
XML and Databases

Chapter 4: XML Namespaces

Prof. Dr. Stefan Brass

Martin-Luther-Universität Halle-Wittenberg

Winter 2019/20

http://www.informatik.uni-halle.de/˜brass/xml19/

4. XML Namespaces 1/24

http://www.informatik.uni-halle.de/~brass/xml19/


Objectives

After completing this chapter, you should be able to:

explain why namespaces are needed.

determine the namespace of any element or attribute in a
given XML document.

use namespaces in your own XML documents.

4. XML Namespaces 2/24



Inhalt

1 Motivation

2 Method: Globally Unique Names

3 Declaration of Namespaces

4. XML Namespaces 3/24



Motivation (1)

XML is a meta language that permits to define markup
languages for specific applications.

Many different sets of element types/tags (DTDs) for
many different applications have been proposed.

This all works well as long as each document adheres to a
single, known document type.

However, there are cases where documents contain a
mixture of tags from different DTDs.

Programs that have to process such documents know only the subset of
the occurring element types that is relevant for the program.

4. XML Namespaces 4/24



Motivation (2)

For instance, an XSLT stylesheet that translates from a
given DTD into HTML contains tags from this DTD,
from XSLT, and from HTML.

It is possible to develop DTDs in a modular way by
composing different sets of tags.

It is not necessary to redevelop everything from scratch. Instead, one
should try to reuse existing DTDs.

It is possible that an XML document is processed by
different programs, where each considers only its own tags.

4. XML Namespaces 5/24



Motivation (3)

When a document contains element types from
independently developed markup languages, there can be
name clashes: The same name is defined in different
vocabularies with different meaning.

In such cases it is not clear what program should process
this tag.

A program that processes documents not restricted to a fixed, known DTD
must be able to determine which tags are intended for this program.

4. XML Namespaces 6/24



Inhalt

1 Motivation

2 Method: Globally Unique Names

3 Declaration of Namespaces

4. XML Namespaces 7/24



Globally Unique Names (1)

Thus, globally unique names for element types are
sometimes necessary.

However, a new committee that ensures the uniqueness of
names would be expensive and slow.

Furthermore, it is not clear that names should be assigned in a “first come,
first served” fashion: Then DTDs that might later be widely used would
have to select long, unintuitive names because some obscure DTD already
registered the obvious name.

Therefore, element types are uniquely identified via a
URI/URL (the “namespace”), and a local name.

4. XML Namespaces 8/24



Globally Unique Names (2)

It is obviously not practical to require that each time
when an element type is used, the complete URI/URL has
to be written in the tag.

This would significantly increase the document size and decrease the
readablility. Furthermore, e.g. the “/” is not allowed in XML names, so one
could not simply make a URL a prefix of an element name.

The solution is to define an abbreviation for the URI/URL
within the document, and then to use this abbreviation as
a prefix for the element name.

4. XML Namespaces 9/24



Globally Unique Names (3)

For instance, one can declare “xsl” as an abbreviation for
the namespace

http://www.w3.org/TR/WD-xsl

Then one can use the element name “xsl:template”.

The prefix “xsl” is arbitrary: If one declares instead
“abc” as an abbreviation for the above namespace,
the XSLT processor recognizes “abc:template”.

This is important, because the abbreviations are not enforced to be
globally unique: It is possible that in the future, another markup language
is defined, for which “xsl” is a natural abbreviation. Of course, within a
single document, the abbreviations must be unique.

4. XML Namespaces 10/24



Globally Unique Names (4)

Vice versa, the prefix “xsl” does not help, if it is defined
as an abbreviation for a different URI.

The XML parser makes this URI and the local name (the part after the
colon “:”) available to the applications. The application program (e.g. the
XSLT processor) recognizes its tags by the URI.

The namespace URI must only be unique. It is not required
that anything specific is stored under this web address.

Of course, the domain owner should be stable, so that not later somebody
else wants to use this URI for a different namespace. It is proposed to store
an RDDL description under the URI, but the namespace would also work if
nothing is stored under the URI.

4. XML Namespaces 11/24



Equality of Namespaces

Two namespaces are equal if their URIs are exactly identical
(character by character, including uppercase/lowercase).

For instance, two URIs that differ only in the case of the
domain name are normally equivalent, but they denote
different namespaces.

Thus, the exact case is important when defining a
namespace.

Otherwise, the application, e.g. the XSLT processor, will not recognize
“its” tags.

4. XML Namespaces 12/24



XML and Namespaces

Namespaces are not defined in the XML specification
itself, but in a separate short specification (11 pages).

The XML specification permits the colon “:” in names
without restrictions or a specific meaning.

However, it already mentions that the colon should be
used only according to the XML namespace
recommendation.

The XML Namespace recommendation was still work in progress when the
first edition of the XML recommendation was published.

4. XML Namespaces 13/24



Syntax of Names (1)

Qualified Name:

Prefix : Local Name

Qualified names can be used as element type names and
as attribute names in the XML data.

They cannot be used in the DTD (there is no possibility to declare a
namespace that is applicable to the DTD). Entity names, goals of
processing instructions and names of notations are not permitted to
contain a colon “:”.

4. XML Namespaces 14/24



Syntax of Names (2)

Prefix and Local Name are sequences of letters, digits,
underscore “_”, hyphen “-”, period “.”.

Plus certain extended characters from the unicode character set. They
must start with a letter or an underscore “_”.

The prefix must be declared as an abbreviation for a
namespace (see below).

Programs that check only the well-formedness of XML
data do not need to know about namespaces.

Since XML names can contain “:”, it is still legal XML. However, XML
validors must be “namespace-enabled” to match the element type name
from the DTD (without namespace) and the element type name in the
data.

4. XML Namespaces 15/24



Inhalt

1 Motivation

2 Method: Globally Unique Names

3 Declaration of Namespaces

4. XML Namespaces 16/24



Namespace Declaration (1)

A namespace can be defined in a start tag by means of an
attribute with prefix “xmlns”, e.g.

<example xmlns:xsl="http://www.w3.org/TR/WD-xsl"
example_attr="...">

...
</example>

All names starting with “xml” are reserved for the XML-standards.
Therefore the new special meaning of “xmlns” is no problem.

Then the abbreviation (prefix) “xsl” for the namespace
“http://www.w3.org/TR/WD-xsl” is defined for the
entire element including all its contents.

4. XML Namespaces 17/24



Namespace Declaration (2)

Since namespace declarations are inherited to all nested
subelements, one would typically define the needed
namespaces in the root element.

One can redefine a namespace prefix to stand for a different namespace in
a subelement. Then the subtree rooted in this subelement is a hole in the
scope of the namespace declaration above. However, one should avoid such
tricks.

The namespace declaration in a tag is already valid for
the element name in this tag.

This is not obvious because the namespace declaration comes syntactically
after its use. However, without this rule, there would be no possibility to
define a namespace for the root element.

4. XML Namespaces 18/24



Namespace Declaration (3)

Of course, one can define several namespaces in a single tag:

<xsl:stylesheet
xmlns:xsl="http://www.w3.org/TR/WD-xsl"
xmlns:html="http://www.w3.org/TR/REC-html40"
version="1.0">

This defines the prefixes/abbreviations “xsl” and “html”
for the two namespaces.

Note that here “xsl” is already used in the element itself.

4. XML Namespaces 19/24



Namespace Declaration (4)

It is possible to define two different prefixes for the same
namespace (should be avoided — confusing):

<example
xmlns:x="http://www.mynamespace.de"
xmlns:y="http://www.mynamespace.de">

<x:same_element_type/>
<y:same_element_type/>
<error x:a="1" y:a="2"/>

One cannot give two values for the same attribute in an
element, and x:a and y:a are the same attribute, since x
and y stand for the same namespace.

4. XML Namespaces 20/24



Default Namespace

One can also specify a default namespace by defining the
attribute “xmlns” (without suffix):
<xsl:stylesheet

xmlns:xsl="http://www.w3.org/TR/WD-xsl"
xmlns="http://www.w3.org/TR/REC-html40"
version="1.0">

Now all element types without namespace prefix are
automatically assigned to the HTML namespace.

Like any normal namespace declaration, the default namespace declaration
is inherited to all subelements, unless it is explicitly redefined. If one wants
to define elements in a subtree to have no namespace, one can define
xmlns as the empty string.

4. XML Namespaces 21/24



Namespaces of Attributes (1)

If an attribute is specified in a tag without namespace prefix,
it belongs to the element type of the tag (“local attribute”).

Default namespace declarations are not applied for
attributes. E.g., consider again:
<xsl:stylesheet

xmlns:xsl="http://www.w3.org/TR/WD-xsl"
xmlns="http://www.w3.org/TR/REC-html40"
version="1.0">

Here, version is an attribute of xsl:stylesheet.
It is not assigned to the HTML namespace.

4. XML Namespaces 22/24



Namespaces of Attributes (2)

Different element types can have attributes with the same
name and totally different meaning.

However, attributes with namespace prefix are called
“global attributes”.

They should always have the same meaning, even if they
are specified in elements of different types. Examples are
“xml:lang” and “xml:space”.

These remarks about local and global attributes are contained in a
non-normative appendix of the namespace recommendation. It is only
important that it is not necessary and not right to use a namespace prefix
for normal attributes.

4. XML Namespaces 23/24



References

Tim Bray, Dave Hollander, Andrew Layman: Namespaces in XML.
W3C Recommendation, World Wide Web Consortium, Jan 14, 1999.
[http://www.w3.org/TR/1999/REC-xml-names-19990114],
[http://www.w3.org/TR/REC-xml-names].

Tim Bray, Dave Hollander, Andrew Layman, Richard Tobin:
Namespaces in XML 1.1 (Second Edition).
W3C Recommendation, 16 August 2006.
[https://www.w3.org/TR/xml-names11/]

Tim Bray, Jean Paoli, C.M. Sperberg-McQueen:
Extensible Markup Language (XML) 1.0, 1998.
[http://www.w3.org/TR/REC-xml].
See also: [http://www.w3.org/XML], [http://www.w3.org/XML/Core].

Elliotte R. Harold, W. Scott Means: XML in a Nutshell, 3rd Ed.
O’Reilly, 2004, ISBN 0596007647.

Jonathan Borden, Tim Bray: Resource Directory Description Language (RDDL).
Feb. 18, 2002. [http://www.rddl.org/]

4. XML Namespaces 24/24

http://www.w3.org/TR/1999/REC-xml-names-19990114
http://www.w3.org/TR/REC-xml-names
https://www.w3.org/TR/xml-names11/
http://www.w3.org/TR/REC-xml
http://www.w3.org/XML
http://www.w3.org/XML/Core
http://www.rddl.org/

	Motivation
	Motivation

	Method: Globally Unique Names
	Globally Unique Names

	Declaration of Namespaces
	Declaration of Namespaces
	References


