XML and Databases

Chapter 9: XPath I:
Location Paths

Prof. Dr. Stefan Brass
Martin-Luther-Universitat Halle-Wittenberg

Winter 2019/20

http://www.informatik.uni-halle.de/~brass/xml119/

9. XPath |: Location Paths 1/67

http://www.informatik.uni-halle.de/~brass/xml19/

Objectives

After completing this chapter, you should be able to:

write XPath expressions for a given application.

explain what is the result of a given XPath expression
with respect to a given XML data file.

explain how comparisons are done, and why XPath has
two sets of comparison operators (e.g. = vs. eq).

define “atomization”, “effective boolean value”.
enumerate some axes and explain abbreviations.

explain features needed for static type checking.

9. XPath I: Location Paths

2767

@ Introduction

@® Location Paths

Inhalt

9. XPath I: Location Paths

3/67

e XPath (“XML Path Language") is a standard for
expressions that are mainly used for selecting parts of
XML documents (nodes in the XDM tree).

One can view this important subset of XPath as a pattern language: A tree

node matches a pattern if it is contained in the result of evaluating the

Introduction (1)

XPath expression (a sequence of nodes).

@ However, XPath expressions can also compute atomic
values or more generally any sequence allowed by XDM.
Arithmetic expressions map numbers to numbers, XPath maps a set of

documents (or really a “context”, see below) to a sequence of nodes and

atomic values. So it does not seem to be closed.

9. XPath I: Location Paths

4767

Introduction (2)

@ XPath is used e.g. in
o XSLT (XML Stylesheet Lang./Transformations)

E.g. for defining to which nodes a transformation template should
be applied, which parts of the input document should be copied to
the output document, and where processing in the input document
should continue after a template was applied.

o XPointer

To permit references to a part of a document. With classic URIs
(plus “#..."), one can point only to places in an HTML document,

where the author of the document has placed an anchor.

e XML Schema

For selecting nodes that are uniquely identified etc.

o XQuery (XML Query Language)

9. XPath |: Location Paths 5/67

Introduction (3)

@ The reason for the name “XPath" is that the expressions
are quite similar to path expressions in e.g. the UNIX file
system (directory tree).

However, XPath expressions are actually much more powerful. One could

imagine a future operating system that uses an XDM tree (or something

similar) to replace its file system.
@ For example,

/GRADES-DB/STUDENTS/STUDENT

is an XPath-expression that selects STUDENT-nodes that
are children of (the) STUDENTS node that is a child of the
GRADES-DB document element.

9. XPath |: Location Paths 6/67

Introduction (4)

@ Path expressions are used also in object-oriented
languages for navigating in complex structures.

E.g., in OQL. Again, they are much simpler than XPath. By the way, there
a full stop “."” is used instead of “/". The relational model does not need

path expressions because of its simple (flat) structure.

@ One can view XPath as a simple query language for XML.

It does not have joins and aggregations, but it has quite powerful

selections, and it has certian forms of semi-joins.

@ XPath has not itself XML syntax.

This is more compact. Furthermore, XPath is used in attributes.

9. XPath |: Location Paths 7/67

Introduction (5)

@ XPath 1.0 is a W3C Recommendation since
16 November 1999.

It began with work on the XSL Pattern Language, and the “location
paths” in drafts of the XPointer specification. XPath unified the two.

@ XPath 2.0 was published as W3C Recommendation on
23 January 2007.

The main change from XPath 1.0 is the stricter typing. In 1999, when

XPath 1.0 was published, there was no XML Schema yet (work on XML
Schema had just begun, XML Schema 1.0 was published in May 2001).
XPath 2.0 uses XML Schema types. Furthermore, variable bindings and
nested subqueries were added. XPath 2.0 has a compatibility mode that

removes most (but not all) incompatibilities with XPath 1.0.

9. XPath |: Location Paths 8/67

@ One can write a simple XSLT stylesheet that shows the
result of an XPath expression. Then any XSLT processor
(e.g., in a web browser) can be used.

How to do this is shown below. Also links to XSLT processors are given

that are independent of a browser (might give better error checking).

@ An XPath expression is already a simple XQuery query.
Thus, an XQuery processor can be used.

XQuery implementations are listed below (some with online demo).

Software (1)

@ XLab: Online XPath experiments

[http://www.zvon.org:9001 /saxon/cgi-bin/XLab/XML/

dex.html?stylesheetFile=XSLT /xlablndex.xslt]

xlabln-

9. XPath I: Location Paths

9/67

http://www.zvon.org:9001/saxon/cgi-bin/XLab/XML/xlabIndex.html?stylesheetFile=XSLT/xlabIndex.xslt
http://www.zvon.org:9001/saxon/cgi-bin/XLab/XML/xlabIndex.html?stylesheetFile=XSLT/xlabIndex.xslt
http://www.zvon.org:9001/saxon/cgi-bin/XLab/XML/xlabIndex.html?stylesheetFile=XSLT/xlabIndex.xslt

Software (2)

XQuery Implementations:

o Galax

Open source, from some authors/editors of the XQuery Specification.

[http://www.galaxquery.org/]

o X-HIVE

Commercial XML-DBMS, Online demo evaluator.
[http://support.x-hive.com/xquery/].

@ AltovaXML

The engine used in XMLSpy is free (contains validator: DTD/Schema,
XSLT 1.0/2.0, XQuery). [http://www.altova.com/altovaxml.html]

9. XPath |: Location Paths 10/67

http://www.galaxquery.org/
http://support.x-hive.com/xquery/
http://www.altova.com/altovaxml.html

Software (3)

XQuery Implementations, continued:

@ Qizx/open (open source Java implementation)

[http://www.axyana.com/qizxopen/] Online demonstration:
[http://www.xmImind.com:8080/xqdemo/xquery.html]

@ Saxon (from Michael Kay)

Michael Kay is editor of the XSLT 2.0 specification. The basic version of
Saxon (without static type checking and XQuery— Java compiler) is open
source. It includes support for XSLT 2.0, XPath 2.0 and XQuery 1.0.

[http://saxon.sourceforge.net/]

@ eXist (open source native XML database)

[http://exist.sourceforge.net/]
Online demo: [http://demo.exist-db.org/sandbox/sandbox.xql]

9. XPath |: Location Paths 11/67

http://www.axyana.com/qizxopen/
http://www.xmlmind.com:8080/xqdemo/xquery.html
http://saxon.sourceforge.net/
http://exist.sourceforge.net/
http://demo.exist-db.org/sandbox/sandbox.xql

Software (4)

XSLT Implementations:

@ Any modern web browser has XSLT support.

See, e.g., http://www.mozilla.org/projects/xslt/.

@ Xalan (Apache)

[http://xalan.apache.org/]

e XT (James Clark)

[http://www.blnz.com/xt/index.html], [http://www.jclark.com]

@ Sablotron

[http://www.gingerall.org/sablotron.html]

@ See above: Saxon, AltovaXML.

9. XPath |: Location Paths 12/67

http://xalan.apache.org/
http://www.blnz.com/xt/index.html
http://www.jclark.com
http://www.gingerall.org/sablotron.html

Trying XPath with XSLT (1)

@ Modern web browsers can apply an XSLT stylesheet to
visualize XML (by transforming it to HTML).

@ Thus, one writes a reference to the stylesheet in the XML
data file (input for XPath query), e.g.:

<?xml version="1.0"7>
<?xml-stylesheet type="text/xsl"

href="query.xsl"7?>
<GRADES-DB>

</GRADES-DB>

9. XPath I: Location Paths

13/67

Trying XPath with XSLT (2)

@ Then one looks at this data file in the browser. It
automatically fetches the stylesheet query.xsl (see next
four slides) and uses it for the transformation.

@ The stylesheet file mainly contains a transformation rule
that evaluates an XPath expression (with the root node
as starting point) and only shows the result of this
expression in the output.

@ However, additional transformation rules are necessary to
format the result of the XPath expression (arbitrary XDM
nodes) as HTML.

9. XPath |: Location Paths 14/67

Trying XPath with XSLT (3)

<?xml version="1.0"7>

<xsl:stylesheet
xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform"
version="1.0">

<xsl:output method="html"
encoding="I50-8859-1"
doctype-public="-//W3C//DTD HTML 3.2 Final//EN"
indent="yes"/>

9. XPath |: Location Paths 15/67

<xsl

</xs

Trying XPath with XSLT (4)

:template match="/">

<html>

<head><title>Query Result</title></head>

<body>

<xsl:apply-templates
select="//STUDENT/LAST" />
<I-- This is the XPath expression
to be tested -—>

</body>

</html>

l:template>

9. XPath I: Location Paths

16/67

Trying XPath with XSLT (5)

<xsl:template match="x*">
<1i>ELEMENT: <xsl:value-of select="name(.)"/>
(<xsl:value-of select="."/>)</1i>
</xsl:template>

<xsl:template match="0x">
<1i>ATTRIBUTE: <xsl:value-of select="name(.)"/>
(<xsl:value-of select="."/>)</1i>
</xsl:template>

<xsl:template match="text()">
TEXT: <xsl:value-of select="."/></1i>
</xsl:template>

9. XPath |: Location Paths 17/67

Trying XPath with XSLT (6)

<xsl:template match="comment()">
<1i>COMMENT: <xsl:value-of select="."/></1li>
</xsl:template>

<xsl:template match="/">
<1i>DOCUMENT: <xsl:value-of select="."/></1i>
</xsl:template>

<xsl:template match="processing-instruction()">
<1i>PROC-INSTR: <xsl:value-of select="name(.)"/>
(<xsl:value-of select="."/>)</1i>
</xsl:template>

</xsl:stylesheet>

9. XPath |: Location Paths 18/67

@ Location Paths

Inhalt

9. XPath I: Location Paths

19/67

Context (1)

@ An expression is evaluated relative to a context.
@ In XPath 1.0, the context consisted of:

e a node (context node)

e a context position (position of context node in current
set/sequence: positive integer 1, 2, ...)

a context size (number of nodes in current set: positive
integer)

e a set of variable bindings

e a function library

a set of namespace declarations

9. XPath |: Location Paths 20/67

Context (2)

@ XPath 2.0 distinguishes static and dynamic context of an
expression.

@ The reason is that XPath expressions can possibly be
compiled and optimized, and afterwards executed many
times on different documents.

@ In this phase, also static type checking is done.

@ The actual (dynamic) types of the values that are
computed during evaluation of an expression are either
equal to the static type of the expression or more specific
(derived from the static type).

9. XPath |: Location Paths 21/67

Context (3)

@ Dynamic context:

e context item (atomic value or node)
e context position

e context size

e variable values

e function implementations

e current dateTime

e implicit timezone

e available documents

e available collections, default collection

9. XPath |: Location Paths 22/67

Context (4)

@ Remarks about dynamic context:

o If the context item is a node, it is called context node.

o Context item, context position and context size are
together called the focus of an expression.

e The current dateTime is used for the XPath function
current-dateTime.
It is guaranteed that if this function is accessed multiple times
during an evaluation of an expression, it always returns the same

value. This simplifies optimizations.

9. XPath |: Location Paths 23/67

Context (5)

@ Remarks about dynamic context, continued:

e The implicit timezone is used for dateTime-values
without timezone (“local time") when comparing them
with values with timezone (UTC).

This seems not quite compatible with the XML Schema
specification which treats values in local time as if they could

possibly be in any timezone, leading to a partial order.

o Available documents and collections are used for the
functions doc and collection.

doc maps a URI to a document node, and collection maps a URI
to a sequence of nodes. The function collection can also be called

without argument, then it returns the default collection.

9. XPath |: Location Paths 24/67

Context (6)

@ An important part of the static context is type
information.

e XPath is always used embedded in another language
(e.g. XSLT, XQuery).

@ There are many parameters that are needed for evaluating
an XPath expression that must somehow be set in the
host language (e.g., namespaces).

Also collations are needed for string comparisons.

@ These are also part of the static context.

9. XPath |: Location Paths 25/67

Context (7)

@ Static context:

e XPath 1.0 compatibility mode.

This is true when the XSLT version is not 2.0.

e Statically known namespaces.

l.e. the namespace prefixes declared for the XPath expression.

e Default namespace for element and data types.

In XSLT, this can be set with

xsl:xpath-default-namespace="URI".

e Default namespace for functions.

XPath functions are in
http://www.w3.0org/2005/xpath-functions. XSLT automatically
initializes this component of the static context with the standard

namespace, so no prefix is needed when calling XPath functions.

9. XPath I: Location Paths

26/67

Context (8)

@ Static context, continued:

e Schema information (types/elements/attributes)

e Variable declarations (name and type).

Static type of context item.

o Function signatures (name, input/result types)
o Known collations, default collation.
e Base URI.

Statically known documents/collections.

The default type for a call to document is document-node ()7, and
for collection, it is node()*. If information should be available
already during compilation, the types could be different (more
specific?).

9. XPath |: Location Paths 27/67

Location Paths (1)

@ The purpose of an location path (or “path expression”) is
to select nodes in an XDM tree.

Actually, in its very last step, it can also compute a sequence of atomic
values (or a single value), not only a sequence of nodes.

A path expression is not the most general kind of XPath expression, but it
is the kind that is most often used.

@ There are absolute and relative paths:

e An absolute path starts with a “/" or “//", followed by
a relative path.

For “/", the relative path is optional. For “//", it is required.

o A relative path consists of a series of steps, separated
by “/” or H//”.

9. XPath |: Location Paths 28/67

Location Paths (2)

@ The “//" will later be explained as an abbreviation:

e The syntax must be defined including all abbreviations.

e For the semantics, it suffices to treat only XPath
expressions, in which the abbreviations are fully expanded
(normalized expressions that do not contain e.g. “//").

@ A step can be

e an axis step (in full or abbreviated syntax),

e a filter expression.

9. XPath I: Location Paths

20/67

Location Paths (3)

@ An axis step in full (verbose) syntax has the form
axis: : node-test [predictate]

The predicate may be missing or may be repeated.

@ The axis (e.g., child) selects a sequence of nodes by
their position relative to the context node.

@ The node test selects a subset of these nodes by their
name or type (kind).

@ The predicate(s) contain further conditions on the
resulting nodes (e.g., position, value).

9. XPath |: Location Paths 30/67

Location Paths (4)

@ A filter expression consists of a primary expression
followed by a sequence of zero or more predicates in

“f...0"
@ A primary expression is:

e Any XPath expression in parentheses (...).

A data type literal (constant), e.g. "abc".

A function call.

A variable reference, e.g. $x.

A context item reference:

9. XPath |: Location Paths 31/67

Location Paths (5)

@ E1/E2 is evaluated as follows:

e E1 is evaluated. The result must be a (possibly empty)
sequence of nodes, otherwise a type error is raised.

e E2 is evaluated once for every node in the result of E1 as
context node.

The context size is the length of the result of E1. The context
position is the position of the context node in the sequence
(depending on the axis, the position might be counted from the end

of the sequence, see below).

9. XPath |: Location Paths 32/67

Location Paths (6)

@ Evaluation of E1/E2, continued:

e If each evaluation of E2 returns a sequence of nodes, the
result of E1/E2 is the union of the nodes in these
sequences in document order (with duplicates removed).

e If each evaluation of E2 returns a sequence of atomic
values, these sequences are concatenated (without

e If E2 returns nodes and atomic values, a type error is

duplicate elimination).

raised.

9. XPath I: Location Paths

33/67

XPath Axis (1)

@ An axis selects a sequence of nodes based on their
position in the document tree relative to the current
context node.

@ There are 13 axis (in XPath 1.0 and in XPath 2.0).
@ Of these, 8 are forward axes (cont. on next page):

e self
e child

descendant

o descendant-or-self

following-sibling

9. XPath |: Location Paths 34/67

XPath Axis (2)

@ Forward axes, continued:

o namespace (deprecated, not in XQuery)

following
attribute

@ There are 5 reverse axes:

parent

ancestor

ancestor-or-self

preceding-

preceding

sibling

9. XPath I: Location Paths

35/67

@ A minimal XPath implementation needs to support only

XPath Axis (3)

the following axes:

self

child

parent

descendant
descendant-or-self

attribute

9. XPath I: Location Paths

36/67

@ The following axes partition a document (except attribute
and namespace nodes): self, ancestor, descendant,

XPath Axis (4)

preceding, following.

e If an axis is a reverse axis, the context position used for
evaluating predicates in this location step is assigned in

inverse document order.

For forward axes, it is assigned in document order. If the predicate is not in

a location step, the position is the position in the sequence.

@ The selected nodes with their position are shown in an

example on the following slides.

The context node is marked with a double border.

9. XPath I: Location Paths

37/67

self:

XPath Axis (5)

[context node
[n] selected node n

9. XPath I: Location Paths

38/67

child:

XPath Axis (6)

[context node
[n] selected node n

9. XPath I: Location Paths

39/67

descendant:

XPath Axis (7)

[context node
[n] selected node n

9. XPath I: Location Paths

40/67

XPath Axis (8)

descendant-or-self:

[context node
[n] selected node n

9. XPath I: Location Paths

41/67

XPath Axis (9)

following-sibling:

[context node
[n] selected node n

9. XPath I: Location Paths

42/67

following:

XPath Axis (10)

[context node
[n] selected node n

9. XPath I: Location Paths

43/67

parent:

XPath Axis (11)

[context node
[n] selected node n

9. XPath I: Location Paths

44/67

ancestor:

XPath Axis (12)

[context node
[n] selected node n

9. XPath I: Location Paths

45/67

XPath Axis (13)

ancestor-or-self:

[context node
[n] selected node n

=N w

9. XPath |: Location Paths 46/67

XPath Axis (14)

preceding-sibling:

[context node
[n] selected node n

9. XPath I: Location Paths

47/67

preceding:

XPath Axis (15)

[context node
[n] selected node n

9. XPath I: Location Paths

48/67

Node Tests (1)

@ A node test is a name test or a node type test.
@ In XPath 1.0, a name test had one of the forms

e QName (local name or prefix:local name)

Note that the standard default namespace declaration does not
apply to XPath. Furthermore note that the namespace URIs are
compared, not the prefix.

e NCName:* (arbitrary name in given namespace)
e * (no restriction)
@ If a name test is used, the node type must be the

principal type of the axis, which is “element” for all axis
except the attribute and the namespace axis.

9. XPath |: Location Paths 49/67

Node Tests (2)

@ In XPath 1.0, the node types that could be used as node
tests were:

e comment ()

o text()

e processing-instruction()

e processing-instruction(’target’)

e node(): All nodes reachable by the given axis.

There, the node type is e.g. “comment”, and the “ ()" makes it a node test.

The problem is that there could be an element type “comment”, and the

“()" distinguishes the node type test from the name test.

There were no node type tests for attribute and namespace nodes, because
they are accessed via specific axis, and for document nodes, because this is

accessed via “/".

9. XPath |: Location Paths 50/67

Node Tests (3)

e In XPath 2.0, sequence type syntax was introduced. It

defin

es a notation (name) for sequence types.

@ Possible sequence types are:

empty-sequence ()

A node kind test (see below), optionally followed by an
occurrence indicator (7, *, or +)

item() with an optional occurrence indicator

Remember that an item is a node or an atomic value.

an atomic type name (e.g., xs:integer) with an
optional occurrence indicator.

9. XPath I: Location Paths

51/67

Node Tests (4)

@ The node kind tests in XPath 2.0 are:

e element (*): any element node

This matches any element node. In an example, also element () is

used, but the formal grammar does not seem to allow this.

o element (Name)

This matches any element node with the given name (QName).

o element (Name, Type), element (*, Type)

This matches an element node with the given name (or any name in
case of *) that is annotated with the type Type, or with a type
derived from Type. The type can be followed by 7, which permits

nilled nodes. Otherwise nilled nodes would not match.

9. XPath |: Location Paths 52/67

Node Tests (5)

@ Node kind tests in XPath 2.0, continued:

e schema-element (Name)

This matches an element called Name or declared in a substitution
group below Name. In addition, it must have the data type declared
in the schema for the Name, or a more specific type. It can possibly
be nilled if the element is declared as nillable. Basically, there must
be a top-level declaration for Name in the schema, because the names

of locally declared element types are implementation-dependent.
e attribute(x)
e attribute(Name)
e attribute(Name, Type), attribute(*, Type)

o schema-attribute (Name)

9. XPath |: Location Paths 53/67

@ Node kind tests in XPath 2.0, continued:

Node Tests (6)

e document-node ()

One can also use e.g. document-node (element (GRADES-DB)), and
the same with the other forms of element and schema-element
tests. The element test refers to the unique child element (document

element). If there should be several child elements, the test fails.

e processing-instruction(Name)

The name can be a QName or (for backward compatibility) also a

string.
e comment ()
e text()

e node()

9. XPath I: Location Paths

54/67

Node Tests (7)

@ The node name tests in XPath 2.0 are as shown above for
XPath 1.0, only the new wildcard *: ... was added
(given local name, arbitrary namespace):

o QName (i.e. NCName or NCName : NCName).
@ *
o NCName: *

o *:NCName (new in XPath 2.0)

9. XPath |: Location Paths 55/67

Predicates (1)

@ A predicate [...] filters an input sequence.

@ It checks a condition for each item in the input sequence
and yields an output sequence that contains only those
items for which this condition is true.

@ For each item in the input sequence, an “inner focus” is
computed, i.e. the evaluation context is changed. With
this context, the expression in [...] is evaluated.

@ Once this is finished, one returns to the original context,
i.e. the “outer context” (like a stack).

9. XPath |: Location Paths 56/67

Predicates (2)

Evaluation of E1[E2]:

@ E1 is evaluated, let the result be sequence s.

@ For each item x in s, an inner focus is computed as
follows: The context item is x, the context size is the
length of s, and the context position is basically the
position of x in s.

More precisely: If this predicate appears in a forward axis step, the context
position is the position x would have if s were sorted in document order. If
the predicate appears in a reverse axis step, the context position is the
position x has between the nodes in s in inverse document order. If the

predicate is not in a step, the context position is the position of x in s.

9. XPath |: Location Paths 57/67

Predicates (3)

Evaluation of E1[E2], continued:

@ For each x in s (result of evaluating E1), E2 is evaluated
in the focus described above.

e If the result is a numeric value, it is compared with the
context position in this inner focus. If they are equal, x
is appended to the output sequence.

o Otherwise, the effective boolean value of the result is
computed (see next slide). If it is true, x is appended to
the output sequence.

9. XPath |: Location Paths 58/67

Effective Boolean Value (1)

o Effective boolean value of an expression that returns
value x:

e If x is the empty sequence, the result is false.

o If x is a sequence, the first item of which is a node, the
result is true.

e If x is a value of type boolean (or derived from
boolean), the result is x.

Formally, x is a singletom sequence containing a boolean, but

singleton sequences are identified with the item they contain.

o ... (continued on next slide)

9. XPath |: Location Paths 59/67

Effective Boolean Value (2)

@ Effective boolean value of x, continued:

o If x is a string (or anyURI, untypedAtomic or derived
from one of these), the result is false if it is the empty
string, true otherwise.

e If x belongs to a numeric type, the result is false if it is
equal to 0 or NaN, true otherwise.

e In all other cases, a type error is raised.

@ Formally, this very generous conversion to boolean is
done by the function boolean(x).

@ In many contexts, it is called implicitly.

9. XPath |: Location Paths 60/67

@ Suppose that STUDENT has an attribute GUEST of type
boolean. Then [attribute: :GUEST] will be true when
there is a GUEST attribute node, even if its value is false.

One must explicitly take the value of the attribute with the data(...)
function. Otherwise it checks only that the attribute node exists (which

might be automatically inserted by applying a default value).

@ The effective boolean value of "false" (a string) is true.

boolean("false") is true, but xs:boolean("false") is false.

Subtle Differences |

9. XPath I: Location Paths

61/67

Abbreviated Syntax

@ attribute:: can be abbreviated to “@".
@ If no axis is given, the default axis is

e “child::", unless the node test of that step is
“attribute(...)” or “schema-attribute(...)".

e In that case, the default axis is “attribute::".

@ "//" is replaced by “/descendant-or-self::node()/"

However, this may only be applied to a path expression that consists of

"o

something else besides “//". "//" by itself is not a legal path expression. In

contrast, /" is allowed.

@ The step “.." is short for “parent: :node()".

9. XPath |: Location Paths 62/67

@ An absolute path can be understood as a relative path

Meaning of Absolute Paths

with first step

root(self::node()) treat as document-node()

@ Thus, it determines the root of the tree in which the

context node is.

E.g., by following the parent-link.

@ This root node must be a document node, otherwise a

runtime error occurs.

9. XPath I: Location Paths

63/67

Exercise (1)

<?xml version="1.0"7>
<BOOKLIST>
<BOOK ISBN="0-13-014714-1" PAGES="1074">
<AUTHOR FIRST="Paul" LAST="Prescod"/>
<AUTHOR FIRST="Charles" LAST="Goldfarb"/>
<TITLE>The XML Handbook - 2nd Edition</TITLE>
<PUBL DATE="19991112">Prentice Hall</PUBL>
<NOTE>Contains CD.</NOTE>
</B0O0K>
<BOOK ISBN="1-56592-709-5" PAGES="107">
<AUTHOR FIRST="Robert" LAST="Eckstein"/>
<TITLE>XML Pocket Reference</TITLE>
<PUBL DATE="19991001">0’Reilly</PUBL>
</BO0OK>
</BOOKLIST>

9. XPath |: Location Paths 64/67

Exercise (2)

@ What is the full version of the following expression?
/*//AUTHOR/@LAST

@ Please write an XPath expression for:

o Print the last names of all authors.

Assume that the context node is the document node and that it
suffices to select the attribute nodes, and not necessarily take their
value. E.g. <xsl:value-of select="..." separator=","/> would

automatically take the value of the attribute nodes.

@ What is the difference between the XPath expressions
//TITLE and //TITLE/text ()7

9. XPath |: Location Paths 65/67

Subtle Differences I

@ Note the difference between:

e //A[1]: This selects all A-elements that are the first
A-child of their parent.

//A[1] stands for /descendant-or-self::node()/child::A[1].
Thus, 1 is the position for a child-step.

o /descendant::A[1]: This selects only the first
A-element in the entire document.

@ Note also that these are not the same:

e //A[1]: (as above, possibly many elements).
e (//A) [1]: Only first A-element in document.

Here, [1] applies to the entire sequence returned by //A.

9. XPath |: Location Paths 66/67

References

@ Anders Berglund, Scott Boag, Don Chamberlin, Mary F. Fernandez, Michael Kay,
Jonathan Robie, Jérébme Siméon (Editors): XML Path Language (XPath) 2.0.
W3C Recommendation, 23 January 2007. [http://www.w3.org/TR/xpath20/]

@ Mary Fernandez, Ashok Malhotra, Jonathan Marsh, Marton Nagy,
Norman Walsh (Ed.): XQuery 1.0 and XPath 2.0 Data Model (XDM).
W3C Recommendation, 23 Jan. 2007, [http://www.w3.org/ TR/xpath-datamodel/]

@ Ashok Malhotra, Jim Melton, Norman Walsh (Ed.):
XQuery 1.0 and XPath 2.0 Functions and Operators.
W3C Recommendation, 23 January 2007. [http://www.w3.org/TR/xpath-functions/]

@ G. Ken Holman: Definitive XSLT and XPath.
Prentice Hall, 2002, ISBN 0-13-065196-6, 373 pages.

@ Michael Kay: XPath 2.0 Programmer’s Reference.
Wiley/Wrox, 2004, ISBN 0-7645-6910-4, 552 pages.

@ Michael Kay: XSLT 2.0 Programmer’s Reference, 3rd Edition.
Wiley/Wrox, 2004, ISBN 0-7645-6909-0, 911 pages.

@ Miloslav Nic, Jiri Jirat: XPath Tutorial.
Zvon [http://www.zvon.org/xxl/XPathTutorial /General /examples.html]

9. XPath |: Location Paths 67/67

http://www.w3.org/TR/xpath20/
http://www.w3.org/TR/xpath-datamodel/
http://www.w3.org/TR/xpath-functions/
http://www.zvon.org/xxl/XPathTutorial/General/examples.html

	Introduction
	Introduction

	Location Paths
	Location Paths
	References

