XML and Databases

Chapter 11: XPath lll: Functions

Prof. Dr. Stefan Brass
Martin-Luther-Universitat Halle-Wittenberg

Winter 2019/20

http://www.informatik.uni-halle.de/~brass/xml119/

11. XPath lll: Functions 1/58

http://www.informatik.uni-halle.de/~brass/xml19/

Objectives

After completing this chapter, you should be able to:

write XPath expressions for a given application.

explain what is the result of a given XPath expression
with respect to a given XML data file.

explain how comparisons are done, and why XPath has
two sets of comparison operators (e.g. = vs. eq).

define “atomization”, “effective boolean value”.
enumerate some axes and explain abbreviations.

explain features needed for static type checking.

11. XPath Ill: Functions

2/58

Inhalt

@ General Remarks

@® Node Properties

® Sequences

O Aggregation Functions

@ Boolean, Numeric, String Functions

@ Other Functions

11. XPath lll: Functions 3/58

General Remarks (1)

@ Many functions permit the empty sequence as input.

E.g. argument type “node () ?" means a sequence
consisting of 0 or 1 nodes.

e Most functions return the empty sequence if the input is
the empty sequence.

E.g. node-name has result type QName?, which means that the result
is a QName or the empty sequence. The empty sequence is returned if
the input is the empty sequence, but also for nodes that have no

name, i.e. text nodes, document nodes, or comment nodes.

e Some functions return the empty string if the input is
the empty sequence.

An example of this is name. Its return type is xs:string, therefore it

is clear that it cannot return the empty sequence.

11. XPath lll: Functions 4/58

General Remarks (2)

@ There can be several functions with the same name, but
different number of arguments (overloading).

Functions that differ only in argument types were avoided if possible.
However, they are sometimes needed for numeric functions, and also

seldom for backward compatibility.

@ A typical case is a function with an optional argument,
e.g.
e name(n): Returns the name of node n.

e name (): Returns the name of the context node.

If the context item is no node, this gives an error.

11. XPath lll: Functions 5/58

General Remarks (3)

@ Type promotion:

e If a function is declared with an argument of type
double, one can call it with an argument of type
decimal (or any of its subtypes, e.g. integer).

The argument value is automatically converted to a double

(possibly with a loss of precision).

@ In the same way, a decimal value is automatically
converted to float value if necessary.

e Also float can be converted to double.

e anyURI is converted to string if needed.

11. XPath lll: Functions 6/58

General Remarks (4)

@ Type substitution:

o An element of subtype can be used wherever an element
of the supertype is required.

e E.g., if a function is declared with an argument of type
decimal, one can pass an integer value (integer is a
subtype of decimal).

e This is not type promotion, because the value is not
changed/converted: It remains an integer.

E.g. if the parameter $n is declared as decimal, but the actual value
is an integer, “$p instance of xs:integer” inside the function

returns true.

11. XPath lll: Functions 7/58

General Remarks (5)

@ More Function Conversion Rules:

o If the declared argument type is a sequence of atomic
values, atomization is applied, i.e. the typed value of
nodes is taken.

E.g. if an attribute is declared of type integer, one can specify the
attribute node as argument to a function that requires an integer:

The node is automatically converted to its value.

o If an atomic value is of type xs:untypedAtomic
(resulting from a non-validated XML document),
it is converted to the required type.

If a function has variants for different numeric types, double is chosen.

11. XPath lll: Functions 8/58

General Remarks (6)

e Additional Conversions in XPath 1.0 Compatibility Mode:

e A sequence can be automatically converted to its first
element.

For XPath 2.0, it is an error to pass a sequence with more than one

element if the function accepts only a single value.

e For the expected types string or double, very generous
type convertions are done: More or less every value is
converted.

E.g. "abc" can be converted to double, the result is NaN (not-a-number).

The boolean value “true” is converted to 1, “false” to 0.

11. XPath lll: Functions 9/58

Subtle Differences lll

@ Let the context node be
<F. A="3"/>
and suppose that the document was not schema-validated,
so the attribute is of type untypedAtomic.

@ Then 1 to Q@A works.

The untypedAtomic value is converted to integer.

@ But 1 to @A+1 gives a type error.

+ accepts different numeric types, and the untypedAtomic value of @A is

converted to double. But double is no legal input type for to.

@ A type conversion is needed: 1 to xs:integer (GA)+1.

11. XPath lll: Functions 10/58

@® Node Properties

Inhalt

11. XPath Ill: Functions

11/58

Node Properties (1)

@ name ([n]): Node name (string that includes prefix)
Argument type: node () ?, result type: xs:string. Function returns empty
string if the input is the empty sequence or a document, text, or comment
node. The argument is optional (default: context node).

@ node-name (n): Node name (QName: URI, local part)
Argument type: node () 7. Result type: xs:QName?. Function is new in
XPath 2.0.

@ local-name([n]): Node name (without prefix)

Argument type: node () ?, result type: xs:string. Argument is optional.

@ namespace-uri([n]): Namespace part of node name.

Argument type: node () ?, result type: xs:string. Argument is optional.

Result is empty string if node has no namespace.

11. XPath lll: Functions 12/58

Node Properties (2)

@ string([n]): String value of a node or atomic value.

Argument: item()?. Result: xs:string. Atomic values are casted to
string, nodes are mapped to their string value (see Chapter 8, e.g. for

element nodes, this is the concatenation of all decendant text nodes).
@ data(n): Replaces nodes in input by typed value.

Argument: item()* (arbitrary sequence). Result: xs:anyAtomicTypex.
This is atomization (see above): Atomic values in the input sequence are
copied to the output isequence unchanged, nodes are replaced by their
typed value. Nodes with pure element content cause a runtime error if

document was schema-validated. New in XPath 2.0.
@ nilled(n): True if element contains xsi:nil="true".

Argument: node (). Result: xs:boolean?. If the document was not
validated (wrt schema), the result is false even if attribute is present. The

empty sequence is returned for non-element nodes. New in XPath 2.0.

11. XPath lll: Functions 13/58

Node Properties (3)

@ document-uri(n): URI under which the document can
be accessed.

Argument: node () ?. Result: xs:anyURI?. For document nodes n, an
absolute URI x is returned, such that n=doc(x). For other nodes, the
empty sequence, or if no such URI is known, the result is the empty
sequence. New in XPath 2.0

@ base-uri([n]): Base URI for resolving relative URIs.

Argument: node () 7. Result: xs:anyURI?. Base URI of the node, or if it
has none, searches recursively the ancestors. The URI of the input
document, an external entity, or of an xml:base attribute is returned. If no
URI is found, the empty sequence is returned. The argument is option
(default: context item). New in XPath 2.0. See also static-base-uri()

and resolve-uri().

11. XPath lll: Functions 14/58

Node Properties (4)

@ lang(/, [n]): Checks whether language / is specified
with xml:lang for node n

Argument /: xs:string (e.g., "de", "en-US"), n: node() (default: context
node). Result: xs:boolean. This function first determines the value of the
attribute xml:lang of node n or its nearest ancestor that has such an
attribute. This attribute can be found with the following XPath expression:
(ancestor-or-self::*/@xml:lang) [last ()]. If there is no such attribute
node, the function returns false. Otherwise, let the value of the attribute
be x. If x and 1 are equal (ignoring case), the result is true. If / is the prefix
of x before the hyphen (again ignoring case), the result is true. Otherwise

the result is false. The second argument has been added in XPath 2.0.

11. XPath Ill: Functions

15/58

Finding Nodes (1)

@ doc(u): Get document node for given URI.

Argument: xs:string? Result: document-node () 7. A runtime error occurs
if there is no document with the given URI. This function is stable, it is
guaranteed to return the same node if it is called several times with the
same URI (during the evaluation of a query). New in XPath 2.0 (however,
XSLT 1.0 has a function document ()).

@ doc-available(u): Check whether there is a document
with a given URI.

Argument: xs:string? Result: xs:boolean. This returns true if doc(u)
would return a node. It can be used in an if-expression to avoid the
runtime error that doc(u) would generate if there is no document with
URI u. New in XPath 2.0.

11. XPath Ill: Functions

16/58

Finding Nodes (2)

@ collection(u): Nodes in container identified by URI.

Argument: xs:string? Result: node () *. This might be the document
nodes of the documents in a directory identified by the URI. Containers
also exist in XML databases. It is not necessary that only document nodes
are returned. New in XPath 2.0.

@ root(n): Root of the tree that contains node n.

Argument type: node ()7, result type: node () 7. Argument is optional
(default: context node). Function is new in XPath 2.0.

11. XPath lll: Functions 17/58

Finding Nodes (3)

e id(/, [n]): Nodes with ID in i in document containing
node n.

Argument i: xs:string*, n: node() (default: context node). Result:
element () *. Each string in / is parsed like an IDREFS value, i.e. it might
contain several IDs, separated by spaces. All these IDs in all strings in the
sequence | are considered for a possible match (values that are not
syntactically legal IDs are ignored). For each such ID, the (first) element
node with that ID in the document containing node n is added to the
output sequence. It is no error if there is no node with a given ID. The
output sequence contains the resulting nodes in document order without
duplicates. The root node reachable from node n must be a document
node. New in XPath 2.0.

11. XPath Ill: Functions

18/58

Finding Nodes (4)

e idref (i, [n]): Nodes with IDREF value containing an
ID in i (in document containing node n).

Argument i: xs:string*, n: node() (default: context node). Result:
node () * (actually, only element and attribute nodes are returned).
Candidate IDs are determined from the list i as above. Then every
attribute and element node in the document identified by n that contains
an IDREF/IDREFS-value that matches an ID in the candidate list is
returned. In case of IDREFS-values, it suffices if one of the IDs matches a
candidate ID (from /). Note that in the classical DTD case, the attribute
node of type IDREF/IDREFS is returned. Element nodes are returned only
for schema-validated documents, when their contents is of this type.
Again, the result is a list of nodes in document order without duplicates.
New in XPath 2.0.

11. XPath Ill: Functions

19/58

® Sequences

Inhalt

11. XPath Ill: Functions

20/58

Functions for Sequences (1)

@ 51, S: Sequence concatenation.

The operands and the result have type item()* (arbitrary sequences).

@ index-of (s, e, [c]): Return list of positions at which
element e occurs in sequence s (using collation c).

Argument s: xs:anyAtomicType*, e: xs:anyAtomicType, c: xs:string.
Result: xs:integer*. Values of type xs:untypedAtomic are compared as
if they were of type xs:string. The collation c is only important for string
comparisons. If an element of s cannot be compared with e, it counts as
different (no type error occurs). Note that the input sequence is atomized
before the comparison (this may change positions). The first element of s
has position 1. E.g. index-0f ((10,20,30,20), 20) = (2,4). New in
XPath 2.0.

11. XPath lll: Functions 21/58

Functions for Sequences (2)

@ insert-before(s;, p, s»): Returns the sequence
consisting of the prefix of s; before position p, then s,
then the rest of s;.

Argument s;, sp: item()*, p: xs:integer. Result: item()*. Positions are
counted from 1. Since XPath makes no difference between single elements
and sequences of length 1, s, can also be an element.

E.g. insert-before((10,20,30), 2, 15) = (10,15,20,30). XPath
never does any updates, so s; is not changed. If p <0, it is treated

like p = 1. If p > length of s;, the insertion is done at the end. New in
Xpath 2.0.

e remove(s, p): Returns a copy of sequence s without
element at position p.

Argument s: item()*, p: xs:integer. Result: item()*. The effect is the

same as $s[position() ne $p]l. New in XPath 2.0.

11. XPath lll: Functions 22/58

Functions for Sequences (3)

@ subsequence(s, f, [/]): Returns subsequence of s
consisting of (at most) / elements (“length”) starting at
position f (“from").

Argument: s: item() *, f: xs:double, /: xs:double (default: infinite).
Result: item() *. First item is position 1. If / is outside the bounds of index
positions, it is implictly corrected (no error occurs). The arguments f and /
are rounded to integers. They are declared as xs:double, because many
computations on untyped data return this type. (Furthermore, it increases
the symmetry with substring, which existed already in XPath 1.0: There,

all numbers were double values.) New in XPath 2.0.

@ reverse(s): Gives s with inverse order of elements.

Argument: s: item()*, Result: item() *. New in XPath 2.0.

11. XPath lll: Functions 23/58

Functions for Sequences (4)

e distinct-values(s, [c]): Returns a sequence that
contains the same elements as s, but without duplicates
(using collation ¢ for string comparisons).

Argument: s: anyAtomicType*, c: xs:string (default in static context).
Values of type xs:untypedAtomic are compared as if they were strings,
but they are still of type xs:untypedAtomic in the output (they are not
converted to xs:string). The output order is implementation-dependent
(e.g., a typical implementation would be to sort the elements, but some
internal order could be used). The implementation is also free to choose
any of the equal elements, e.g. if the collation makes "A" eq "a", and
both appear in the input, it is not clear which one will appear in the output.
Elements of different type that connot be compared with eq are considered
as different (no type error occurs). Also duplicates of NaN are eliminated,

although it is usually not considered as equal to itself. New in XPath 2.0.

11. XPath Ill: Functions

24/58

Exercise

@ Suppose that the context node is
<x a="c1 c2">
<y a="c2 c3 c4"/>
<z a="c2">
<y a="c2"/>
</z>
<y a="c2"/>
</x>
Attribute a is declared as xs:NMTOKENS.

@ What is the result of
index-of (//y/0a)

11. XPath lll: Functions 25/58

Optimizer Hint

@ unordered(s): Returns arbitrary permutation of s.

Argument: item()*. Result: item()*. Note that this cannot be used for
e.g. computing a random list element. In many systems, it will simply be
the identity mapping. However, it tells the optimizer that the user does not
care about the order of the result: Otherwise, XPath nearly always defines
an order of the elements, because it works with sequences, not (multi)sets.
The query optimizer might then choose a more efficient evaluation strategy
for the argument s (to some degree, also for outer expressions, but that is
more difficult: The typical case is probably to use unordered on the
outermost level, although one can construct cases where it is more efficient
somewhere inside the expression.) Note that unordered is unnecessary,
when later a function like count is applied, for which the exact order is
anyway not important. If duplicate elimination is needed, as

e.g. for s | s, enclosing it in unordered(...) probably does not help
too much (unless the optimizer can prove that there will be no duplicates).
New in XPath 2.0.

11. XPath Ill: Functions

26/58

@ Aggregation Functions

Inhalt

11. XPath Ill: Functions

27/58

Aggregation Functions (1)

@ count(s): Number of elements in sequence s.

Argument type: item()*. Result: xs:integer. This is the length of s.

e sum(s, [z]): Sum of elements in sequence s. For the
empty sequence, z is returned.

Argument s: xs:anyAtomicType*, z: anyAtomicType? (default: integer 0).
Result: xs:anyAtomicType. After atomization, XPath determines a
common type for the sequence elements (one of: xs:integer,
xs:decimal, xs:float, xs:double, xs:dayTimeDuration,
xs:yearMonthDuration) and converts all elements to this type with the
usual promotion rules (xs:untypedAtomic is converted to xs:double). If
this is not possible, the function raises an error. Otherwise, the sum of the
converted values is returned (unless the sequence is empty, in which case z
is returned: Important for dynamically typed systems: () has no type). In

XPath 1.0, only the sum of doubles could be computed (also no z).

11. XPath lll: Functions 28/58

Aggregation Functions (2)

@ avg(s): Average of elements in sequence s.

Argument type: anyAtomicType*. Result: xs:anyAtomicType?. This first
computes the sum of the elements of s (see sum above), and then divides
the result by the number of elements in s. If s is the empty sequence, the

empty sequence is returned.

@ min(s, [c]): Minimum of elements in sequence s.

Argument s: anyAtomicType*, c: xs:string (default: default collation in
context). Result: xs:anyAtomicType?. The elements of the sequence are
first atomized, and then converted to a common type (which must support
the le operator, e.g. xs:(QName and xs:anyURI are excluded;
xs:untypedAtomic is converted to xs:double. If this is not possible, an
error occurs. Then an element is returned that is < all other elements. The

collation c is only important for string types. New in XPath 2.0.

e max(s, [c]): Maximum of elements in sequence s.

11. XPath lll: Functions 29/58

Exercise

e Consider again:
<GRADES-DB>
<RESULT>
<SID>101</SID>
<CAT>H</CAT>

<ENO>1</ENO>
<POINTS>10</POINTS>

@ What is the average number of points for Homework 17

@ What does this mean?

for $p in max(//POINTS) return //RESULT[POINTS=$p]

11. XPath lll: Functions 30/58

Boolean Functions (1)

o true(): Constant value “true”.

@ false(): Constant value “false”.

Result: xs:boolean. Otherwise, XPath has no boolean constants.

@ empty(s): Sequence s is empty.

Argument: item()*. Result: xs:boolean. If s is the empty sequence, the

function returns true, otherwise, it returns false. New in XPath 2.0.

@ exists(s): Sequence s is not empty.

Argument: item()*. Result: xs:boolean. If s is the empty sequence, the
function returns false, otherwise, it returns true. Often, this function is
not needed: For a sequence of nodes, the effective boolean value is true iff
the sequence is not empty. But if the first element can be an atomic value,

exists() might be important. New in XPath 2.0.

11. XPath lll: Functions 31/58

@ Boolean, Numeric, String Functions

Inhalt

11. XPath Ill: Functions

32/58

Boolean Functions (3)

@ deep-equal(s;, s, [c]): Check whether s; and s, are
very similar, including descendant nodes.

Argument s;, s3: item() *, c¢: xs:string (collation). Two sequences are
deep-equal iff they have the same length, and each pair of elements at the
same position is deep-equal. Atomic values are deep-equal if they can be
compared with eq (so they have similar types), and eq returns true. Two
nodes can be deep-equal only if they have the same kind. Two text nodes
are deep-equal if their string-values are equal. Two attribute nodes are
deep-equal if they have the same name, and their typed value is
deep-equal. Two element nodes are deep-equal if they have the same
name, their set of attribute nodes is deep-equal, and: (1) both have a
simple type, and their typed values are equal, or (2) (a) both have a
complex type with element-only content, or both a complex type with
mixed content, or both a complex type with empty content, and (b) their
sequences of child nodes (ignoring comment and Pl nodes) is deep-equal.
New in XPath 2.0. Continued —

11. XPath Ill: Functions

33/58

Boolean Functions (4)

@ deep-equal(s;, s, [c]): Continued (comments):

o If nodes are identical, i.e. n; is n», then also
deep-equal(ny, n2). The converse is not true.
E.g., if one copies a tree, the result is deep-equal, but not

identical. This also holds if the same subtree appears in two parts of

a document: Nodes with different parents can still be deep-equal.
o If A is declared e.g. as decimal, the following nodes are

deep-equal:

<E A="3" B=“Xyz"/>
<E B="xyz" A="3.0"><!-- comment --></E>

o Whitespace-only text nodes are not ignored in the
comparison.

11. XPath lll: Functions 34/58

Numeric Functions (1)

@ abs(x): Absolute value.

There a four versions of this function: One with argument and result
type xs:integer, one for the numeric type xs:decimal, one for xs:float,
and one for xs:double. If x is negative, the function returns —x,

otherwise x (so that the result is always > 0). New in XPath 2.0.

@ ceiling(x): Round to next greater whole number.

Again, there are four versions of this function for the four important
numeric types. The result type is the same as the argument type,
e.g. ceiling(1.2)=2.0. This function exists already in XPath 1.0, but

there all numbers were double precision floating point numbers.

@ floor(x): Round to next smaller whole number.

Again, there are four versions for the four important numeric types. The

result type is the same as the argument type, e.g. floor(1.8)=1.0.

11. XPath lll: Functions 35/58

Numeric Functions (2)

@ round(x): Round to nearest whole number.

The four numeric types are supported (see above). The result type is the
same as the argument type. E.g. round(1.2)=1.0, round(1.8)=2.0. If x
ends in .5, it is rounded upwards: round(1.5)=2.0, round(-1.5)=-1.0.

@ round-half-to-even(x, [n]): Round x to n decimal
places to the right of the decimal point.

There are the usual four versions of this function, but the typical case is
with argument x: xs:decimal? and result xs:decimal?. The argument n
has always type xs:integer (the default value is 0). The function
produces the nearest number that is a multiple of 10~ ".

E.g. round-half-to-even(10.183, 1) = 10.2. If the input x is exactly in
the middle between two possible results, the one with an even last digit is
chosen (e.g. 0.5—0, 1.5—2). This ensures that rounding does not
systematically make the average slightly larger. New in XPath 2.0.

11. XPath lll: Functions 36/58

String Functions (1)

@ codepoints-to-string(c): Construct string for given
sequence of Unicode character codes.

Argument: xs:integer*. Result: xs:string. New in XPath 2.0.

@ string-to-codepoints(s): Map given string into
sequence of Unicode character codes.

Argument: xs:string?. Result: xs:integer*. Note that a character that
is represented as a surrogate pair (two 16-bit numbers in the internal string
representation) counts only as one character and thus results in a single
number in the output sequence. The resulting numbers are in the range 1
to 0x10FFFF. This function is new in XPath 2.0.

11. XPath lll: Functions 37/58

String Functions (2)

@ normalize-unicode(s,|[f]): Replace different variants
to denote a character by a unique representation.

Argument s: xs:string? (input string to be normalized), f: xs:string
(normalization form/algorithm, default "NFC"). E.g. characters with
accents like & can be represented as a single character code, or as two (a
followed by ̈: “Combining Diaresis”). Thus, string comparisons
might fail although the characters look identical. NFC uses the single,
combined character. NFKC in addition maps “compatibility variants” of
characters to a single code. It is recommended that XML documents are
normalized, therefore these problems usually don't occur. One problem is
that NFC permits a combining character at the beginning of a string,
therefore the concatenation of two NFC-normalized strings is not
necessarily NFC-normalized. The normalization form "fully-normalized"
would exclude this (e.g. by prepending a space to the lonely combining
character). XPath implementations are not required to offer other

normalization forms besides "NFC".

11. XPath Ill: Functions

38/58

String Functions (3)

e compare(s;, s, [c]): Returns —1, 0, 1 depending on
which string comes first according to collation c.

Argument s;, s3: xs:string?, ¢: xs:string (must be URI, default is
default collation from static context). Result: xs:integer?. The result is
—1 if 51 comes before s; (in alphabetic or other order ¢), 1 if s, comes
before si, and 0 if s; and s, are equivalent (depending on the collation,
e.g. 8 might count as equal to ss). The function compare is implicitly used
by the comparison operators for strings (therefore, the results are

guaranteed to be compatible).

@ codepoint-equal(s;, sp): Strings are equal byte by byte.

Argument si, sp: xs:string?. Result: xs:boolean?. This returns true if

the two strings are exactly equal.

11. XPath lll: Functions 39/58

String Functions (4)

@ concat(s;, S, ..., s,): Concatenation of s; to s,,.

This is the only function with a completely variable number n > 2 of
arguments (retained for compatibility with XPath 1,0). All other functions
have only a fixed number of versions that differ in the number of
arguments (or the specific numeric type). The arguments have type
xs:anyAtomicType?. They are converted to xs:string before the
concatenation (the empty sequence is treated as empty string).

The result has type xs:string.

@ string-join(s,d): Returns the concatenation of the
strings in sequence s, separated by delimiter d.
Argument s: xs:string*, d: xs:string. Result: xs:string.

E.g. string-join(("a", "bc", "d"), ", ") gives "a, bc, 4".
New in XPath 2.0.

11. XPath Ill: Functions

40/58

String Functions (5)

@ string-length([s]): Number of characters in s.

Argument: xs:string? (default: string value of context item). Result:
xs:integer. The string length of the empty sequence is 0. Note that a
surrogate pair (used for code points above 0xFFFF) counts as one

character, not two.

@ substring(s, f, [/]): Returns the substring of s that
starts at position f and consists of / characters.

Argument s: xs:string? (input string), f: xs:double (from position),

I: xs:double (maximal length of output, default: infinite). The first
character has position 1. E.g. substring("abcde", 2, 3) is "bcd". The
numbers f and / are rounded. If f is O or negative, it is implicitly replaced
by 1. In the two-argument from, when gets the entire rest of the input

string starting at position f.

11. XPath lll: Functions 41/58

String Functions (6)

@ normalize-space([s]): Remove leading and trailing
whitespace, replace internal sequences of whitespace
characters by a single > .

Argument: xs:string? (default: string value of context item). Result:
xs:string. This function has the same effect as whiteSpace="collapse"
in XML Schema.

@ translate(s, a, b): Maps every character in s that
appears in a to the corresponding character in b.

Argument s: xs:string?, a, b: xs:string. Result: xs:string. Every
character in s that appears in a at position i is replaced by the character at
position i in b. If b is shorter than i, the character is deleted. Characters
in s that do not appear in a are copied to the output string unchanged.

Example: translate("aBacx", "abc", "AB") gives "ABAx".

11. XPath Ill: Functions

42/58

String Functions (7)

@ upper-case(s): Make all letters upper case.
Argument: xs:string?. Result: xs:string. Note that the string length
may change, e.g. 8 is mapped to SS. Some national conventions in certain

countries are not respected, if necessary, use replace. New in XPath 2.0.

@ lower—-case(s): Make all letters lower case.

Argument: xs:string?. Result: xs:string. New in XPath 2.0.

11. XPath lll: Functions 43/58

String Functions (8)

@ contains(s;, s, [c]): Check whether s, appears as a
substring in s;.

Arguments si, s: xs:string?, c: xs:string (identifies collation, this
argument is new in XPath 2.0). Result: xs:boolean. The collation defines
a way to map a string to a sequence of “collation units”, then true is
returned if this sequence for s, is a subsequence of the sequence for sj.
E.g. contains("StraBe", "s", "http://...") might return true if the
referenced collation maps “8” to two collations units corresponding to ss.
Also the converse case is possible: Several input characters may be mapped
to a single collation unit, in which case the substring test with only one of
these characters would fail. Finally, there can be "ignorable collation
units”, which are deleted for both strings before the subsequence test.
There can be collations that do not support the mapping to collation units
(since for normal comparisons, this feature is not needed). Then an error

may be raised. If s, is empty or the empty sequence, the result is true.

11. XPath Ill: Functions

String Functions (9)

@ starts-with(s;, s, [c]): Check whether s, is prefix
of s.

Arguments s;, s3: xs:string?, ¢: xs:string (identifies collation, this

argument is new in XPath 2.0). Result: xs:boolean.

@ ends-with(s;, s, [c]): Check whether s, is suffix
of s.

Arguments s;, s3: xs:string?, ¢: xs:string (identifies collation, this

argument is new in XPath 2.0). Result: xs:boolean.

11. XPath lll: Functions 45/58

String Functions (10)

@ substring-before(s;, s, [c]): Return the prefix of s
before the first match of s,.

Arguments s;, s3: xs:string?, ¢: xs:string (identifies collation, this
argument is new in XPath 2.0). Result: xs:string. A “minimal match” is
used. E.g. if “~" is ignorable, substring-before("a-b", "-b", ...) is
"a-", because "-b" matches "b". If there is no match, the result is the

empty string.

@ substring-after(s;, s, [c]): Return the suffix of s
after the first match of s,.

Arguments si, s: xs:string?, c¢: xs:string (identifies collation, this
argument is new in XPath 2.0). Result: xs:string. If s is the empty
string, the first match is at the beginning, thus the entire string s; is

returned. If there is no match, the result is the empty string.

11. XPath lll: Functions 46/58

Regular Expressions (1)

e matches(s, p, [f]): Checks whether (a substring of) s
matches pattern p (considering flags f).

Argument s: xs:string?, p: xs:string, f: xs:string. Result:
xs:boolean. Basically, the regular expression syntax is the same as for
XML Schema, however, there are a few additions: Since normally a match

can occur anywhere inside s, = and $ are supported: = matches only at the
beginning of the string, or at the beginning of a line if flag m (multi-line
mode) is used. $ matches at the end. Quantifiers like *? are supported,
which means that the shortest possible match is taken. Groups in
parentheses (...) may be referenced with a construct of the form \n,

e.g. \1. The flag s (“single line mode") means that “.” Aimatches also
newline, otherwise “." matches only all characters except newline. The
flag i makes comparisons case-insensitive. The flag x removes all
whitespace from p except inside character classes [...] (permits to split a

regular expression into several lines). New in Xpath 2.0

11. XPath Ill: Functions

47/58

Regular Expressions (2)

@ replace(s, p, r, [f]): Replaces all non-overlapping
occurrences of pattern p in s by r (with flags f).

Argument s: xs:string?, p, r, f: xs:string. Result: xs:string. If two
matches overlap, the first one is used. Matches for parenthesized
subexpressions of p can be used in r with “variables” $n. If several cases of
an alternative | match at the same position, the first one is used. If
subexpression n was not used in the match, $n="". Patterns that match
the empty string are forbidden. In r, the character $ must be written \$,
and \ as \\. New in XPath 2.0.

@ tokenize(s, p, [f]): Splits s into substrings seperated
by parts that match pattern p (with flags f).

Argument s: xs:string?, p, r, f: xs:string. Result: xs:string*. E.g.,
tokenize("ab c def ", "\s+") yields ("ab", "c", "def", "")
(note: \s matches ’> ’, TAB, CR, LF). p must not match "". New in
XPath 2.0.

11. XPath Ill: Functions

48/58

Exercise

e Consider again:

<GRADES-DB>
<STUDENT>
<SID>104</SID>
<FIRST>Maria</FIRST>
<LAST>Brown</LAST>
</STUDENT>

<RESULT>
<SID>101</SID>
<CAT>H</CAT>

@ Print first and last name of all students who did not
submit any homework.

11. XPath lll: Functions 49/58

@ Other Functions

Inhalt

11. XPath Ill: Functions

50/58

Context Functions (1)

@ last(): Context size (from dynamic context/focus).

Result type: xs:integer. Returns the length of the sequence that is

currently being processed (see above).

@ position(): Context position.

Result type: xs:integer. Position (counted from 1) of the current context

item in the sequence that is currently being processed.

@ static-base-uri(): Base URI from static context.

Result type: xs:anyURI?. This could e.g. be the URI of the XSLT
stylesheet. New in XPath 2.0.

@ default-collation(): Sort order for strings.

Result type: xs:string. New in XPath 2.0.

11. XPath lll: Functions 51/58

Context Functions (2)

@ current-dateTime(): Current date and time.

Result type: xs:dateTime. This is stable, i.e. it does not change during the

evaluation of a single query. New in XPath 2.0.

@ current-date(): Current date.

Result type: xs:date. This is simply the date component (with timezone)

of the value returned by current-dateTime (). New in XPath 2.0.

@ current-time(): Current time.

Result type: xs:time. This is the time component (with timezone) of the

value returned by current-dateTime(). New in XPath 2.0.

@ implicit-timezone(): Timezone used for local time.

Result type: xs:dayTimeDuration. New in XPath 2.0.

11. XPath lll: Functions 52/58

URI Utility Functions (1)

@ resolve-uri(r, [b]): Relative URI — absolute URI.

Argument r: xs:string? (relative URI), b: xs:string (base URI, default:
base URI from static context). Result: xs:anyURI?. If r is already an
absolute URI, it is returned unchanged. New in XPath 2.0.

@ escape-uri(s, r): Escape special characters as %XY.

Argument s: xs:string (URI in unescaped form), r: xs:boolean (“escape
reserved”, see below). Result: xs:string. Letters, digits, and -, _, ., !, 7,
*, 7, (,), and % are not escaped. If r is true, all other characters are
escaped (e.g. also /). If r is false, the characters ;, /, 7, :, @, & =, +, $, ,,
[, 1, and # are not escaped. Note that 7, is actually a reserved character,
but this function does not touch it in order to support “partially escaped”
input strings (and make this function idempotent). If necessary, use

replace(). New in XPath 2.0.

11. XPath Ill: Functions

53/58

URI Utility Functions (2)

@ encode-for-uri(u): Encodes file/directory name.

Argument: xs:string?. Result: xs:string. All characters except ASCII
letters a-z and A-Z, digits 0-9, -, _, ., and ~ are encoded as %X Y. Note
that e.g. also “/" is encoded. New in XPath 2.0.

@ escape-html-uri(u): Encode non-ASCII characters in
UTF-8 and then escape them as 7,XY.

Argument: xs:string?. Result: xs:string. All characters with codes
outside the range 32 to 126 are translated in a way appropriate for web
browsers. See HTML 4.0 spec., Appendix B.2.1. New in XPath 2.0.

@ iri-to-uri(u): Internationalized URI (IRI) — URI.

Argument: xs:string? Result: xs:string. Translates characters not valid
in an URI to UTF-8, then %X Y-encodes the bytes. May use special
encoding for domain names. See RFC 3987, 3.1. New in XPath 2.0.

11. XPath lll: Functions 54/58

Namespaces

@ in-scope-prefixes(n): Return a list of namespace
prefixes that a declared for a given element node.

Argument n: element (). Result: xs:string()*. This function returns all
namespace prefixes that are declared in node n or one of its ancestors. The
order os the prefixes is not prescribed. An empty string corresponds to the
default namespace. The prefix “xml” is always contained in the result. This
function is new in XPath 2.0. It is a replacement for the namespace axis,

which should no longer be used for efficiency reasons.

@ namespace-uri-for-prefix(p, n): URI of namespace
with prefix p as valid for node n.
Argument p: xs:string, n: element (). Result: xs:string?. The empty

sequence is returned if no namespace declaration for prefix p is found. New
in XPath 2.0.

11. XPath lll: Functions 55/58

QNames

@ local-name-from-QName (n): Local part of QName.

Argument n: xs:QName?. Result: xs:string?. New in XPath 2.0.

@ namespace-uri-from-QName(n):
Returns the namespace URI of QName n.
Argument n: xs:QName?. Result: xs:string()?. An empty sequence is

returned for the empty sequence as input, and if the input QName is in no

namespace. New in XPath 2.0.

@ expanded-QName (u, n): Constructs QName from
namespace URI u and local name n.
Argument u: xs:string?, n: xs:string. Result: xs:QName. If the first

argument is the empty sequence or the empty string, the result is in no

namespace. New in XPath 2.0.

11. XPath lll: Functions 56/58

Error and Trace Functions

e error([e], [m], [x]): Terminates execution, e, m, x are
used for generating an error message.

Argument e: xs:QName (identifier for error), m: xs:string (description of
error), x: item()* (additional data, error object). In the two and three
argument versions, e may be the empty sequence. Result: Does not return.
The exact form of the error message is implementation dependent. New in
XPath 2.0.

@ trace(x, m): Prints data x to a trace file labelled by
message m, returns x.

Argument x: item() *, m: xs:string. This is the identity mapping on the
first argument, but with the side effect to insert it (together with
message m) into the trace data set (e.g., trace file). Note that one cannot

rely on any specific order of the entries. New in XPath 2.0.

11. XPath Ill: Functions

57/58

References

@ Anders Berglund, Scott Boag, Don Chamberlin, Mary F. Fernandez, Michael Kay,
Jonathan Robie, Jérébme Siméon (Editors): XML Path Language (XPath) 2.0.
W3C Recommendation, 23 January 2007. [http://www.w3.org/TR/xpath20/]

@ Mary Fernandez, Ashok Malhotra, Jonathan Marsh, Marton Nagy,
Norman Walsh (Ed.): XQuery 1.0 and XPath 2.0 Data Model (XDM).
W3C Recommendation, 23 Jan. 2007, [http://www.w3.org/ TR/xpath-datamodel/]

@ Ashok Malhotra, Jim Melton, Norman Walsh (Ed.):
XQuery 1.0 and XPath 2.0 Functions and Operators.
W3C Recommendation, 23 January 2007. [http://www.w3.org/TR/xpath-functions/]

@ G. Ken Holman: Definitive XSLT and XPath.
Prentice Hall, 2002, ISBN 0-13-065196-6, 373 pages.

@ Michael Kay: XPath 2.0 Programmer’s Reference.
Wiley/Wrox, 2004, ISBN 0-7645-6910-4, 552 pages.

@ Michael Kay: XSLT 2.0 Programmer’s Reference, 3rd Edition.
Wiley/Wrox, 2004, ISBN 0-7645-6909-0, 911 pages.

@ Miloslav Nic, Jiri Jirat: XPath Tutorial.
Zvon [http://www.zvon.org/xxl/XPathTutorial /General /examples.html]

11. XPath lll: Functions 58/58

http://www.w3.org/TR/xpath20/
http://www.w3.org/TR/xpath-datamodel/
http://www.w3.org/TR/xpath-functions/
http://www.zvon.org/xxl/XPathTutorial/General/examples.html

	General Remarks
	General Remarks

	Node Properties
	Node Properties

	Sequences
	Sequences

	Aggregation Functions
	Aggregation Functions

	Boolean, Numeric, String Functions
	Boolean Functions
	Numeric Functions
	String Functions

	Other Functions
	Other Functions
	References

