
XML and Databases

Chapter 3: Designing XML DTDs

Prof. Dr. Stefan Brass

Martin-Luther-Universität Halle-Wittenberg

Winter 2019/20

http://www.informatik.uni-halle.de/˜brass/xml19/

3. Designing XML DTDs 1/46

http://www.informatik.uni-halle.de/~brass/xml19/


Objectives

After completing this chapter, you should be able to:

develop an XML DTD for a given application.

translate a given Entity-Relationship-Diagram or
relational database schema into an XML DTD.

E.g. the exam might contain a small relational database with a few tables,
and your task is to construct a DTD for representing the information in the
given database. In addition, you might have to write an example XML data
file with the shown data that can be validated with respect to your DTD.

discuss alternative solutions.

discuss restrictions of the DTD formalism that complicate
a direct translation of relational schemas.

3. Designing XML DTDs 2/46



Inhalt

1 Motivation, Example Database

2 Single Rows/Objects

3 Grouping Rows: Tables

4 Relationships

3. Designing XML DTDs 3/46



Motivation (1)

In order to use XML, one must specify the
document/data file structure.

This specification does not necessarily have to be in the
form of a DTD, but DTDs are simple and there are many
tools that work with DTDs.

DTDs were inherited from SGML, and are more intended for documents.
Databases have other restrictions that cannot be expressed in DTDs,
therefore XML documents might be valid with respect to the specified
DTD that do not correspond to a legal database state. XML Schema was
developed as an alternative to DTDs that fulfills better the special needs of
databases.

3. Designing XML DTDs 4/46



Motivation (2)

Often, XML is used as an exchange format between
databases. Then it is clear that one must find an XML
structure that corresponds to the given DB.

There are a lot of methods, tools, and theory for
developing database schemas.

Therefore, even if one does not (yet) store the data in a
database, it makes sense to develop first a DB schema in
order to design an XML data structure.

If XML is used as a poor man’s database, and not for “real” documents
which typically have a less stringent structure.

3. Designing XML DTDs 5/46



Example Database (1)

STUDENTS
SID FIRST LAST EMAIL
101 Ann Smith · · ·
102 David Jones NULL
103 Paul Miller · · ·
104 Maria Brown · · ·

EXERCISES
CAT ENO TOPIC MAXPT
H 1 ER 10
H 2 SQL 10
M 1 SQL 14

RESULTS
SID CAT ENO POINTS
101 H 1 10
101 H 2 8
101 M 1 12
102 H 1 9
102 H 2 9
102 M 1 10
103 H 1 5
103 M 1 7

3. Designing XML DTDs 6/46



Example Database (2)

STUDENTS: one row for each student in the course.

SID: “Student ID” (unique number).

FIRST, LAST: First and last name.

EMAIL: Email address (can be null).

EXERCISES: one row for each exercise.

CAT: Exercise category.
E.g. ’H’: homework, ’M’: midterm exam, ’F’: final exam.

ENO: Exercise number (within category).

TOPIC: Topic of the exercise.

MAXPT: Max. no. of points (How many points is it worth?).

3. Designing XML DTDs 7/46



Example Database (3)

RESULTS: one row for each submitted solution to an exercise.

SID: Student who wrote the solution.
This references a row in STUDENTS.

CAT, ENO: Identification of the exercise.
Together, this uniquely identifies a row in EXERCISES.

POINTS: Number of points the student got for the
squeezesolution.

A missing row means that the student did not yet hand
in a solution to the exercise.

3. Designing XML DTDs 8/46



Example Database (4)

Student

SID

First

Last
EMAIL

(0,∗)
solved

Points

(0,∗)
Exercise

Cat ENO

Topic MaxPt

This is an equivalent schema in the ER-Model.
ER = Entity-Relationship. Entities are another name for objects (object
types / classes are shown as boxes in the ER-diagram). Relationships
between objects (object types) are shown as diamonds. Attributes are
pieces of data that are stored about objects or relationships (shown as
ovals). Optional attributes are marked with a circle. Key attributes (which
uniquely identify objects) are underlined.

3. Designing XML DTDs 9/46



Example Database (5)

STUDENT
# SID
* First
* Last
◦ EMail

EXERCISE
# Cat
# ANo
* Topic
* MaxPt

author of
by

subject of
for

SOLUTION

* Points

The same ER-Schema in Barker Notation. Primary key attributes are marked with #.
Attributes that might be null are marked with ◦. Since the original Barker notation had
no attributes of relationships, an association entity “Solution” is needed. See also Slide 32.

3. Designing XML DTDs 10/46



Inhalt

1 Motivation, Example Database

2 Single Rows/Objects

3 Grouping Rows: Tables

4 Relationships

3. Designing XML DTDs 11/46



Table Rows/Objects: Method I

A simple and natural way to encode relational data is to
use one empty element per table row:

<STUDENT SID=’101’ FIRST=’Ann’ LAST=’Smith’
EMAIL=’smith@acm.org’/>

This could be declared as follows:
<!ELEMENT STUDENT EMPTY>
<!ATTLIST STUDENT SID CDATA #REQUIRED

FIRST CDATA #REQUIRED
LAST CDATA #REQUIRED
EMAIL CDATA #IMPLIED>

See next slide for the data type of SID.

3. Designing XML DTDs 12/46



Data Types, Keys (1)

XML has no type for numbers (SGML had NUMBER). The
nearest one could get to numbers in XML DTDs is the
type NMTOKEN.

Sequences of digits, letters and a few special characters (-, _, :, .).
E.g. “10.5kg” is an NMTOKEN value. Spaces are not permitted.

If references to students are needed (see below), ID might
be the right type for the attribute SID.

This is supported in SGML and XML.

But note that ID-values must start with a letter.
Or “_” or “:”. Thus, the data values have to be changed, e.g. “S101”
instead of “101”.

3. Designing XML DTDs 13/46



Data Types, Keys (2)

Note also that ID-values must be globally unique in an
XML document.

In contrast, key values have to be unique only within a relation
(corresponding to an element type in this translation).

Finally, composed keys (e.g., CAT and ENO) cannot be
directly translated to ID-attributes.

In the example, one could concatenate the two attributes, this would also
solve the problem that ID-values must start with a letter: E.g., H1, H2, M1.
The problem with this is that it is now more difficult to access category
and exercise number separately.

It might be good to choose the attribute name ID instead
of SID (to make the purpose clear even without DTD).

3. Designing XML DTDs 14/46



Data Types, Keys (3)

These problems to represent data types in XML has led
to the XML Schema proposal.

Specifications in XML Schema are an alternative to DTDs. XML Schema
permits basically all that is possible in classical databases (and more), but
it is much more complicated than DTDs. Whereas DTDs use a different
syntax than the XML data syntax, XML Schema specifications are valid
XML documents. Unfortunately, this also means that XML Schema
specifications are significantly longer than the corresponding DTD.

When the XML data are only an export from a database,
and not directly modified, it is unnecessary to specify all
constraints also for the XML file.

They are automatically satisfied.

3. Designing XML DTDs 15/46



Data Types, Keys (4)

The most common XML data types for attributes are
CDATA (strings), ID (unique identifiers), NMTOKEN
(words/codes), and enumeration types.

E.g., if it is clear that the only possible exercise categories
are homeworks, midterm, and final, exercises could be
represented as follows:

<!ELEMENT EXERCISE EMPTY>
<!ATTLIST EXERCISE CAT (H|M|F) #REQUIRED

ENO CDATA #REQUIRED
TOPIC CDATA #REQUIRED
MAXPT CDATA #REQUIRED>

3. Designing XML DTDs 16/46



Special Characters

If the XML file is generated by exporting data from a
database, characters that are forbidden within attribute
values must be escaped:

Replace “<” by “&lt;”.

Replace “&” by “&amp;”.

Replace an apostrophe (’) by “&apos;”.
If this character is used as a string delimiter.

Special national characters must be represented in UTF-8,
or an XML declaration that specifies an encoding must be
used.

3. Designing XML DTDs 17/46



Table Rows/Objects: Method II (1)

An alternative is to use a nested structure with an
element per attribute, plus one per row:

<STUDENT>
<SID>101</SID>
<FIRST>Ann</FIRST>
<LAST>Smith</LAST>
<EMAIL>smith@acm.org</EMAIL>

</STUDENT>

Advantage (?): Only elements, no attributes.

Disadvantage: Longer.

3. Designing XML DTDs 18/46



Table Rows/Objects: Method II (2)

The declaration in an XML DTD would look as follows:

<!ELEMENT STUDENT (SID, FIRST, LAST, EMAIL?)>
<!ELEMENT SID (#PCDATA)>
<!ELEMENT FIRST (#PCDATA)>
<!ELEMENT LAST (#PCDATA)>
<!ELEMENT EMAIL (#PCDATA)>

In SGML, one could use “&” instead of “,” to permit an
arbitrary sequence of the subelements.

In XML, one would have to simulate this with “|”. For a larger number of
columns, this gives very long and complex content models.

3. Designing XML DTDs 19/46



Method I vs. Method II (1)

In the document processing community, one usually puts
the real text into the element content, so that one would
still get the important information if all tags were removed.

In the example, one could discuss whether SID and EMAIL
should be attributes as in Method I, but at least first
name and last name should be elements as in Method II.

The database community has no such rules.

3. Designing XML DTDs 20/46



Method I vs. Method II (2)

Example for a mixture of both methods:

<STUDENT ID=’S101’ EMAIL=’smith@acm.org’>
<FIRST>Ann</FIRST>
<LAST>Smith</LAST>

</STUDENT>

This can be declared as follows:
<!ELEMENT STUDENT (FIRST, LAST)>
<!ATTLIST STUDENT ID ID #REQUIRED

EMAIL CDATA #IMPLIED>
<!ELEMENT FIRST (#PCDATA)>
<!ELEMENT LAST (#PCDATA)>

3. Designing XML DTDs 21/46



Method I vs. Method II (3)

Method II is of course advantageous if attributes values
are XML data.

If one does not know the structure, the content model ANY can be used
(note that there are no parentheses around ANY).

Enumeration values and unique identifications are only
possible with Method I.

Of course, also in Method II, special characters must be
escaped. An alternative is to use a CDATA-section.

3. Designing XML DTDs 22/46



Inhalt

1 Motivation, Example Database

2 Single Rows/Objects

3 Grouping Rows: Tables

4 Relationships

3. Designing XML DTDs 23/46



Grouping Rows (1)

One possibility is to create one element for each
relation/table, e.g.

<?xml version=’1.0’ encoding=’ISO-8859-1’?>
<GRADES-DB>

<STUDENTS>
<STUD SID=’101’ FIRST=’Ann’ .../>
<STUD SID=’102’ FIRST=’David’ .../>
...

</STUDENTS>
...

</GRADES-DB>

3. Designing XML DTDs 24/46



Grouping Rows (2)

An alternative is to have no such containers:

<?xml version=’1.0’ encoding=’ISO-8859-1’?>
<GRADES-DB>

<STUDENT SID=’101’ FIRST=’Ann’ LAST=’Smith’/>
<STUDENT SID=’102’ FIRST=’David’ LAST=’Jones’/>
...
<EXERCISE CAT=’H’ ENO=’1’ TOPIC=’ER’/>
...
<RESULT SID=’101’ CAT=’H’ ENO=’1’ POINTS=’10’/>
...

</GRADES-DB>

3. Designing XML DTDs 25/46



Grouping Rows (3)

If there are no table groups, one can require that all rows
of a single table are written consecutively:

<!ELEMENT GRADES-DB (STUDENT*,
EXERCISE*,
RESULT*)>

<!ELEMENT STUDENT EMPTY>
...

An alternative is to require no specific sequence:

<!ELEMENT GRADES-DB (STUDENT|EXERCISE|RESULT)*>

3. Designing XML DTDs 26/46



Grouping Rows (4)

Within a table, one can group rows by an attribute:
<EXERCISES>

<CAT LETTER=’H’>
<EX ENO=’1’ TOPIC=’ER’ MAXPT=’10’/>
<EX ENO=’2’ TOPIC=’SQL’ MAXPT=’10’/>

</CAT>
<CAT LETTER=’M’>

<EX ENO=’1’ TOPIC=’SQL’ MAXPT=’14’/>
</CAT>

</EXERCISES>

“EX” does not need an attribute “CAT”: Its value can be
derived from the enclosing “CAT” element.

3. Designing XML DTDs 27/46



Ordered Data (1)

In relational databases, the rows within a table have no
specific sequence.

If the sequence is important, and cannot be recovered by
ordering the rows by one of the columns, a column must
be added that encodes the sequence (e.g. a number).

XML documents are always ordered.

Therefore it might be possible to leave out columns that
can be derived from the position in the file.

3. Designing XML DTDs 28/46



Ordered Data (2)

If e.g. the exercise number is always sequential, it does
not have to be stored explicitly:

<EXERCISES>
<CAT LETTER=’H’>

<EX TOPIC=’ER’ MAXPT=’10’/>
<EX TOPIC=’SQL’ MAXPT=’10’/>

</CAT>
<CAT LETTER=’M’>

<EX TOPIC=’SQL’ MAXPT=’14’/>
</CAT>

</EXERCISES>

3. Designing XML DTDs 29/46



Inhalt

1 Motivation, Example Database

2 Single Rows/Objects

3 Grouping Rows: Tables

4 Relationships

3. Designing XML DTDs 30/46



1:n Relationships (1)

The example database contains only a many-to-many
(n:m) relationship, which is discussed below.

An example for a one-to-many (1:n) relationship is:

Professor

Name Phone

(0,∗)
teaches

(1,1)
Course

Term Title

One professor teaches many courses (between 0 and
∗ =∞, i.e. arbitrarily many), but each course is taught
by exactly one professor (min 1, max 1).

3. Designing XML DTDs 31/46



1:n Relationships (2)

The same ER-Schema in Barker Notation:

PROFESSOR
# Name
* Phone

teaches
taught by

COURSE
# Term
# Titel

The left half of the line that symbolizes the relationship between professors and
courses is dashed, because professors do not have to teach a course (minimum
cardinality 0). The right half of the line is solid, because courses must be taught
by a professor (minimum cardinality 1). The “crowsfoot” on the “COURSE”
side symbolizes that a professor might teach many courses (corresponding to
the maximum cardinality ∗ on the professor side). The simple line end on the
“PROFESSOR” side means that every course is taught by only one professor
(maximum cardinality 1 on the “COURSE” side).

3. Designing XML DTDs 32/46



1:n Relationships (3)

In the relational model, the relationship “teaches” is
implemented by adding the key of professor as a foreign
key to the course table:

PROFESSORS
NAME PHONE
Brass 55-24740
Zimmermann 55-24712

COURSES
TERM TITLE PROF
Summer 2004 Databases Design Brass
Winter 2004 Foundations of the WWW Brass
Summer 2004 Compiler Construction Zimmermann

3. Designing XML DTDs 33/46



1:n Relationships (4)

One-to-many relationships can be easily represented by
nesting the elements for the “many” side (in this case Course)
into the elements for the “one” side (Professor):
See the example on the next slide.

This nesting can be extended to arbitrary depth to
represent a tree of one-to-many relationships.

Example: Suppose that the times when the course meets
(class) has to be stored for each course (courses can meet
several times per week).

3. Designing XML DTDs 34/46



1:n Relationships (5)

<?xml version=’1.0’ encoding=’ISO-8859-1’?>
<COURSE-DB>

<PROFESSOR NAME=’Brass’ PHONE=’55-24740’>
<COURSE TERM=’Summer 2004’

TITLE=’Database Design’/>
<COURSE TERM=’Winter 2004’

TITLE=’Foundations of the WWW’/>
</PROFESSOR>
<PROFESSOR NAME=’Zimmermann’ PHONE=’55-24712’>

<COURSE TERM=’Summer 2004’
TITLE=’Compiler Construction’/>

</PROFESSOR>
</COURSE-DB>

3. Designing XML DTDs 35/46



1:n Relationships (6)

<?xml version=’1.0’ encoding=’ISO-8859-1’?>
<COURSE-DB>

<PROFESSOR NAME=’Brass’ PHONE=’55-24740’>
<COURSE TERM=’Summer 2004’

TITLE=’Database Design’>
<CLASS DAY=’MON’ FROM=’10’ TO=’12’/>
<CLASS DAY=’THU’ FROM=’16’ TO=’18’/>

</COURSE>
<COURSE TERM=’Winter 2004’

TITLE=’Foundations of the WWW’>
<CLASS DAY=’WED’ FROM=’14’ TO=’16’/>

</COURSE>
...

3. Designing XML DTDs 36/46



Foreign Keys (1)

An alternative is to represent the professor-course
relationship with ID- and IDREF-attributes:

<!ELEMENT COURSE-DB (PROFESSOR|COURSE)*>
<!ELEMENT PROFESSOR EMPTY>
<!ATTLIST PROFESSOR NAME ID #REQUIRED

PHONE CDATA #REQUIRED>
<!ELEMENT COURSE EMPTY>
<!ATTLIST COURSE TERM CDATA #REQUIRED

TITLE CDATA #REQUIRED
PROF IDREF #REQUIRED>

This is very similar to the relational solution.

3. Designing XML DTDs 37/46



Foreign Keys (2)

<?xml version=’1.0’ encoding=’ISO-8859-1’?>
<COURSE-DB>

<PROFESSOR NAME=’Brass’ PHONE=’55-24740’/>
<COURSE TERM=’Summer 2004’ PROF=’Brass’

TITLE=’Database Design’/>
<COURSE TERM=’Winter 2004’ PROF=’Brass’

TITLE=’Foundations of the WWW’/>

<PROFESSOR NAME=’Zimmermann’ PHONE=’55-24712’/>
<COURSE TERM=’Summer 2004’ PROF=’Zimmermann’

TITLE=’Compiler Construction’/>
</COURSE-DB>

3. Designing XML DTDs 38/46



Foreign Keys (3)

IDREF-attributes are similar to foreign keys, but there are
the following differences:

ID/IDREF-attribute values must be identifiers.
E.g. “S. Brass” could not be used as value of an ID-attribute.

IDREF attributes can refer to any element that as an
ID-attribute. One cannot specify that PROF in COURSE
must point to a professor.

In the example, only PROFESSOR has an ID-attribute. Then this
problem does not occur.

The relational model permits keys that consist of several
attributes (not supported in DTDs).

3. Designing XML DTDs 39/46



IDREFS (1)

XML has also the attribute data type IDREFS, which is a
space-separated list of IDREF values.

Whereas the foreign key must be placed on the “many”
side of a “one-to-many” relationship, this permits to put
the linking data on the “one” side.

E.g. if the courses are identified by ID values, the
professor element can contain an IDREFS attribute with
the IDs of all courses that he/she teaches.

See the example on the next slide. The one-to-many relationship “One
professor teaches many courses” is implemented with an IDREFS attribute
in the professor element. In contrast, the standard foreign key solution uses
an IDREF attribute in the course element.

3. Designing XML DTDs 40/46



IDREFS (2)

Application of an IDREFS attribute COURSE_IDS:

<?xml version=’1.0’ encoding=’ISO-8859-1’?>
<COURSE-DB>

<PROFESSOR NAME=’Brass’ PHONE=’55-24740’
COURSE_IDS=’DD04 WWW04’/>

<COURSE ID=’DD04’ TERM=’Summer 2004’
TITLE=’Database Design’/>

<COURSE ID=’WWW04’ TERM=’Winter 2004’
TITLE=’Foundations of the WWW’/>

<PROFESSOR NAME=’Zimmermann’ PHONE=’55-24712’
COURSE_IDS=’CC04’/>

<COURSE ID=’CC04’ TERM=’Summer 2004’
TITLE=’Compiler Construction’/>

</COURSE-DB>
3. Designing XML DTDs 41/46



n:m Relationships (1)

The student grades database contains a many-to-many
(n:m) relationship:

One student can solve many exercises.

One exercise can be solved by many students.

In this case references are unavoidable (at least if
duplicate storage of the same entities is excluded):

Either the results are nested under students
(then result elements must point to exercises),

or results are nested under exercises
(then they must point to students).

3. Designing XML DTDs 42/46



n:m Relationships (2)

<?xml version=’1.0’ encoding=’ISO-8859-1’?>
<GRADES-DB>

<STUDENT SID=’101’ FIRST=’Ann’ LAST=’Smith’
EMAIL=’smith@acm.org’>

<RESULT CAT=’H’ ENO=’1’ POINTS=’10’/>
<RESULT CAT=’H’ ENO=’2’ POINTS=’8’/>
<RESULT CAT=’M’ ENO=’3’ POINTS=’12’/>

</STUDENT>
...
<EXERCISE CAT=’H’ ENO=’1’ TOPIC=’ER’

MAXPT=’10’/>
...

</GRADES-DB>

3. Designing XML DTDs 43/46



n:m Relationships (3)

<?xml version=’1.0’ encoding=’ISO-8859-1’?>
<GRADES-DB>

<STUDENT ID=’S101’ FIRST=’Ann’ LAST=’Smith’
EMAIL=’smith@acm.org’/>

...
<EXERCISE CAT=’H’ ENO=’1’ TOPIC=’ER’

MAXPT=’10’>
<RESULT STUD=’S101’ POINTS=’10’/>
<RESULT STUD=’S102’ POINTS=’9’/>
<RESULT STUD=’S103’ POINTS=’5’/>

</EXERCISE>
...

</GRADES-DB>

3. Designing XML DTDs 44/46



n:m Relationships (4)

As is well known in databases, one can replace a
many-to-many relationship by an “association entity”
(RESULTS) and two one-to-many relationships.

One of the relationships is represented by nesting the
elements, the other relationship is represented by references.

Given an arbitrary ER-diagram,

one would first replace the many-to-many relationships
in this way by association entities, and then

cut the resulting graph of one-to-many relationships into
trees.

References are needed for cutted edges, the trees are
represented by nesting.

3. Designing XML DTDs 45/46



References

Tim Bray, Jean Paoli, C. M. Sperberg-McQueen, Eve Maler, François Yergeau,
John Cowan: Extensible Markup Language (XML) 1.1 (Second Edition),
W3C Recommendation 16 August 2006, edited in place 29 September 2006.
[http://www.w3.org/TR/xml11]. See also: [http://www.w3.org/XML].

Elliotte R. Harold, W. Scott Means: XML in a Nutshell, 3rd Ed.
O’Reilly, 2004, ISBN 0596007647.

Didier Martin, Mark Birbeck, Michael Kay: Professional XML, 2nd Ed. Wrox, 2000.

Henning Lobin: Informationsmodellierung in XML und SGML. Springer-Verlag, 1999.

Erhard Rahm, Gottfried Vossen: Web & Datenbanken. Dpunkt Verlag, 2002.

Meike Klettke, Holger Meyer: XML & Datenbanken. Dpunkt Verlag, 2002.

Akmal B. Chaudhri et al.: XML Data Management. Addison-Wesley, 2003.

Eve Maler, Jeanne El Andaloussi:
Developing SGML DTDs: From Text to Model to Markup.
Prentice Hall PTR, 1996.

3. Designing XML DTDs 46/46

http://www.w3.org/TR/xml11
http://www.w3.org/XML

	Motivation, Example Database
	Motivation, Example Database

	Single Rows/Objects
	Single Rows

	Grouping Rows: Tables
	Grouping Rows: Tables

	Relationships
	Relationships
	References


