
XML and Databases

Chapter 13: XQuery II

Prof. Dr. Stefan Brass

Martin-Luther-Universität Halle-Wittenberg

Winter 2019/20

http://www.informatik.uni-halle.de/˜brass/xml19/

13. XQuery II 1/58

http://www.informatik.uni-halle.de/~brass/xml19/

Objectives

After completing this chapter, you should be able to:

read and understand queries in XQuery.

write queries to XML data in XQuery.

enumerate and explain the clauses of FLWOR expressions.

explain the use of direct and computed constructors.

compare XQuery with SQL.

13. XQuery II 2/58

Inhalt

1 Comparison with SQL

2 Grammar Overview

3 Prolog, Functions

13. XQuery II 3/58

Example Document (1)

STUDENTS
SID FIRST LAST EMAIL
101 Ann Smith · · ·
102 David Jones NULL
103 Paul Miller · · ·
104 Maria Brown · · ·

EXERCISES
CAT ENO TOPIC MAXPT
H 1 ER 10
H 2 SQL 10
M 1 SQL 14

RESULTS
SID CAT ENO POINTS
101 H 1 10
101 H 2 8
101 M 1 12
102 H 1 9
102 H 2 9
102 M 1 10
103 H 1 5
103 M 1 7

13. XQuery II 4/58

Example Document (2)

Translation to XML with data values in elements:

<?xml version=’1.0’ encoding=’ISO-8859-1’?>
<GRADES-DB>

<STUDENTS>
<STUDENT>

<SID>101</SID>
<FIRST>Ann</FIRST>
<LAST>Smith</LAST>

</STUDENT>
...

</STUDENTS>
...

</GRADES-DB>

13. XQuery II 5/58

Simple Query (1)

Print all homework results of student 101:

SELECT ENO, POINTS
FROM RESULTS
WHERE CAT = ’H’ AND SID = 101

ENO POINTS
1 10
2 8

Solution 1 in XQuery:

<STUD_101>{
for $r in /GRADES-DB/RESULTS/RESULT
where $r/CAT = ’H’ and $r/SID = 101
return <HW>{$r/ENO, $r/POINTS}</HW>

}</STUD_101>
Whereas the result table structure in SQL is fixed, there are many ways to
structure the output in XML. The query has to specify this.

13. XQuery II 6/58

Simple Query (2)

Result:
<STUD_101>

<HW>
<ENO>1</ENO>
<POINTS>10</POINTS>

</HW>
<HW>

<ENO>2</ENO>
<POINTS>8</POINTS>

</HW>
</STUD_101>

Of course, the line breaks and indentation depend on the output serialization.
This is the result of BaseX. AltovaXML by default writes everything in one line,
but “/oi yes” (“outputindent”) gives the above.

13. XQuery II 7/58

Simple Query (3)

Solution 2 (predicate under for instead of where-clause,
requires fewer variable references):

<STUD_101>{
for $r in

//RESULT[CAT = ’H’ and SID = 101]
return <HW>{$r/ENO, $r/POINTS}</HW>

}</STUD_101>

Solution 3 (with context instead of variable):

<STUD_101>{
//RESULT[CAT = ’H’ and SID = 101]/

<HW>{ENO, POINTS}</HW>
}</STUD_101>

13. XQuery II 8/58

Simple Query (4)

The last example shows that the use of constructors is
not limited to the return-clause of FLWOR-expressions.

In the grammar, constructors are “Primary Expressions”,
i.e. on the same level as datatype literals or variables.

[https://www.w3.org/TR/xquery/#nt-bnf]
As in XPath, a “StepExpr” in a path expression can not only be an “AxisStep”,
but also a “FilterExpr”, which is a “PrimaryExpr” optionally followed by
predicates. This again shows why the grammar rules of XPath had to be
repeated in the XQuery grammar: Constructors in primary expressions are
new in XQuery, but this has consequences for standard path expressions.

13. XQuery II 9/58

https://www.w3.org/TR/xquery/#nt-bnf

Problem with Namespaces (1)

Input document with link to XML Schema:

<GRADES-DB xmlns:xsi=
"http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation="grades.xsd">

The namespace definition for xsi implicitly applies to all
element nodes of the input document.

Since the ENO and POINTS-nodes are copied from the
input document, each such node shows this namespace
explicitly in the output, e.g.

<ENO xmlns:xsi="...">1<ENO>
<POINTS xmlns:xsi="...">10<POINTS>

13. XQuery II 10/58

Problem with Namespaces (2)

It should be possible to avoid this as follows:
declare copy-namespaces no-preserve, no-inherit;
<STUD_101>{

for $r in //RESULT[CAT = ’H’ and SID = 101]
return <HW>{$r/ENO, $r/POINTS}</HW>

}</STUD_101>
inherit or no-inherit is actually not important for this task, but the
syntax forces one to specify it together with no-preserve. The standard
says: “If copy-namespaces mode specifies no-preserve, the new copy
retains only those in-scope namespaces of the original element that are
used in the names of the element and its attributes.”

But neither BaseX nor AltovaXML remove the namespace
declarations.

13. XQuery II 11/58

Problem with Namespaces (3)

If one specifies this namespace in the outer element of
the query, the output serialization does not repeat it in
each copied element:

<STUD_101 xmlns:xsi=
"http://www.w3.org/2001/XMLSchema-instance">{

for $r in //RESULT[CAT = ’H’ and SID = 101]
return <HW>{$r/ENO, $r/POINTS}</HW>

}</STUD_101>
Now the namespace is declared for all nodes in the output document,
so when the nodes from the input document are copied, they are in scope
of the namespace declaration, and it is not necessary to explicitly repeat
the inherited declaration.

13. XQuery II 12/58

Problem with Namespaces (4)

A solution is to construct new element nodes with the
same name and the same contents:
<STUD_101>{

for $r in //RESULT[CAT = ’H’ and SID = 101]
return

<HW>
<ENO>{data($r/ENO)}</ENO>
<POINTS>{data($r/POINTS)}</POINTS>

</HW>
}</STUD_101>

With the same query structure, one could also generate an HTML table:
Replace STUD_101 bei table, HW by tr, and the new ENO and POINTS tags
by td. One could even add a headline.

13. XQuery II 13/58

Joins (1)

“Print the names of all students who have at least 9 points
in both, Homework 1 and Homework 2”:

SELECT S.FIRST, S.LAST
FROM STUDENTS S, RESULTS H1, RESULTS H2
WHERE S.SID = H1.SID AND S.SID = H2.SID
AND H1.CAT = ’H’ AND H1.ENO = 1
AND H2.CAT = ’H’ AND H2.ENO = 2
AND H1.POINTS >= 9 AND H2.POINTS >= 9

FIRST LAST
David Jones

13. XQuery II 14/58

Joins (2)

XQuery:

<ANSWER>{
for $s in //STUDENT,

$h1 in //RESULT, $h2 in //RESULT
where $s/SID = $h1/SID and $s/SID = $h2/SID
and $h1/CAT = ’H’ and $h1/ENO = 1
and $h2/CAT = ’H’ and $h2/ENO = 2
and $h1/POINTS >= 9 and $h2/POINTS >= 9
return <ROW FIRST = "{$s/FIRST}"

LAST = "{$s/LAST}" />
}</ANSWER>

Query Result: <ANSWER>
<ROW FIRST="David" LAST="Jones"/>

</ANSWER>
13. XQuery II 15/58

Joins (3)

One can move parts of the condition to predicates in the
for-clause:

<ANSWER>{
for $s in //STUDENT,

$h1 in //RESULT[CAT = ’H’ and ENO = 1],
$h2 in //RESULT[CAT = ’H’ and ENO = 2]

where $s/SID = $h1/SID and $s/SID = $h2/SID
and $h1/POINTS >= 9 and $h2/POINTS >= 9
return <ROW FIRST = "{$s/FIRST}"

LAST = "{$s/LAST}" />
}</ANSWER>

13. XQuery II 16/58

Joins (4)

One can put the entire where-condition into predicates in
the for-clause (similar to joins under FROM):

<ANSWER>{
for $s in //STUDENT,

$h1 in //RESULT[CAT = ’H’] [ENO = 1]
[SID = $s/SID]
[POINTS >= 9],

$h2 in //RESULT[CAT = ’H’ and ENO = 2 and
SID = $s/SID and
POINTS >= 9]

return <ROW FIRST = "{$s/FIRST}"
LAST = "{$s/LAST}" />

}</ANSWER>
13. XQuery II 17/58

Joins (5)

An XML document that directly corresponds to the table
structure of a relational database does not make optimal
use of XML’s tree structure.

If the RESULT elements of a student were nested inside
the STUDENT element, one would not need an explicit join
on SID:

for $s in //STUDENT,
$h1 in $s/RESULT[CAT = ’H’] [ENO = 1]

[number(POINTS) >= 9],
$h2 in $s/RESULT[CAT = ’H’] [ENO = 2]

[number(POINTS) >= 9]
...

13. XQuery II 18/58

Numeric Comparisons (1)

Who has at least as many points for Homework 1 as
Student 101?

<ANSWER>{
for $s in //STUDENT,

$x in //RESULT[CAT=’H’ and ENO=1],
$y in //RESULT[CAT=’H’ and ENO=1]

where $x/SID = $s/SID and $s/SID != 101
and $y/SID = 101
and number($x/POINTS) >= number($y/POINTS)
return <ROW FIRST = "{$s/FIRST}"

LAST = "{$s/LAST}" />
}</ANSWER>

13. XQuery II 19/58

Numeric Comparisons (2)

If the document is not validated, attribute values and
values of elements with simple content are of type
untypedAtomic.

When the comparison is done with a value of numeric type
(e.g. a constant as in earlier examples),
a numeric comparison is done.

The untypedAtomic value is converted to the more specific type.

If two untypedAtomic values are compared,
a string comparison is done.

To get a numeric comparison, one must use number(...) on at least one
side of the comparison.

13. XQuery II 20/58

NOT EXISTS (1)

“Print the names of all students who have not yet
submitted a homework”:

SELECT S.FIRST, S.LAST
FROM STUDENTS S
WHERE NOT EXISTS(SELECT *

FROM RESULTS R
WHERE R.SID = S.SID
AND R.CAT = ’H’)

FIRST LAST
Maria Brown

13. XQuery II 21/58

NOT EXISTS (2)

Note that not(...) computes the effective boolean valueof
its argument, and thus can be used to check for existence
of a node:

<ANSWER>{
for $s in //STUDENT
where not(//RESULT[SID=$s/SID and CAT=’H’])
return <ROW FIRST = "{$s/FIRST}"

LAST = "{$s/LAST}" />
}</ANSWER>

Query Result: <ANSWER>
<ROW FIRST="Maria" LAST="Brown"/>

</ANSWER>

13. XQuery II 22/58

NOT EXISTS (3)

Instead of not(...) one can also use

count(//RESULT[SID=$s/SID][CAT=’H’]) = 0

For sequences of nodes, this is equivalent (not for atomic values).

One can also use an explicit quantifier:

<ANSWER>{
for $s in //STUDENT
where every $r in //RESULT[SID = $s/SID]

satisfies CAT != ’H’
return <ROW FIRST = "{$s/FIRST}"

LAST = "{$s/LAST}" />
}</ANSWER>

13. XQuery II 23/58

Universal Quantification (1)

“Print the names of all students who have solved all
homeworks in the database”:

SELECT S.FIRST, S.LAST
FROM STUDENTS S
WHERE NOT EXISTS (SELECT *

FROM EXERCISES E
WHERE E.CAT = ’H’
AND NOT EXISTS (SELECT *

FROM RESULTS R
WHERE R.SID = S.SID
AND R.CAT = ’H’
AND R.ENO = E.ENO))

13. XQuery II 24/58

Universal Quantification (2)

In XQuery, the “for all” can be directly expressed:

<STUDENTS_WITH_ALL_HOMEWORKS>{
for $s in //STUDENT
where

every $e in //EXERCISE[CAT=’H’] satisfies
//RESULT[SID=$s/SID][CAT=’H’][ENO=$e/ENO]

return <ROW FIRST = "{$s/FIRST}"
LAST = "{$s/LAST}" />

}</STUDENTS_WITH_ALL_HOMEWORKS>

Query Result: <STUDENTS_WITH_ALL_HOMEWORKSANSWER>
<ROW FIRST="Ann" LAST="Smith"/>
<ROW FIRST="David" LAST="Jones"/>

</STUDENTS_WITH_ALL_HOMEWORKSANSWER>

13. XQuery II 25/58

LIKE (1)

“Print the names of all students who have an email
address from acm.org”:

SELECT FIRST, LAST
FROM STUDENTS
WHERE EMAIL LIKE ’%@acm.org’

FIRST LAST
Ann Smith

The function library contains
contains(s1, s2): Substring test.
starts-with(s1, s2): Prefix test.
ends-with(s1, s2): Suffix test (this example).
matches(s, p): Regular expression test.

See [https://www.w3.org/TR/xpath-functions/].

13. XQuery II 26/58

https://www.w3.org/TR/xpath-functions/

LIKE (2)

Solution with ends-with:

for $s in //STUDENT[ends-with(EMAIL, ’@acm.org’)]
return ...

Solution with matches:

for $s in //STUDENT
[matches(EMAIL, ’ˆ.*@acm\.org$’)]

return ...
$ matches the end of the string (or a line end in multi-line mode). It is necessary,
because otherwise the regular expression could match any substring.
In the same way, ˆ ensures that the match must begin at the start of the string.
Of course, ˆ.* could be left out, but in this way, the example demonstrates
a match of the entire string. The meta character “.” must be escaped with “\”.
Case-insensitive matching is done with a third argument ’i’ (“flags”).

13. XQuery II 27/58

Duplicate Elimination (1)

“Print the numbers of all homeworks for which there is at
least one graded submission (result)”:

SELECT DISTINCT ENO
FROM RESULTS
WHERE CAT = ’H’

ENO
1
2

Duplicates in a sequence of atomic values can be removed
with the function distinct-values.

Often, existential quantification helps.

13. XQuery II 28/58

Duplicate Elimination (2)

Solution with distinct-values:

<RESULT>{
let $s := //RESULT[CAT = ’H’]/ENO
for $n in distinct-values($s)
return <HOMEWORK>{$n}</HOMEWORK>
}</RESULT>

Note that distinct-values applies atomization to its argument.

Solution with existential quantification:

for $h in //EXERCISE[CAT = ’H’]
where exists(//RESULT[CAT = ’H’][ENO = $h/ENO])
return ...

13. XQuery II 29/58

Simple Aggregations (1)

“How many students are in the database?”:

SELECT COUNT(*)
FROM STUDENTS

COUNT(*)
4

The library offers the usual aggregation functions:

count(s): Number of items in a sequence

sum(s[,z]): Sum (with result z for empty seq.)

avg(s): Average.

min(s): Minimum.

max(s): Maximum.

13. XQuery II 30/58

Simple Aggregations (2)

This is simple in XQuery, too:

<NUM_STUDENTS>
{count(//STUDENT)}

</NUM_STUDENTS>

Note that in XQuery, aggregation functions can be used
under where, which would be forbidden in SQL.

The reason is that in XQuery, the argument of the aggregation function
computes the set (sequence) of values to be aggregated. In SQL, the
argument is only an attribute, and the aggregation is over variable
assignments generated by the FROM-clause.

13. XQuery II 31/58

Simple Aggregations (3)

How many distinct topics are there?

SELECT COUNT(DISTINCT TOPIC)
FROM EXERCISES

COUNT(...)
2

In XQuery:
count(distinct-values(//EXERCISE/TOPIC))

In SQL, null values are not counted:

SELECT COUNT(EMAIL)
FROM STUDENTS

COUNT(EMAIL)
3

In XQuery, this happend automatically.
The path //STUDENT/EMAIL selects only existent email elements.

13. XQuery II 32/58

GROUP BY (1)

“Print for every student the total number of homework
points.”

SELECT S.FIRST, S.LAST, SUM(R.POINTS)
FROM STUDENTS S, RESULTS R
WHERE S.SID = R.SID AND R.CAT = ’H’
GROUP BY S.SID, S.FIRST, S.LAST

FIRST LAST SUM(POINTS)
Ann Smith 18
David Jones 18
Paul Miller 5

13. XQuery II 33/58

GROUP BY (2)

If we want the same in XQuery, we must explicitly exclude
students without homeworks:

<STUDENTS_WITH_SUM_HW_POINTS>
{

for $s in //STUDENT
let $p := //RESULT[SID=$s/SID][CAT=’H’]/POINTS
where exists($p)
return <ROW FIRST="{$s/FIRST}" LAST="{$s/LAST}"

SUM="{sum($p)}" />
}
</STUDENTS_WITH_SUM_HW_POINTS>

Producing an output for a student without submitted homeworks can be a
bug or a feature. If it is required, the SQL query becomes longer, and the
XQuery query becomes shorter.

13. XQuery II 34/58

GROUP BY (3)

SQL query with 0 points for students who have not yet
submitted any homework:

SELECT S.FIRST, S.LAST,
COALESCE(SUM(R.POINTS), 0)

FROM STUDENTS S LEFT JOIN RESULTS R
ON S.SID = R.SID AND R.CAT = 'H'

GROUP BY S.SID, S.FIRST, S.LAST

Note that the XPath function sum produces a numeric 0
for the empty sequence, whereas SQL produces a null
value in this case.

Here the input to the SQL function is not empty, but consists of a null
value. The problem appears in simple aggregations.

13. XQuery II 35/58

Restructuring the Data (1)

Suppose we want to remove the elements for the relations
(like STUDENTS), and put the tuple elements directly
below GRADES-DB:

<GRADES-DB>{
for $e in /GRADES-DB/*/*
return $e

}</GRADES-DB>

This gives
<GRADES-DB>

<STUDENT>
<SID>101</SID>
...

13. XQuery II 36/58

Restructuring the Data (2)

The opposite transformation (grouping tuple elements by
relation) is also possible:

<GRADES-DB>
<STUDENTS>{

for $s in /GRADES-DB/STUDENT
return $s

}</STUDENTS>
<EXERCISES>{

for $e in /GRADES-DB/EXERCISE
return $e

}</EXERCISES>
...

</GRADES-DB>
13. XQuery II 37/58

Restructuring the Data (3)

Nesting results under students (data in attributes):
<GRADES-DB>{

for $s in //STUDENT
return element STUDENT {

for $d in $s/*
return attribute {name($d)} {data($d)},
for $r in //RESULT[SID=$s/SID]
return element RESULT {

for $a in $r/*
where name($a) ne "SID"
return attribute {name($a)} {data($a)}

}
},
...(: Copy/transform EXERCISE data :)

}</GRADES-DB>
13. XQuery II 38/58

Restructuring the Data (4)

The output looks as follows:

<?xml version=’1.0’ encoding=’UTF-8’?>
<GRADES-DB>

<STUDENT SID=’101’ FIRST=’Ann’ LAST=’Smith’>
<RESULT CAT=’H’ ENO=’1’ POINTS=’10’/>
<RESULT CAT=’H’ ENO=’2’ POINTS=’8’/>
<RESULT CAT=’M’ ENO=’1’ POINTS=’12’/>

</STUDENT>
<STUDENT SID=’102’ FIRST=’David’ LAST=’Jones’>

...
</STUDENT>
...

</GRADES-DB>
13. XQuery II 39/58

Inhalt

1 Comparison with SQL

2 Grammar Overview

3 Prolog, Functions

13. XQuery II 40/58

Overall Syntax (1)

The basic XQuery unit is a module.

A module can be

a library module (contains mainly function declarations),

a main module (contains mainly the query).

Each module may optionally start with a version
declaration:

xquery version "1.0";

One can also specify the encoding, but the treatment of this is
implementation-dependent: xquery version "1.0" encoding "utf-8";

13. XQuery II 41/58

Overall Syntax (2)

A main module consists of a prolog (which can be empty)
and the query (“QueryBody”).

A library module consists of a module declaration and a
prolog.

The prolog can contain

First an arbitrary sequence of namespace declaractions,
module import commands (for schemas and modules),
and XQuery parameter settings,

and then an arbitrary sequence of variable, function, and
option declarations.

13. XQuery II 42/58

Overall Syntax (3)

The query itself (“QueryBody”) is an expression.

XPath-expressions are also XQuery-expressions.
However, the grammar in the XQuery standard completely defines
expressions. Basically, XPath is a restricted version of XQuery. Since
XQuery has extensions in many places, it was not possible to simply
embedd an XPath expression as defined in the XPath standard.

As in XPath, all data values are sequences of items,
where items are atomic values or nodes.

Expressions can be arbitrarily nested.
While only recent SQL DBMS support the use of an SQL query with one
result value as a term, the arbitrary nesting was a basic design principle in
XQuery. It is sometimes called a funtional language.

13. XQuery II 43/58

Expressions (1)

On the top level, an expression consists of one or more
subexpressions (“ExprSingle”) separated by “,” (sequence
concatenation operator).

On the next level, an expression (“ExprSingle”) is

a FLWOR-expression,

a quantified expression (some, every)

a typeswitch expression (see below)

an if-expression,

or an expression with the usual logical, comparison and
arithmetic operators (see below).

13. XQuery II 44/58

Expressions (2)

In comparison, the XPath 2.0 grammar has

a for-expression instead of the FLWOR-expression,

no typeswitch expression.

Note that the for-expressions in XPath 2.0 are valid
FLWOR-expressions in XQuery:

They have only the for and the return part.
It is legal in XQuery to leave out the other parts.

The for-clause is simplified: XQuery permits to declare
a type for the variable, and to add a positional variable
(see below).

13. XQuery II 45/58

Expressions (3)

The grammars for XQuery and XPath 2.0 are very similar
(they are generated from a single source, only some
possibilities are missing in XPath or replaced by simpler
mechanisms).

Continuing the comparison, one finds that

Quantified expressions (some, every) permit a type
declaration for the variable in XQuery.

In XPath, no such type declaration is possible. In XQuery, it is
optional (thus, XPath is still a subset of XQuery).

13. XQuery II 46/58

Expressions (4)

The “valueExpression” (Argument of unary + and -,
i.e. at the end of the operator hierarchy) is a path
expression in XPath. In XQuery, there are two additional
possibilities:

validate (strict|lax) { 〈Expression〉 }

The expression must evaluate to exactly one document or element
node. It is treated as an XML infoset (i.e. existing type annotations
are ignored), validated according to the “in-scope schema
definitions”, and a new tree is built from the PSVI. However, the
“Schema Import Feature” is optional in XQuery.

An “extension expression” with a pragma:
(# ...#) { 〈Expression〉 }

13. XQuery II 47/58

Expressions (5)

As explained above, the XPath grammar permits the
namespace axis, with is not supported in XQuery.

But because it can be supported only in an inefficient way, it is anyway no
longer recommended to use it.

The next difference is in the “Primary Expression”:

Both languages permit numeric and string literals,
variable references, expressions in (...), the context
item “.”, and function calls.

XQuery permits in addition constructors (see below),
and “ordered|unordered { 〈Expression〉 }”.

13. XQuery II 48/58

Operator Precedences (1)

Prio Operator Assoc.
1 , (comma) left
2 := (assignment) right
3 for, some, every, typeswitch, if left
4 or left
5 and left
6 eq,ne,lt,le,gt,ge,=,!=,<,<=,>,>=,is,<<,>> left
7 to left
8 +, - left
9 *, div, idiv, mod left

10 union, | left

(continued on next slide)
13. XQuery II 49/58

Operator Precedences (2)

(continued from previous slide)

Prio Operator Assoc.
11 intersect, except left
12 instance of left
13 treat as left
14 castable left
15 cast left
16 - (unary), + (unary) right
17 ?, *, + (Occurrence Indicators) left
18 /, // left
19 [], (), {} left

Only differences (additions) to XPath: :=, typeswitch.
13. XQuery II 50/58

typeswitch-Expression (1)

The typeswitch-expression permits to check the
dynamic type of an expression, and to distinguish
different cases based on this type:

typeswitch($cust/address)
case $a as element(*,USAddr) return $a/state
case $a as element(*,CanAddr) return $a/province
case element(*,GermanAddr) return ()
default return fn:error("Unknown address type")

element(*,USAddr) matches any non-nilled element
node with type annotation USAddr.

Or a type derived from that. This example needs schema validation.

13. XQuery II 51/58

typeswitch-Expression (2)

The first case-clause with a matching type is selected, or
the default clause if non matches.

A variable must be declared in the case only if the value
of the original expression is needed to compute the
return value.

The scope of this variable declaration is this single case. Different cases
can declare variables with the same name.

The same effect can be achieved with conditional
expressions (if) and “instance of”.

“treat as” is necessary in addition to use the value as a value of its real
type. So in the end, the typeswitch simplifies the expression.

13. XQuery II 52/58

Inhalt

1 Comparison with SQL

2 Grammar Overview

3 Prolog, Functions

13. XQuery II 53/58

Namespaces

Namespaces can be defined in the Prolog:

declare namespace Prefix = "URI";

declare default element namespace "URI";

declare default function namespace "URI";

The following namespace prefixes are predeclared:

xml = http://www.w3.org/XML/1998/namespace

xs = http://www.w3.org/2001/XMLSchema

xsi = http://www.w3.org/2001/XMLSchema-instance

fn = http://www.w3.org/2005/xpath-functions

local = http://
www.w3.org/2005/xquery-local-functions

13. XQuery II 54/58

User-Defined Functions (1)

One can declare functions in the prolog of the main
module (i.e. before the query) and library modules.

Functions must be in a namespace, but for functions
declared in the main module XQuery defines the
namespace prefix local.

A simple example is:
declare function local:inc($n as xs:integer)

as xs:integer
{ $n+1 };

local:inc(1) (: This is the query :)

13. XQuery II 55/58

User-Defined Functions (2)

Thus, a function declaration consists of:

The keywords “declare function”,

the name of the function with namespace prefix,

a comma-separated list of parameter declarations in
(...), each consisting of a variable and optionally the
keyword “as” and a sequence-type,

optionally, a specification of the return type: the keyword
“as” and a sequence-type,

and body of the function: an expression in {...}

and finally a “;”.

13. XQuery II 56/58

User-Defined Functions (3)

If the types are not specified, item()* is assumed (the
most general type).

Instead of a function body, one can also specify the
keyword “external”.

It is implementation-dependent if an how functions written in some other
language (e.g., C) can be linked to the XQuery evaluator.

Functions can be recursive.
And also mutually recursive. XQuery becomes in this way computationally
complete, but then it cannot guarantee termination.

13. XQuery II 57/58

References

Scott Boag, Don Chamberlin, Mary F. Fernńndez, Daniela Florescu, Jonathan
Robie, Jérôme Siméon (Eds.):
XQuery 1.0: An XML Query Language.
W3C Recommendation 23 January 2007.
[http://www.w3.org/TR/xquery/]

Wolfgang Lehner, Harald Schöning:
XQuery. Grundlagen und fortgeschrittene Methoden.
dpunkt.verlag, 2004, ISBN 3-89864-266-6, 290 Seiten.
[http://www.xquery-buch.de/]

Howard Katz (Ed.), Don Chamberlin, Denise Draper, Mary Fernández, Michael
Kay, Jonathan Robie, Michael Rys, Jérôme Siméon, Jim Tivy, Philip Wadler:
XQuery from the Experts. A Guide to the W3C XML Query Language.
Pearson Education Inc., 2004, ISBN 0-321-18060-7, 484 pages.

Jim Melton, Stephen Buxton:
Querying XML: XQuery, XPath, and SQL/XML in Context.
Morgan Kaufmann/Elsevier, 2006, ISBN 1-55860-711-0, 815 pages.

Rudolf Jansen:
XQuery: Eine praxisorientierte Einführung.
Software & Support Verlag GmbH, 2004, ISBN 3-935042-65-5, 167 Seiten.

13. XQuery II 58/58

http://www.w3.org/TR/xquery/
http://www.xquery-buch.de/

	Comparison with SQL
	Examples, Comparison with SQL

	Grammar Overview
	Grammar Overview

	Prolog, Functions
	Prolog, Functions
	References

