
XML and Databases

Chapter 7: XML Schema III:
Reference

Prof. Dr. Stefan Brass

Martin-Luther-Universität Halle-Wittenberg

Winter 2019/20

http://www.informatik.uni-halle.de/˜brass/xml19/

7. XML Schema III: Reference 1/85

http://www.informatik.uni-halle.de/~brass/xml19/

Objectives

After completing this chapter, you should be able to:

write an XML schema for a given application.

check a given XML schema definition for syntactic
correctness.

check given XML documents for validity according to a
given XML schema.

7. XML Schema III: Reference 2/85

Inhalt

1 Content Models

2 Complex Types

3 Attributes

4 Elements

5 Keys

6 Schema

7. XML Schema III: Reference 3/85

Content Models (1)

Content models are used to describe the sequence of
elements that are nested inside an element (child elements).

Content models in XML Schema offer basically the same
possibilities as content models in DTDs:

sequence: Corresponds to “,” in DTDs.

choice: Corresponds to “|” in DTDs.

all: Corresponds to “&” in (SGML) DTDs.
all means: The elements in the group must occur (unless minOccurs=0

for that element), but the order is arbitrary (any permutation is permitted).
In XML, “&” was removed from the SGML DTD syntax.

The attributes minOccurs and maxOccurs take the place
of “?”, “*”, “+” in DTDs.

7. XML Schema III: Reference 4/85

Content Models (2)

<sequence>, <choice>:

Possible attributes:

minOccurs: Minimum number of times the group must
occur (nonNegativeInteger)

The default value of both, minOccurs and maxOccurs, is 1.

maxOccurs: Maximum number of times the group may
occur (nonNegativeInteger or “unbounded”)

Content model:
annotation?, (element|group|choice|sequence|any)*

Possible parent elements: complexType, restriction,
extension, group, choice, sequence.

7. XML Schema III: Reference 5/85

Content Models (3)

<all>:
Possible attributes:

minOccurs: Minimum number of times the group must
occur (0 or 1, default: 1)
maxOccurs: Maximum number of times the group may
occur (1 is the only legal value)

Content model:
annotation?, element*

all is very restricted compared with choice and sequence: It can only directly
contain elements, no other groups, and it must appear on the outermost level.
The elements it contains must have maxOccurs=1 (which is the default).

Possible parent elements: complexType, restriction,
extension, group.

7. XML Schema III: Reference 6/85

Content Models (4)

Like XML DTDs, XML Schema requires deterministic
content models, e.g. this is not permitted:

<!-- Invalid! Corresponds to (A | (A, B)) -->
<xs:complexType name="nondeterministic">

<xs:choice>
<xs:element name="A" type="xs:string"/>
<xs:sequence>

<xs:element name="A" type="xs:string"/>
<xs:element name="B" type="xs:string"/>

</xs:sequence>
</xs:choice>

</xs:complexType>

7. XML Schema III: Reference 7/85

Content Models (5)

<element> (element reference):

Possible attributes:

ref: Name of the element being referenced
(a QName, the element must be declared globally).

If element is used as element reference, this attribute is required.
The element may be declared later or (if it does not occur in the
data) may be declared not at all.

minOccurs, maxOccurs: (see above)

Content model: annotation?

Possible parent elements: all, choice, sequence.

7. XML Schema III: Reference 8/85

Named Model Groups (1)

It is possible to introduce a name for a model group, and
to use this “named model group” as part of other model
groups (like macro/parameter entity).

Thus, if one must declare several element types that have in part equal
content models, it suffices to define the common part only once. If one
wants to define a common part only once without named model groups,
one needs an element as a container for this part (additional nesting in data).

Advantages:

Helps to ensure the consistency of similar content models.
This especially holds also for later changes (can be done in one place).

Makes equal parts obvious in the schema.

The schema becomes shorter.

Permits reusable components below element / complex type.

7. XML Schema III: Reference 9/85

Named Model Groups (2)

<group> (named model group definition):

Possible attributes:

name: Name of the model group being defined (an NCName).
If group is used for defining a named model group, this attribute is
required.

Content model:
annotation?, (all | choice | sequence)

Possible parent element types: schema, redefine.

7. XML Schema III: Reference 10/85

Named Model Groups (3)

<group> (named model group reference):

Possible attributes:

ref: Name of the model group being referenced (a
QName).

If group is used to refer to a named model group, this attribute is
required.

minOccurs, maxOccurs: (see above)

Content model: annotation?

Possible parent elements: complexType, restriction,
extension, choice, sequence.

7. XML Schema III: Reference 11/85

Wildcard (1)

With “<any>” it is possible to allow arbitrary elements
(one can restrict the namespace).

E.g., to permit arbitrary XHTML in a product description
(without explicitly listing elements):

<xs:complexType name="Description" mixed="true">
<xs:sequence>

<xs:any minOccurs="0" maxOccurs="unbounded"
namespace="http://www.w3.org/1999/xhtml"
processContents="skip"/>

</xs:sequence>
</xs:complexType>

7. XML Schema III: Reference 12/85

Wildcard (2)

With the attribute processContents, one can select
whether the contents of elements inserted for the wildcard
should be checked:

skip: Only the well-formedness is checked.
lax: If the XML Schema processor can find declarations
of the elements, it will validate their contents.

Otherwise no warning is printed.

strict: Full validation.

A wildcard is a “quick&dirty” solution.
In this case, processContents was set to “skip”. But even if it were set to
“strict”, this would not prevent XHTML elements like meta (intended for
the head). The only safe solution is probably to explicitly list the allowed
XHTML elements. With a bit of luck, the schema for XHTML contains a
named model group that can be used.

7. XML Schema III: Reference 13/85

Wildcard (3)

With the attribute namespace, one can restrict the
namespace of the elements matched with any:

##any: no restriction (this is the default).

##other: any namespace except the target namespace
of this schema.

In this case, it is required that the elements have a namespace.

List of URIs, “##local”, “##targetNamespace”:
Only these namespaces are permitted.

“##local” allows elements without a namespace,
“##targetNamespace” allows elements from this schema.

7. XML Schema III: Reference 14/85

Wildcard (4)

<any>:
Possible attributes:

namespace: Restrictions for the namespace of the
elements inserted for the wildcard.

See Slide 14. The default is no restriction (“##any”).

processContents: Defines whether the contents of
elements matched with “any” is checked.

See Slide 13. The default is “strict”.

minOccurs, maxOccurs: (see above)

Content model:
annotation?

Possible parent element types: choice, sequence.
7. XML Schema III: Reference 15/85

Inhalt

1 Content Models

2 Complex Types

3 Attributes

4 Elements

5 Keys

6 Schema

7. XML Schema III: Reference 16/85

Complex Types (1)

Complex types are used to define the characteristics of
elements (content model and attributes).

However, if an element has no attributes and no element
content (only a string, number, etc.), a simple type suffices.

There are two ways to use complex types:

Define a named complex type and reference it in the
type-attribute of element.

Define an anonymous complex type as a child of
element.

7. XML Schema III: Reference 17/85

Complex Types (2)

The possibilities for defining a complex type are:

List the content model (see above), followed by the
attributes (see below).

If the content model is missing (empty), elements of this type have
empty content. If the attribute part is not used, elements of this
type have no attributes.

Use a simpleContent child: For type derivation.
This is used for deriving a complex type from a simple type (by
adding attributes), or from another complex type with simple
content (by restriction or extension). See last section of this chapter.

Use a complexContent child: For type derivation.
This is used for restricting or extending a complex type with element
content. See last section of this chapter.

7. XML Schema III: Reference 18/85

Complex Types (3)

<complexType> (anonymous type):
Possible attributes:

mixed: Can additional character data appear between
the elements of the content model?

Used for specifying mixed content models. The default is false.

Content model:
annotation?, (simpleContent | complexContent |

((all|choice|sequence|group)?,
(attribute|attributeGroup)*,
anyAttribute?))

Possible parent element types: element.
7. XML Schema III: Reference 19/85

Complex Types (4)

<complexType> (for defining a named type):
Possible attributes:

name: Name of the type to be defined (NCName).

mixed: For mixed content models, see above.

abstract, block, final: See following slides.

Content model:
annotation?, (simpleContent | complexContent |

((all|choice|sequence|group)?,
(attribute|attributeGroup)*,
anyAttribute?))

Possible parent element types: schema, redefine.
7. XML Schema III: Reference 20/85

Complex Types (5)

Attribute final (forbids type derivation):

One can forbid that other types are derived from this
type. Possible values of the attribute final are:

"#all": There cannot be any derived type.
"extension restriction" (in either order) is equivalent.

"extension": Type derivation by extension is excluded,
type derivation by restriction is possible.

"restriction": Conversely.

"": Both forms of type derivation are possible.
If final is not specified, the value of the attribute finalDefault of
the schema-element is used (which in turn defaults to "").

7. XML Schema III: Reference 21/85

Complex Types (6)

Attribute block (forbids type substitution):

If an element type E is declared with a complex type C ,
and C ′ is derived from C , elements of type E can state
that they are really of type C ′ (with xsi:type=C ′), and
e.g. use the additional attributes or child elements of type C ′.

The attribute block can be used to prevent this.
Possible values are: "#all" (i.e. type substitution is not permitted), ""

(i.e. type substitution is possible), "restriction" (i.e. only types defined
by extension can be used), "extension" (i.e. only types defined by
restriction can be used), "extension restriction" (in either order: same
as "#all"). The default is blockDefault in the schema-element, which in
turn defaults to "" (no restriction).

7. XML Schema III: Reference 22/85

Complex Types (7)

Attribute abstract (forbids instantiation):

If abstract is "true", no elements can have this
complex type.

The default value is "false".

Thus the type is defined only as a basis for type derivation.
Actually, one can define element types of an abstract complex type, but
then type substitution must be used for all elements of this type.

This corresponds to the notion of abstract superclasses in
object-oriented programming.

7. XML Schema III: Reference 23/85

Derived Complex Types (1)

<simpleContent>/<complexContent>:

Possible attributes:

mixed (only for complexContent): Is character data is
allowed between child elements?

Possible values are true (for mixed content models) and false

(else). The default value is the value in the enclosing complexType

element, which defaults to false. This attribute in complexContent

is simply an alternative to specifying it in complexType.

Content model:
annotation?, (extension | restriction)

Possible parent element types: complexType.

7. XML Schema III: Reference 24/85

Derived Complex Types (2)

<extension> (inside <simpleContent>):

Possible attributes:

base: The base type that is extended to define a new
type (QName, required).

For an extension inside simpleContent, the base type must be a
simple type, or a complex type derived from a simple type (i.e. with
a simple type as content).

Content model:
annotation?,
(attribute | attributeGroup)*, anyAttribute?

Possible parent element types: simpleContent.

7. XML Schema III: Reference 25/85

Derived Complex Types (3)

<extension> (inside <complexContent>):

Possible attributes:

base: The base type that is extended to define a new
type (QName, required).

For an extension inside complexContent, the base type must be a
complex type, i.e. it must have element, mixed, or empty content.

Content model:
annotation?,
(group | all | choice | sequence)?,
(attribute | attributeGroup)*, anyAttribute?

Possible parent element types: complexContent.
7. XML Schema III: Reference 26/85

Inhalt

1 Content Models

2 Complex Types

3 Attributes

4 Elements

5 Keys

6 Schema

7. XML Schema III: Reference 27/85

Attributes (1)

Elements can have attributes, therefore complex types
must specify which attributes are allowed or required,
and which data types the attribute values must have.

Attributes can be declared

globally, and then referenced in complex types,

locally within a complex type
(immediately used, never referenced).

This is a counterpart to “anonymous types” which are defined when
they used (and cannot be reused). However, attributes always have
a name.

7. XML Schema III: Reference 28/85

Attributes (2)

If a target namespace is declared for the schema,
globally declared attributes are in this namespace.

Thus, they need an explicit namespace prefix in each
occurrence in the data file.

Default namespaces do not apply to attributes.

For locally declared attributes, one can choose whether
they must be qualified with a namespace.

This is done with the form attribute ("qualified" or "unqualified").
A default can be set with the attributeFormDefault-attribute of the
schema-element. If this is not set, the default is "unqualified",
i.e. the attribute is used without namespace prefix.

7. XML Schema III: Reference 29/85

Attributes (3)

Since one usually does not want to specify a namespace
prefix, global attribute declarations are seldom used.

Global attributes with a namespace prefix are typically used when many or
all elements can have this attribute.

If several elements/complex types have the same attribute,
one can define an attribute group (see below), in order to
specify the characteristics of the attribute only once.

When the attribute group is used, it becomes a local declaration (it works
like a parameter entity/macro).

7. XML Schema III: Reference 30/85

Attributes (4)

As in DTDs, one can specify a default or fixed value for
an attribute.

Fixed values are mainly interesting for global attributes, see Chapter 1.

If the attribute does not occur in the start tag of an element,
the XML Schema processor automatically adds it with the
default/fixed value.

Thus the application gets this value. Attributes with fixed value can have
only this single value and usually do not appear in the data file.

In XML Schema, default/fixed values are specified with
the attributes default/fixed of attribute elements.
These attributes are mutually exclusive.

7. XML Schema III: Reference 31/85

Attributes (5)

As in DTDs, one can specify whether an attribute value
must be given in every start tag or not.

In XML DTDs, the alternatives are: (1) a default value, (2) #REQUIRED,
(3) #IMPLIED (meaning optional), and (4) #FIXED with a value.

In XML Schema, this is done with the attribute “use”.
It can have three possible values:

"optional": Attribute can be left out.

"required": Attribute value must be given.
This cannot be used together with a default value.

"prohibited": Attribute value cannot be specified.
This is only used for restricting complex types, see below.

7. XML Schema III: Reference 32/85

Attributes (6)

<attribute> (attribute reference):

Possible attributes:

ref: Name of the attribute (QName, required).

use: "optional", "required", or "prohibited".
The default is "optional", i.e. the attribute can be left out.

default: Default value for the attribute.

fixed: Fixed value for the attribute.

Content model: annotation?

Possible parent element types:
complexType, restriction, extension, attributeGroup.

7. XML Schema III: Reference 33/85

Attributes (7)

<attribute> (global attribute declaration):
Possible attributes:

name: Name of the declared attribute (NCName).
This attribute is required.

type: Data type of the attribute (QName).
This attribute is mutually exclusive with the simpleType child.
If neither is used, the default is anySimpleType (no restriction).

default: Default value for the attribute.

fixed: Fixed value for the attribute.

Content model: annotation?, simpleType?

Possible parent element types: schema.
7. XML Schema III: Reference 34/85

Attributes (8)

<attribute> (local attribute declaration):

Possible attributes:

name: Name of the attribute (NCName, required).

type: Data type of the attribute (QName).

form: "qualified" or "unqualified" (→ 29).

use: "optional", "required", or "prohibited".

default, fixed: see above.

Content model: annotation?, simpleType?

Possible parent element types:
complexType, restriction, extension, attributeGroup.

7. XML Schema III: Reference 35/85

Attributes (9)

Constraint on Attributes within a Complex Type:

A complex type cannot have more than one attribute with
the same name.

This is not surprising, because the XML standard requires this already for
well-formed XML. Note that the qualified name counts: One could have
attributes with the same name in different namespaces.

A complex type cannot have more than one attribute of
type ID.

Also this is a restriction given by the XML standard (although only for
DTDs, maybe one could have removed it in XML Schema, but XML
Schema anyway has more powerful identification mechanisms). Note also
that attributes of type ID cannot have default or fixed values.

7. XML Schema III: Reference 36/85

Attributes (10)

Attribute Wildcard:

One can permit that the start tags of an element type
can contain additional attributes besides the attributes
declared for that element type.

Actually, certain attributes such as namespace declarations, and xsi:* are
always allowed, and do not have to be explicitly declared.

This is done by including the attribute wildcard
“<anyAttribute>” in the complex type definition.

The wildcard matches any number of attributes.
This is a difference to the element wildcard <any>. Thus, it makes no sense
to specify <anyAttribute> more than once in a complex type.

7. XML Schema III: Reference 37/85

Attributes (11)

<anyAttribute>:

Possible attributes:

namespace: Restrictions for the namespace of the
attributes inserted for the wildcard.

See Slide 14. The default is no restriction (“##any”).

processContents: Defines whether the value of the
additional attributes is type-checked.

See Slide 13. The default is “strict”.

Content model: annotation?

Possible parent element types:
complexType, restriction, extension, attributeGroup.

7. XML Schema III: Reference 38/85

Attributes (12)

Attribute Groups:

If several complex types have attributes in common, one
can define these attributes only once in an attribute
group (example see next slide).

Since elements / complex types cannot have two attributes with the same
name, also attribute groups cannot contain attributes with the same name.
In the same way, multiple ID-attributes are forbidden.

This attribute group can then be referenced in a complex
type, or in other attribute groups.

Like model groups, attribute groups are similar to a
special kind of parameter entity.

7. XML Schema III: Reference 39/85

Attributes (13)

Example for attribute group definition (CAT, ENO):

<xs:attributeGroup name="exIdent">
<xs:attribute name="CAT" use="required">

<xs:simpleType>
<xs:restriction base="xs:token">

<xs:enumeration value="H"/>
<xs:enumeration value="M"/>
<xs:enumeration value="F"/>

</xs:restriction>
</xs:simpleType>

</xs:attribute>
<xs:attribute name="ENO" use="required"

type="xs:positiveInteger"/>
</xs:attributeGroup>

7. XML Schema III: Reference 40/85

Attributes (14)

A reference to the attribute group “exIdent”
(see previous slide) looks as follows:

<attributeGroup ref="exIdent"/>

The attributes of the attribute group (e.g., CAT and ENO)
are inserted in place of the group reference.

This is basically done like the expansion of a macro/entity. However, a
complex type can contain only one attribute wildcard. In XML Schema, it
was decided that referencing two attribute groups that both contain
wildcards in the same complex type is no error. In this case, the namespace
constraints are intersected, and the processContents-value of the first
group is chosen (a wildcard directly in the complex type counts as first).

7. XML Schema III: Reference 41/85

Attributes (15)

<attributeGroup> (attribute group definition):

Possible attributes:

name: Name of the attribute group (NCName).
This attribute is required.

Content model:
annotation?,
(attribute|attributeGroup)*, anyAttribute?

Possible parent element types: schema, redefine.

7. XML Schema III: Reference 42/85

Attributes (16)

<attributeGroup> (attribute group reference):

Possible attributes:

ref: Name of the attribute group (QName).
This attribute is required.

Content model:
annotation?

Possible parent element types:
complexType, restriction, extension, attributeGroup.

7. XML Schema III: Reference 43/85

Inhalt

1 Content Models

2 Complex Types

3 Attributes

4 Elements

5 Keys

6 Schema

7. XML Schema III: Reference 44/85

Elements (1)

The main purpose of an element declaration is to
introduce an element type name and associate it with a
(simple or) complex type.

In addition, they can define a default/fixed value for the content, permit or
forbid a nil value, define keys or foreign keys, block type substitution, and
define substitution groups. See below.

Simple and complex types together are called data types
(to distinguish them from “element types”).

At least in the book “Definitive XML Schema”. The Standard uses simply
“type” (for simple and complex type) and avoids the word “element type”.
On my slides, I sometimes incorrectly use “element” instead of “element
type”. Maybe, “element name” would be good.

7. XML Schema III: Reference 45/85

Elements (2)

The association of the declared element type with the
simple/complex type can be done in two ways:

By including a simpleType or complexType child
element (anonymous type definition).

By referencing a named (globally declared) simple or
complex type with the type-attribute.

The two possibilities are mutually exclusive.

If none of the two is used, the element type is associated
with anyType, and permits arbitrary (well-formed)
content and arbitrary attributes.

Unless the element type is part of a substitution group, see below.

7. XML Schema III: Reference 46/85

Elements (3)

Element declarations can be

global (later referenced by the element name),
For element references, see above (“Content Models”: 8).

local inside a complex type declaration (immediately
used and never referenced again).

As with attributes,

globally declared element types always belong to the
target namespace of the schema,

whereas one can choose whether locally declared
element types belong to the target namespace or remain
unqualified (no namespace).

7. XML Schema III: Reference 47/85

Elements (4)

The namespace decision for local element declarations is
done with the attribute form. It can be

"qualified": The element type name belongs to the
target namespace of the schema.

"unqualified": The element type name has no
namespace.

If a local element type declaration does not contain the form-attribute, the
default is defined with elementFormDefault in the schema-element. This
in turn defaults to "unqualified". The possibility to switch nearly all
element types between unqualified and qualified form with a single
attribute setting is one aspect of the “Venetian Blind” design.

7. XML Schema III: Reference 48/85

Elements (5)

The namespace of elements can be defined implicitly with
a default namespace declaration.

Important difference to attributes: For elements, it is no problem if every
element belongs to a namespace (if it is the same namespace).

However, the user of a schema must know which elements
belong to a namespace and which not.

One should use a simple rule, e.g.

The root element belongs to the target namespace of
the schema, the others not.

All elements belong to the target namespace.

The schema has no target namespace.

7. XML Schema III: Reference 49/85

Elements (6)

Global declarations must be used:

for the possible root element type(s),

for element types that participate in substitution groups
(see below).

Local declarations must be used:

if the same element type has different attributes or
content models depending on the context.

It might be better to say if there are different element types with
the same name.

if the element type name should be unqualified.
And at least one name in the schema needs a namespace.

7. XML Schema III: Reference 50/85

Elements (7)

Default and Fixed Values:

Whereas in DTDs, one can specify default and fixed
values only for attributes, in XML Schema, this is possible
for attributes and elements.

However,

for an attribute, the default/fixed value is automatically
added if the attribute is missing,

for an element, the element must still be present, but
with empty content.

In both cases, the validation adds data to the data explicitly given in
the input document. This might simplify the application.

7. XML Schema III: Reference 51/85

Elements (8)

Only values of simple types can be specified as
default/fixed values.

This is a technical restriction, because default/fixed values are specified in
an attribute. But probably default/fixed values for elements were mainly
added to make attributes and elements with simple content more
similar/interchangable.

Of course, the default/fixed value must be legal for the
declared element content.

Thus, default/fixed values can be used only for elements with simple
content, or mixed content when all child elements are optional.

7. XML Schema III: Reference 52/85

Elements (9)

If a default value is declared, there is no way to enter the
empty string as element content.

Then the element is empty, and the default value is added. If the
whitespace-facet is collapse, the default value is added even if there are
spaces between start and end tag. But see xsi:nil below.

Note that empty elements can have attributes.
The default value added as long as the contents is empty.

A fixed value is very similar to a default value, with the
additional constraint that if a value is explicitly specified,
it can be only this value.

Possibly a different lexical representation of the same value.

7. XML Schema III: Reference 53/85

Elements (10)

Nil:

Also “nil values” are possible for element content if the
element type declaration contains

nillable="true"

The default value is false.

This is probably similar to a null value in databases.
The specific meaning of the nil value depends on the application (i.e. is not
defined by XML Schema). The nil value is different from the empty string
(and from the missing element).

Fixed values cannot be combined with nillable.

7. XML Schema III: Reference 54/85

Elements (11)

In the input document, elements with nil content are
marked with xsi:nil="true".

Where xsi is mapped to http://www.w3.org/2001/XMLSchema-instance.
Note that the attribute xsi:nil can be used even if it is not declared for
the element type (if the element type is nillable).

In this case, the element content must be empty (but the
element can still have attributes).

It is not required that the element type permits an empty
content (but it must be nillable).

If an element is nil, a default value is not added, although
the contents looks empty (it is nil).

7. XML Schema III: Reference 55/85

Elements (12)

<element> (global element type declaration):
Possible attributes:

name: Element type name (NCName, required).

type: Name of simple or complex type (QName).

default, fixed, nillable: see above.

abstract, substitutionGroup, block, final:
see below.

Content model:
annotation?, (simpleType | complexType)?

(key | keyref | unique)*

Possible parent element types: schema.
7. XML Schema III: Reference 56/85

Elements (13)

<element> (local element type declaration):

Possible attributes:
name: Element type name (NCName, required).
form: "qualified" or "unqualified" (see above).
type: Name of simple or complex type (QName).
minOccurs, maxOccurs: see above.
default, fixed, nillable: see above.
block: see below.

Content model:
annotation?, (simpleType | complexType)?

(key | keyref | unique)*

Possible parent elements: all, choice, sequence.
7. XML Schema III: Reference 57/85

Elements (14)

The scope of a local element type declaration is the
enclosing complex type definition.

One can have two completely different local element type declarations
inside different complex types.

Within the same complex type, one can declare the same
element type more than once, if the associated data type
is identical.

Only the types must be identical. Other properties (like default values) can
be different. Anonymous types are never identical, even if they have the
same content model and attributes.
This double declaration might be necessary if the element type appears
more than once in a content model and one wants a local declaration.

7. XML Schema III: Reference 58/85

Elements (15)

Attribute substitutionGroup:

It is possible to define a hierarchy on element types, again
similar to subclasses.

The name of the “superclass” (called the “head of the
substitution group” in XML Schema) is defined in the
attribute substitutionGroup (a QName).

If the declaration of element type E contains
substitutionGroup="S"

then E is permitted everywhere where S is permitted,
i.e. E can be substituted for S.

7. XML Schema III: Reference 59/85

Elements (16)

This is also possible over several levels (if X defines E as
the head of its substitution group, X can be substituted
for E and for S).

Of course, the data types of these element types must be
compatible, e.g. the data type of E must be derived from
the data type of S (maybe indirectly) (it can also be the
same).

Alternatives to substitution groups are:

choice model group with all “subclass elements”,

“superclass element” with type substitution.

7. XML Schema III: Reference 60/85

Elements (17)

Attribute abstract:

If this is "true", the element type cannot be used in
input documents (i.e. it cannot be instantiated).

It can only be used as head of a substitution group
(“superclass”).

It appears of course in model groups of the schema, but only as
placeholder for one of the element types that can be substituted for this
element type. The element type substitution is required in this case.

The default is "false".

7. XML Schema III: Reference 61/85

Elements (18)

Attribute final:

With final="#all", one can prevent that the current
type can be used as head of a substitution group.

The default is the value of the finalDefault-attribute of the
schema-element, which defaults to "", i.e. no restriction.

One can also specify restrictions on the data types of the
element types that can be substituted for the current
element type.

E.g. final="restriction" means that the current element type can be
head of a substitution group, but the data type of the substituted element
type must be derived by restriction.

7. XML Schema III: Reference 62/85

Elements (19)

Attribute block:

The attribute block can be used to forbid type
substitution or usage of substitution groups in the
instance (input document, data file).

As mentioned on Slide 22, one can use xsi:type in the input document
(data file) to state that an element type E has not its normal data type C ,
but a data type C ′ that is derived from C .
With the attribute block, certain forms of type derivation (restriction

or extension) can be excluded from this possibility.
block="restriction extension" completely excludes type substitution.
The list can also contain substitution, which forbids element type
substitution (via substitution groups). This is basically the same as
final="#all", but now only the concrete occurrence in the input
document is false, not the schema.

7. XML Schema III: Reference 63/85

Inhalt

1 Content Models

2 Complex Types

3 Attributes

4 Elements

5 Keys

6 Schema

7. XML Schema III: Reference 64/85

Unique/Key Constraints (1)

<unique>/<key>:

Possible attributes:

name: Name of the key constraint (NCName).
This attribute is required. The value must be unique in the schema
among all unique, key, and keyref-constraints.

Content model:
annotation?, selector, field+

Possible parent element types: element.

7. XML Schema III: Reference 65/85

Unique/Key Constraints (2)

<selector>:

Possible attributes:

xpath: Defines the nodes that are to be identified by the
key (restricted XPath expression).

It is required. The XPath subset is explained below.

Content model:
annotation?

Possible parent element types: unique, key, keyref.

7. XML Schema III: Reference 66/85

Unique/Key Constraints (3)

<field>:

Possible attributes:

xpath: Defines a component of the tuple of values that
uniquely identifies the nodes.

This attribute is required. The value must again be a restricted
XPath expression, see below.

Content model:
annotation?

Possible parent element types: unique, key, keyref.

7. XML Schema III: Reference 67/85

XPath Subset (1)

The standard states: “In order to reduce the burden on
implementers, in particular implementers of streaming
processors, only restricted subsets of XPath expressions
are allowed in {selector} and {fields}.”

Indeed, the subset of XPath that can be used to define
the components of keys is quite simple.

The purpose of XPath is to select a set of nodes in the
XML tree, given a context node as a starting point. In the
XPath subset, one can navigate only downward in the tree
(in full XPath, also upward).

The XPath subset that can be used in selector and the
subset that can be used in field differ slightly.

7. XML Schema III: Reference 68/85

XPath Subset (2)

A selector XPath expression consists of one or more “Paths”,
separated by “|”:

Selector ::= Path (’|’ Path)*
The set of nodes that are selected by this expression is the union of the
nodes selected by the single paths (as usual, “|” means disjunction).

A Path
can optionally start with “.//”.

After that, it is a sequence of steps, separated with “/”:
Path ::= (’.//’)? Step (’/’ Step)*

Let the start node set be:
If “.//” is present: The context node and all its descendants.

Otherwise: Only the context node.
7. XML Schema III: Reference 69/85

XPath Subset (3)

Each step defines a new set of nodes, given the resulting
nodes from the previous step (initialized with the start
node set).

Formally, a step defines a set of selected nodes for a single given node.
If the current node set consists of several nodes, take the union of the
selected nodes given each element in the current node set.

A step can be: Step ::= ’.’ | NameTest

“.”: Selects the current node (nothing changed).

A “name test”: This selects those children of the current
node that are element nodes with an element type name
satisfying the “name test” (see next slide).

7. XML Schema III: Reference 70/85

XPath Subset (4)

A “name test” is:

An element type name (a QName).
Default namespace declarations do not affect XPath expressions. If
the element type is in a namespace, one must use the prefix.

A wildcard “*” (satisfied by all element nodes).

A namespace with a wildcard (satisfied by all element
nodes that belong to that namespace).

NameTest ::= QName | ’*’ | NCName ’:’ ’*’
A name test can also be used for attribute nodes (see below).

Between any two tokens, whitespace is allowed.

That completes the definition of XPath expressions that
can be used in the attribute xpath of selector.

7. XML Schema III: Reference 71/85

XPath Subset (5)

The XPath expressions in field permit in addition to
select an attribute node as last step in Path:
Path ::= (’.//’)? (Step ’/’)* (Step | ’@’ NameTest)

Although one can use “|” (disjunction) and wildcards, this is probably
seldom applied because the XPath expression in field must select a single
node. The node contents/value is taken implicitly at the end.

A name test for attributes offers the same three
possibilities as explained for element nodes above:

“Name”: Attribute with that qualified name.

“*”: Any attribute.

“Prefix:*”: All attributes in that namespace.

7. XML Schema III: Reference 72/85

Key References (1)

<keyref>:

Possible attributes:

name: Name of the foreign key constraint (NCName).
This attribute is required. The value must be unique in the schema
among all unique, key, and keyref-constraints.

refer: Name of a unique/key-constraint (NCName).
This attribute is required: By linking the foreign key to the
referenced key, it defines which values are possible.

Content model:
annotation?, selector, field+

Possible parent element types: element.
7. XML Schema III: Reference 73/85

Inhalt

1 Content Models

2 Complex Types

3 Attributes

4 Elements

5 Keys

6 Schema

7. XML Schema III: Reference 74/85

The Schema Element (1)

<schema>:
Possible attributes:

targetNamespace: Namespace for defined schema
components.

At least the global types, elements, and attributes belong to this
namespace. Whether local components belong to it depends on the
elementFormDefault, attributeFormDefault and the form

attribute of the element or attribute declaration.

elementFormDefault: qualified or unqualified.
Default is unqualified. I.e. unless something else is specified in the
local element declaration, it has no namespace.

attributeFormDefault: qualified or unqualified.
Default is unqualified.

7. XML Schema III: Reference 75/85

The Schema Element (2)

<schema>, continued:

Possible attributes, continued:

blockDefault: Permission of type substitution (with
xsi:type) and substitution groups.

Possible values of this attribute are: #all or a list of substitution,
extension, restriction. Default is the empty list, i.e. no
restriction.

finalDefault: Permission of type derivation.
Possible values are #all or a list of extension, restriction, list,
union. Default is the empty list, i.e. no restriction.

version: Version of the schema (type token)

xml:lang: Language of the schema document.

7. XML Schema III: Reference 76/85

The Schema Element (3)

<schema>, continued:

Content model:
((include | import | redefine | annotation)*,
((simpleType | complexType |

group | attributeGroup |
element | attribute | notation),

annotation*)*)

I.e. if include, import and redefine are used, this must be done before
defining the schema components of the current schema document. Note
that if one would simply add annotation to the choice starting with
simpleType, the content model would not be deterministic.

Possible parent element types: None.
7. XML Schema III: Reference 77/85

Including Schema Files

<include>:

Possible attributes:

schemaLocation: The URI of the schema document to
include.

The included schema document cannot have a different target
namespace than the including schema document. It is ok if it has no
namespace.

Content model:

annotation?

Possible parent element types: schema.

7. XML Schema III: Reference 78/85

Importing Schema Files

<import>:

Possible attributes:

namespace: The namespace of types, elements, etc. that
will be used in this schema.

This cannot be the same as the target namespace of the current
schema document.

schemaLocation: URI of a schema document that
defines the schema components of namespace.

Content model: annotation?

Possible parent element types: schema.

7. XML Schema III: Reference 79/85

Include with Redefinition (1)

<redefine>:

Possible attributes:

schemaLocation: The URI of the schema document to
include.

The included schema document must have the same target
namespace as the current schema.

Content model:
(annotation | simpleType | complexType |
attributeGroup | group)*

Possible parent element types: schema.

7. XML Schema III: Reference 80/85

Include with Redefinition (2)

redefine automatically includes all schema components
from the referenced schema, not only the redefined ones.

Not arbitrary redefinitions are possible: Types or groups
must restrict or extend the original version, it cannot be
something entirely new.

The new, redefined versions also apply to all elements
(subtypes etc.) in the included schema.

7. XML Schema III: Reference 81/85

Documentation, App. Info (1)

<annotation>:

Possible attributes: (only id)

Content model:
(documentation | appinfo)*

Possible parent element types:
all, any, anyAttribute, attribute, attributeGroup, choice,
complexContent, complexType, element, enumeration, extension, field,
fractionDigits, group, import, include, key, keyref, length, list,
maxExclusive, maxInclusive, maxLength, minExclusive, minInclusive,
minLength, notation, pattern, redefine, restriction, schema,
selector, sequence, simpleContent, simpleType, totalDigits, union,
unique, whitespace.

7. XML Schema III: Reference 82/85

Documentation, App. Info (2)

<documentation>:

Possible attributes:

source: URI pointing to further documentation

xml:lang: natural language of the documentation
E.g. de, en, en-US (it has type xs:language).

Content model: ANY
In XML schema, this is the any wildcard, together with mixed="true". It
is processed using lax validation, i.e. one can specify a schema location
with xsi:schemaLocation (e.g. in the root xs:schema element of the
schema). Otherwise only the well-formedness is checked.

Possible parent element types: annotation

7. XML Schema III: Reference 83/85

Documentation, App. Info (3)

<appinfo>:

Possible attributes:

source: URI pointing to further documentation

Content model: ANY
I.e. any wildcard with mixed content. Processed using lax validation. So
appinfo has the same declaration as documentation, only without the
xml:lang attribute.

Possible parent element types: annotation

7. XML Schema III: Reference 84/85

References

Harald Schöning, Walter Waterfeld: XML Schema.
In: Erhard Rahm, Gottfried Vossen: Web & Datenbanken, Seiten 33-64.
dpunkt.verlag, 2003, ISBN 3-89864-189-9.

Priscilla Walmsley: Definitive XML Schema.
Prentice Hall, 2001, ISBN 0130655678, 560 pages.

W3C Architecture Domain: XML Schema.
[http://www.w3.org/XML/Schema]

David C. Fallside, Priscilla Walmsley: XML Schema Part 0: Primer.
W3C, 28. October 2004, Second Edition.
[http://www.w3.org/TR/xmlschema-0/]

Henry S. Thompson, David Beech, Murray Maloney, Noah Mendelsohn:
XML Schema Part 1: Structures.
W3C, 28. October 2004, Second Edition
[http://www.w3.org/TR/xmlschema-1/]

Paul V. Biron, Ashok Malhotra: XML Schema Part 2: Datatypes.
W3C, 28. October 2004, Second Edition
[http://www.w3.org/TR/xmlschema-2/]

[http://www.w3schools.com/schema/]

7. XML Schema III: Reference 85/85

http://www.w3.org/XML/Schema
http://www.w3.org/TR/xmlschema-0/
http://www.w3.org/TR/xmlschema-1/
http://www.w3.org/TR/xmlschema-2/
http://www.w3schools.com/schema/

	Content Models
	Content Models

	Complex Types
	Complex Types

	Attributes
	Attributes

	Elements
	Elements

	Keys
	Keys

	Schema
	Schema
	References

