standard, then the
conversion is possible.

Special restrictions apply for target types xs:NOTATION (XML Schema
states that only subtypes of it can be instantiated) and xs:QName (only
string literals can be converted, and only if they use a namespace prefix
from the static context or the default namespace).

Stefan Brass: XML and Databases 10. XPath II: Expressions 61/79

Lexical Syntax Sequences Comparison Operators Arithmetic Logic for, if Data Types

Type Casts (2)

The conversion is written
v1 cast as T2 e.g. "123" cast as xs:integer

Using a constructor function is equivalent, except that the
constructor function can map () to ():

T2(v1) e.g. xs:integer("123")

This works also for user defined types. But the default namespace of the
two variants differs. For functions, including constructor functions, the
default namespace is http://www.w3.org/2005/xpath-functions. For
the cast as syntax, the default namespace is the same as used for element
types. The argument type of the constructor function is anyAtomicType?,
the result type is T2?.

Exact equivalent: v1 cast as T2?

Stefan Brass: XML and Databases 10. XPath II: Expressions 62/79

Lexical Syntax Sequences Comparison Operators Arithmetic Logic for, if Data Types

Type Casts (3)

There is a special constructor function that constructs a
xs:dateTime value from an xs:date and an xs:time
value.

One can cast only to atomic types, possibly with the
occurrence indicator “?”.

This means that one cannot cast to list or union types, as well as more
general sequences.

One cannot cast to anyAtomicType, because at runtime,
there are no values of this type.

Of course, untypedAtomic is possible.

Stefan Brass: XML and Databases 10. XPath II: Expressions 63/79

Lexical Syntax Sequences Comparison Operators Arithmetic Logic for, if Data Types

Type Casts (4)

Atomization is applied to the argument of the
cast-expression or the constructor function.

Thus, one can e.g. use a path expression that selects an attribute node.
The value of that node is taken automatically.

If the result is a sequence of two or more values, an error
is raised.

An error also occurs if the value cannot be converted,
e.g. the string does not have the right format.

This error may occur as a static error if the argument is e.g. given as a
string literal, or as a runtime error, when the value is not known at compile
time.

Stefan Brass: XML and Databases 10. XPath II: Expressions 64/79

Lexical Syntax Sequences Comparison Operators Arithmetic Logic for, if Data Types

Type Casts (5)

All sensible type conversions are supported, not only
conversions from string.

E.g. arbitrary conversions between numeric types are possible, as long as
the value fits into the result type (for floating point types, even that is no
problem, since they have the special values INF and -INF). The complete
list is given in the specification “XQuery 1.0 and XPath 2.0 Functions and
Operators”, Section 17.1.

When casting to a derived type, the value is first
converted to the corresponding base type, and then the
constraining facets are checked.

E.g. if money is a type derived from xs:decimal with fractionDigits=2,
one cannot convert the value 1.234 to money. However, as an exception,
values can be converted to xs:integer by truncation.

Stefan Brass: XML and Databases 10. XPath II: Expressions 65/79

Lexical Syntax Sequences Comparison Operators Arithmetic Logic for, if Data Types

Type Casts (6)

Since v cast as T can cause a runtime error, XPath
also offers the condition

v castable as T

This condition is true if and only if the cast would
succeed without error.

Thus, one can use an if-expression to handle the case
that the value cannot be converted.

Stefan Brass: XML and Databases 10. XPath II: Expressions 66/79

Lexical Syntax Sequences Comparison Operators Arithmetic Logic for, if Data Types

Exercise

Name (at least) two cases, where the following function
calls differ:

boolean(v): This computes the effective boolean value
of v .

xs:boolean(v): Constructor function, does first
atomization.

What happens if an integer needs to be converted to a
subtype of xs:decimal with a pattern that prescribes
two digits after the decimal point?

When converting to a derived type with the pattern-facet, only the
canonical representation of the value is checked.

Stefan Brass: XML and Databases 10. XPath II: Expressions 67/79

Lexical Syntax Sequences Comparison Operators Arithmetic Logic for, if Data Types

Runtime Type Check (1)

XML Schema supports union types, e.g. grade_t might
be the union of the string values "passed", "failed",
and integer values from 1 to 5.

1: “very good”, 2: “good’, 3: “satisfactory”, 4: “fair”, 5: “poor”.

XDM permits only sequences of atomic values and nodes
(it has no explicit support for union types): At runtime,
the exact type of each value is known.

If GRADE is an attribute of type grade_t, the value of
this attribute will be a string or a number.

Which of the two, is only known at runtime for a concrete instance.

Stefan Brass: XML and Databases 10. XPath II: Expressions 68/79

Lexical Syntax Sequences Comparison Operators Arithmetic Logic for, if Data Types

Runtime Type Check (2)

When the type of a value is not known at compile time, it
must be tagged with a type identification at runtime.

This is nothing else than the standard implementation of a union type.
Thus, the fact that XDM has no explicit support for union types, does not
mean much. Unknown types can also occur when a subtype is substituted
for the supertype. A value might actually be of a subtype, but at compile
time, only the supertype is known. Again, type tagging is used (e.g., the
“virtual function table” in C++).

Simple XPath implementations will tag every value in this
way, and do all the type checking at runtime.

Stefan Brass: XML and Databases 10. XPath II: Expressions 69/79

Lexical Syntax Sequences Comparison Operators Arithmetic Logic for, if Data Types

Runtime Type Check (3)

In order to check whether an exam was passed, one might
try the following condition (wrong!):

@GRADE = "passed" or @GRADE <= 4

However, one cannot compare strings and integers:

If @GRADE is a string, the right condition gives a type
error.

If the left condition is true, and if that is checked first, the error
might not occur, because the right condition is not evaluated.

If it is an integer, the left part gives a type error.
If the right condition is checked first, it is possible that the error
does not occur.

Stefan Brass: XML and Databases 10. XPath II: Expressions 70/79

Lexical Syntax Sequences Comparison Operators Arithmetic Logic for, if Data Types

Runtime Type Check (4)

Thus, XPath has the possibility to check the type of a
value at runtime:

v instance of T
is true if value v has type T .

In contrast to cast as and castable as, the type T
may be any sequence type.

Note that the condition is also true if the type tag of v is
a type derived from T .

For instance, the following is true:
5 instance of xs:decimal

Stefan Brass: XML and Databases 10. XPath II: Expressions 71/79

Lexical Syntax Sequences Comparison Operators Arithmetic Logic for, if Data Types

Runtime Type Check (5)

However, instance of does not check whether a value
happens to satisfy the constraints of a subtype. It only
checks the type tag.

For instance, the following is false:
5 instance of xs:positiveInteger

Numeric literals that consist entirely of digits are assigned
the type xs:integer.

Of course, the following is true:
5 castable as xs:positiveInteger

Stefan Brass: XML and Databases 10. XPath II: Expressions 72/79

Lexical Syntax Sequences Comparison Operators Arithmetic Logic for, if Data Types

Runtime Type Check (6)

With instance of, one can write the condition as

if(@GRADE instance of xs:string)
then @GRADE = "passed"
else @GRADE <= 4

This will work in a system based entirely on runtime type
checking.

In a system using static type checking (“at compile
time”), it will probably still give a type error because the
(not very intelligent) system does not understand that the
comparisons are safe.

Stefan Brass: XML and Databases 10. XPath II: Expressions 73/79

Lexical Syntax Sequences Comparison Operators Arithmetic Logic for, if Data Types

Static Type Checking (1)

Some XPath implementations do all type checking at
runtime, some try to do as much as possible at compile
time (“static type checking”).

Advantages of static type checking:

Type errors that occur only sometimes cannot be found
reliably with testing. Static type checking finds them.

Runtime is reduced (most tests done at compile time),
memory too (fewer type tags).

Query optimzation can be improved.

Stefan Brass: XML and Databases 10. XPath II: Expressions 74/79

Lexical Syntax Sequences Comparison Operators Arithmetic Logic for, if Data Types

Static Type Checking (2)

“static type checking is a mixed blessing. It will report
some errors early, but it will also report many false
alarms. The more you are dealing with unpredictable or
semi-structured data, the more frequent the false alarms
will become. With highly structured data, static type
checking can be a great help in enabling you to write
error-free code; but with loosely structured data, it can
become a pain in the neck.” [Michael Kay, 2004]

Static type checking is the pessimistic assumption that
what can go wrong, will go wrong.

Stefan Brass: XML and Databases 10. XPath II: Expressions 75/79

Lexical Syntax Sequences Comparison Operators Arithmetic Logic for, if Data Types

Type Assertions (1)

The expression
v treat as T

checks whether v has type T (or a subtype of T), then it
returns v (unchanged). Otherwise, it causes a runtime
error.

In “treat as” the type can again be an arbitrary sequence type. E.g., one
can also check whether a node is an element node.

This expression is used when the compiler cannot derive
that expression v has the dynamic type T , but the
programmer wishes to assert that this will always be the
case.

Stefan Brass: XML and Databases 10. XPath II: Expressions 76/79

Lexical Syntax Sequences Comparison Operators Arithmetic Logic for, if Data Types

Type Assertions (2)

Of course, the static type of “v treat as T ” is T .
The dynamic type of the value of an expression is always a subtype (or
identical to) the static type of that expression (type safety).

In the above example, the check whether an exam was
passed can be written as follows to satisfy any static type
checker:

if(@GRADE instance of xs:string)
then (@GRADE treat as xs:string) = "passed"
else (@GRADE treat as xs:integer) <= 4

One can also use functions to make assertions on the
length of sequences, see next slide.

Stefan Brass: XML and Databases 10. XPath II: Expressions 77/79

Lexical Syntax Sequences Comparison Operators Arithmetic Logic for, if Data Types

Type Assertions (3)

exactly-one(s): Sequence s has length 1.
Argument: item()*. Result: item(). If s consists of exactly one element, s
is returned unchanged (one could also say that this element is returned,
because XPath makes no difference between a sequence of length 1 and its
element). If s is empty or consists of more than one element, a runtime
error occurs. New in XPath 2.0.

one-or-more(s): Sequence s has length ≥ 1.
Argument: item()*. Result: item()+. If s is empty, a runtime error occurs.
Otherwise, it is returned unchanged. New in XPath 2.0.

zero-or-one(s): Sequence s has length ≤ 1.
Argument: item()*. Result: item()?. If s is empty or consists of at
exactly one element, s is returned unchanged. If s consists of more than
one element, a runtime error occurs. New in XPath 2.0.

Stefan Brass: XML and Databases 10. XPath II: Expressions 78/79

Lexical Syntax Sequences Comparison Operators Arithmetic Logic for, if Data Types

References

Anders Berglund, Scott Boag, Don Chamberlin, Mary F. Fernández, Michael Kay,
Jonathan Robie, Jérôme Siméon (Editors): XML Path Language (XPath) 2.0.
W3C Recommendation, 23 January 2007. [http://www.w3.org/TR/xpath20/]

Mary Fernández, Ashok Malhotra, Jonathan Marsh, Marton Nagy,
Norman Walsh (Ed.): XQuery 1.0 and XPath 2.0 Data Model (XDM).
W3C Recommendation, 23 Jan. 2007, [http://www.w3.org/TR/xpath-datamodel/]

Ashok Malhotra, Jim Melton, Norman Walsh (Ed.):
XQuery 1.0 and XPath 2.0 Functions and Operators.
W3C Recommendation, 23 January 2007. [http://www.w3.org/TR/xpath-functions/]

G. Ken Holman: Definitive XSLT and XPath.
Prentice Hall, 2002, ISBN 0-13-065196-6, 373 pages.

Michael Kay: XPath 2.0 Programmer’s Reference.
Wiley/Wrox, 2004, ISBN 0-7645-6910-4, 552 pages.

Michael Kay: XSLT 2.0 Programmer’s Reference, 3rd Edition.
Wiley/Wrox, 2004, ISBN 0-7645-6909-0, 911 pages.

Miloslav Nic, Jiri Jirat: XPath Tutorial.
Zvon [http://www.zvon.org/xxl/XPathTutorial/General/examples.html]

Stefan Brass: XML and Databases 10. XPath II: Expressions 79/79

http://www.w3.org/TR/xpath20/
http://www.w3.org/TR/xpath-datamodel/
http://www.w3.org/TR/xpath-functions/
http://www.zvon.org/xxl/XPathTutorial/General/examples.html

	Lexical Syntax
	Lexical Syntax

	Sequences
	Sequences

	Comparison Operators
	Comparison Operators

	Arithmetic
	Arithmetic Operators

	Logic
	Logical Operators

	for, if
	for, if

	Data Types
	Data Types
	References

