
XML and Databases

Chapter 1: XML Syntax

Prof. Dr. Stefan Brass

Martin-Luther-Universität Halle-Wittenberg

Winter 2019/20

http://www.informatik.uni-halle.de/˜brass/xml19/

1. XML Syntax 1/87

http://www.informatik.uni-halle.de/~brass/xml19/

Objectives

After completing this chapter, you should be able to:

write syntactically correct XML.

check given XML documents for syntax errors.

explain the tree-structure of XML data.

read XML Document Type Definitions (DTDs).

validate an XML document against a given DTD.

1. XML Syntax 2/87

Inhalt

1 Introduction

2 XML Documents

3 DTDs

4 DOCTYPE Decl.

1. XML Syntax 3/87

Introduction (1)

XML (“eXtensible Markup Language”) is basically a
simplification (subset) of SGML (“Standard Generalized
Markup Language”).

SGML is an ISO-Standard since 1986. XML was developed mainly 1996,
and became an W3C Recommendation on February 10, 1998.

HTML was too restricted for exchanging semantic data
over the internet (not only text documents): User-defined
tags are needed.

E.g., there is no tag “<price>” in HTML.

The browser vendors complained that SGML was too
complex.

1. XML Syntax 4/87

Introduction (2)

The current version is XML 1.1 (2nd Ed.) from
August 2006.

The standard is freely available: [https://www.w3.org/TR/xml11/]
There is also a fifth edition of the XML 1.0 standard from November 2008
(editions add clarifications): [https://www.w3.org/TR/xml/].

XML/SGML has two levels:

It is a syntax formalism, in which (X)HTML and similar
markup languages can be defined.

For a given DTD (grammar), XML/SGML documents
contain the data or the text.

1. XML Syntax 5/87

https://www.w3.org/TR/xml11/
https://www.w3.org/TR/xml/

Introduction (3)

XML/SGML is only a data format (syntax).

It says nothing about the semantics of the data that are
coded in XML/SGML.

In contrast to SGML, where a DTD is required, XML can
also be used without DTD:

“Well-formed XML”: Basic syntax rules (proper nesting
of tags) are satisfied. No DTD is needed.

“Valid XML”: In addition, only tags defined in a DTD
are used, and the content of each “tag” (element)
satisfies the constraints of the DTD.

1. XML Syntax 6/87

XHTML Example

<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE html PUBLIC

"-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">
<head>

<title>My first XHTML document</title>
</head>
<body>

<h1>Greeting</h1>
<p>Hello, world!</p>

</body>
</html>

1. XML Syntax 7/87

http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd

Database Example (1)

STUDENTS
SID FIRST LAST EMAIL
101 Ann Smith · · ·
102 David Jones NULL
103 Paul Miller · · ·
104 Maria Brown · · ·

EXERCISES
CAT ENO TOPIC MAXPT
H 1 ER 10
H 2 SQL 10
M 1 SQL 14

RESULTS
SID CAT ENO POINTS
101 H 1 10
101 H 2 8
101 M 1 12
102 H 1 9
102 H 2 9
102 M 1 10
103 H 1 5
103 M 1 7

1. XML Syntax 8/87

Database Example (2)

Table rows can be directly translated to XML:

<?xml version=’1.0’ encoding=’ISO-8859-1’?>
<GRADES-DB>

<STUDENT SID=’101’ FIRST=’Ann’ LAST=’Smith’/>
<STUDENT SID=’102’ FIRST=’David’ LAST=’Jones’/>
...
<EXERCISE CAT=’H’ ENO=’1’ TOPIC=’ER’/>
...
<RESULT SID=’101’ CAT=’H’ ENO=’1’ POINTS=’10’/>
...

</GRADES-DB>

1. XML Syntax 9/87

Database Example (3)

One can also use nested elements for table entries:

<?xml version=’1.0’ encoding=’ISO-8859-1’?>
<GRADES-DB>

<STUDENTS>
<STUDENT>

<SID>101</SID>
<FIRST>Ann</FIRST>
<LAST>Smith</LAST>

</STUDENT>
...

</STUDENTS>
...

</GRADES-DB>

1. XML Syntax 10/87

DB Example with Nesting

<?xml version=’1.0’ encoding=’ISO-8859-1’?>
<COURSE-DB>

<PROFESSOR NAME=’Brass’ PHONE=’55-24740’>
<COURSE TERM=’Summer 2004’

TITLE=’Database Design’>
<CLASS DAY=’MON’ FROM=’10’ TO=’12’/>
<CLASS DAY=’THU’ FROM=’16’ TO=’18’/>

</COURSE>
<COURSE TERM=’Winter 2004’

TITLE=’Foundations of the WWW’>
<CLASS DAY=’WED’ FROM=’14’ TO=’16’/>

</COURSE>
</PROFESSOR>
...

1. XML Syntax 11/87

Inhalt

1 Introduction

2 XML Documents

3 DTDs

4 DOCTYPE Decl.

1. XML Syntax 12/87

Elements (1)

An XML/SGML document is a text, in which words,
phrases, or sections are marked with “tags”, e.g.

<title>My first XHTML document</title>

“<title>” is an example for a start-tag.

“</title>” is an example for an end-tag.

Specialized editors also use other symbols on the screen,
e.g.

title My first XHTML document title

1. XML Syntax 13/87

Elements (2)

The text part from the begin of a start tag to the end of
the corresponding end tag is called an element.

The name in start tag and end tag (e.g., “title”) is
called the element name (or element type).

Note that there can be several elements with the same name, so the name
is a kind of “type”. However, in XML Schema, elements have types, which
are something different. The XML standard talks about “element type
declaration”, the XML schema standard calls basically the same thing an
“element declaration” (it avoids “element type”). That is confusing. In the
same way, the concrete instance is called “element” in the XML standard,
and “element information item” in the XML Schema standard.

1. XML Syntax 14/87

Elements (3)

Quite often, “tag” is used when “element” would be
formally right:

A tag is the string from “<” to “>” (inclusive).

“The title tag” is not quite correct.
Unless you refer to a specific occurrence in the text, but there are
always two title tags, the start tag and the end tag.

Better say “The title element of the document” or
something similar.

No points will be taken off because this confusion is so common.

1. XML Syntax 15/87

Elements (4)

Element types/names are declared in a DTD.
E.g. the “XHTML 1.0 strict” DTD declares a certain set of element types
for HTML documents that includes e.g. “title”.

Names (identifiers, used e.g. as element types) can
contain letters, digits, periods “.”, hyphens “-”,
underscores “_”, and colons “:”.

Plus certain extended characters from the Unicode set. They must start
with a letter, an underscore “_”, or a colon “:”. The colon should only be
used in accordance with the namespace specification. All names starting
with “xml” are reserved.

Names are case-sensitive.
In SGML, this can be selected in an SGML declaration.

1. XML Syntax 16/87

Elements (5)

The contents of an element is the text between start-tag
and end-tag. E.g. the contents of the example element
(Slide 13) is

My first XHTML document

For each element type, one can define in the DTD what
exactly is allowed as contents of these elements
(“Content Model”).

E.g. elements of the type title can contain only pure
text in XHTML (one cannot nest any other elements inside).

1. XML Syntax 17/87

Elements (6)

The element type “ul” (unordered list) contains a
sequence of elements of the type “li” (list item):

FirstSecond

Since elements can contain themselves elements, one can
understand an SGML document as a tree:

Inner nodes are labelled with elements.

Leaf nodes are labelled with text or with elements
(which have empty contents in this case).

1. XML Syntax 18/87

Elements (7)

E.g. the unordered list above has this structure:

ul

li

”First”

li

”Second”

It is called “unordered list” because bullets are used for the list items, not
numbers, so presumably the exact sequence is not very important.
However, in SGML and XML, the child nodes of a node always have a
sequence from left to right (as given in the document). This is a difference
to relational databases, where the rows in a table have no sequence.

1. XML Syntax 19/87

Elements (8)

Structure of the XHTML example (Slide 7):

html

head

title

”My first XHTML
document”

body

p

”Hello, world!”

h1

”Greeting”

1. XML Syntax 20/87

Elements (9)

Elements cannot overlap only partially.
For each two elements A and B, either A is completely contained in B, or
B completely in A, or the two do not overlap at all.

This means that opening and closing tags must be nested
correctly: E.g. the following is legal:

<h1><code>...</code></h1>
However, this is a syntax error:

<h1><code>...</h1></code>

Begin and end tags work like parentheses of different
types: ([]) is legal, but [(]) is not.

1. XML Syntax 21/87

Elements (10)

Four kinds of element types can be distinguished:

Element types that can only contain text.

Element types that can only contain other element types.
Of course, these other elements might contain text. The DTD
defines which element types are exactly valid inside the given
element type and in which sequence they must appear.

Element types that can contain a mixture of text and
other elements (“mixed content model”):

<p>Hello, world!</p>

Element types that always have empty contents.

1. XML Syntax 22/87

Elements (11)

The tree representation of an element with mixed content
looks as follows:

p

”Hello, ” em

”world”

”!”

Elements with empty contents work as markers.
E.g. “br” (break) does a line break in XHTML.

1. XML Syntax 23/87

Empty Elements

In XML, for every opening tag there must be a
corresponding closing tag.

In contrast, SGML has “tag minimization” rules that permit to leave out
tags that can be uniquely reconstructed by the SGML parser.

Since
</br> does not look very nice, and the closing
tag contains no additional information, empty element
tags were introduced in XML: “
” is equivalent to
“
</br>”.

This was one of the few points were XML was not a subset of SGML at
the beginning. Of course, SGML was/will be extended to permit this
syntax, too.

1. XML Syntax 24/87

Line Ends

In SGML, line ends (record boundaries) directly after a
start tag or directly before an end tag are ignored (i.e. at
the start or end of the content).

In XML, line ends or empty space is not ignored.
The parser passes it to the application, which can of course ignore it. E.g. a
validating parser, which knows that an element contains pure element
content (not mixed content) will ignore whitespace between the elements.

In XML, line ends are normalized to a line feed.
Even on a Windows system (which uses CR, LF for line ends), the XML
application receives LF (ASCII 10) from the parser.

1. XML Syntax 25/87

Attributes (1)

In the start tag, attribute-value pairs can be optionally
specified.

E.g. in XHTML, links to other documents are marked
with the element a (“anchor”):

XML was developed by the
W3C.

The text of the reference is given in the element content,
the URI of the referenced web page is specified in the
attribute “href”.

1. XML Syntax 26/87

Attributes (2)

Start-Tag:

< Element-Type

Space A-V-Pair

>

End-Tag:

< / Element-Type

Space

>

1. XML Syntax 27/87

Attributes (3)

Empty Element Tag:

< Element-Type

Space A-V-Pair

/ >

“Space” (white space) consists of one or more space
characters, carriage returns, line feeds, and tabs
(ASCII 32, 13, 10, 9).

1. XML Syntax 28/87

Attributes (4)

A-V-Pair:

Attribute =

Space Space

Value

Value:

" Data String without " "

’ Data String without ’ ’

1. XML Syntax 29/87

Attributes (5)

Attribute values can be enclosed in " or ’.
The other sign can appear inside the string.

If one needs both quotation marks, one must use an entity or character
reference (see below).

Attribute values cannot contain elements.

The character “<” is forbidden in attribute values.
If necessary, one can include it with a character reference or an entity
reference. Excluding “<” in attribute values helps to detect errors earlier
(such as a missing quote). To make this clear: “<” ist not forbidden in the
internal value of an attribute (which an XML parser can pass to the
application), it is only forbidden in the external representation. But it never
creates elements in attribute values.

1. XML Syntax 30/87

Attributes (6)

The character “&” is treated special in attribute values
(character/entity reference, see below).

Attribute values can extend over multiple lines. The
parser replaces tabs and line ends in the attribute value
by a space.

Depending on the type of the attribute, white space may be normalized: It
is then removed at the beginning and at the end of the attribute value, and
several consecutive spaces are merged into one. However, this does not
happen for normal “CDATA” attributes.

The sequence in which several attribute-value-pairs are
listed in a tag is not important.

1. XML Syntax 31/87

Character References (1)

One must distinguish between

the repertoire of characters used internally
(e.g. data passed from XML parser to application)

the encoding of these characters in bytes for exchanging
documents (external representation).

Internally, XML uses the Unicode character set.

For exchanging documents, one can e.g. use the
ISO 8859-1 (ISO Latin 1) character codes, which contains
only a subset of all Unicode characters.

Other encodings contain e.g. cyrillic or japanese characters.

1. XML Syntax 32/87

Character References (2)

The XML declaration at the beginning of the XML file
defines the encoding (see below).

The encoding can also be specified in the HTTP protocol.

The characters in the ISO Latin 1 character set are also
contained in the Unicode character set and have the same
numeric codes in both character sets.

I.e. Unicode is upward compatible to ISO Latin 1. However, the encoding
as sequence of bytes is different. At the beginning, Unicode character
numbers had 16 Bit, now there are 17 planes of 16 Bit each. With the
UTF-8 encoding of Unicode, at least the 7-bit ASCII characters have the
same encoding in ASCII, ISO Latin 1, and Unicode. However, for German
national characters (ä, ö, ü, etc.) this is no longer true: UTF-8 uses two
bytes for them. See Slide 36.

1. XML Syntax 33/87

Character References (3)

Characters that cannot be directly entered, can be written
as a “character reference” using their numeric code:

ä
is an “ä”. Hexadecimal notation can also be used:

ä

The numbers refer to the repertoire (i.e. Unicode), not to
the encoding for exchange.

ASCII and ISO Latin 1 codes can be used since Unicode is upward compatible.

Character references can also be used to “escape” characters
that otherwise would have special meaning in SGML/XML.

The result of a character reference is always treated as data.
E.g. if a double quote (ASCII 34) needs to be included in an attribute
value that is enclosed in double quotes, one can write it as “"”.

1. XML Syntax 34/87

Character References (4)

Character Reference:

& # Decimal Digits ;

x Hexadecimal Digits

In DTDs, abbreviations/macros (“entities”) can be defined
(see appendix).

In this way, one does not have to remember character
codes.

E.g. in HTML, one would write “ä” for an “ä” (if one wants to stick
to pure ASCII). In XML, this is not predefined.

1. XML Syntax 35/87

Short Digression: UTF-8 (1)

The character “ä” has the number (“code point”)
U+00E4 (228) in Unicode.

It has the same number in ISO Latin 1, and this encoding
uses one byte per character, therefore it is represented by
the byte 0xE4.

UTF-8 uses one byte per character only for characters
with codes up to U+007F (127).

I.e. when the first bit of a byte is 0, this byte encodes a character by itself.
This ensures that UTF-8 is upwards compatible to ASCII.

1. XML Syntax 36/87

Short Digression: UTF-8 (2)

For characters with code point above U+007F
(including ä), multi-byte sequences are needed in UTF-8:

For n-byte sequences, the first byte starts with n 1-bits
followed by a 0-bit.

E.g. the prefix 110 in the first byte means that this byte sequence
consists of two bytes.

All other bytes start with 10.
If one jumps somewhere into an UTF-8 byte stream, one can detect
the start of character encodings (bytes starting not with 10).

Unicode reserves 17 planes of 16 bit each (up to U+10FFFF),
which requires max. 4 bytes in UTF-8.

1. XML Syntax 37/87

Short Digression: UTF-8 (3)

A two byte sequence consists of bytes 110xxxxx and
10yyyyyy, representing the code point xxxxxyyyyyy and
is used for the range U+0080 to U+7FF.

The character “ä” with code U+00E4 (11100100) is
encoded as 11000011 (0xC3) and 10100100 (0xA4).

If an editor assumes that the text is encoded in ISO
Latin 1, it will display the two characters Ã .

The second is a “general currency symbol”: U+00A4 (= 164).

Each code point must be encoded in the shortest byte
sequence (e.g. ASCII characters as one byte).

1. XML Syntax 38/87

Comments (1)

Comments can be used to enter notes or explanations for
a reader of the SGML/XML source file into the document.

Comments are ignored by programs that process an
SGML/XML file. E.g. they might not appear in the
formatted output.

The XML standard permits that an XML parser passes comments to the
application program, but it does not require this.

A comment in SGML/XML has the form

<!-- This is a comment -->

1. XML Syntax 39/87

Comments (2)

Comments can extend over several lines.
I.e. they do not have to be closed on the same line.

Within a comment, it is forbidden to write two
consecutive hyphens “--”.

In SGML, the comment actually extends from “--” to “--”. However, it
can only be used in a markup declaration, which starts with “<!” and ends
with “>”.

Tags within a comment are permitted, but confuse many
browsers.

Browsers try to correct syntax errors. When they see a tag, they might
assume that the author forgot the “end of comment” mark.

1. XML Syntax 40/87

Comments (3)

Comments can be used anywhere in the document
outside other markup.

They cannot be used within tags.

In SGML (but not in XML), comments “-- ... --” can
appear in markup declarations at places permitted by the
grammar.

In modern programming languages, whitespace including comments is
allowed between tokens. SGML/XML are different: maybe because they are
languages for writing documents, not programs, maybe they are a bit
outdated in this aspect.

XML supports only “<!-- ... -->”.

1. XML Syntax 41/87

Exercise

Please find syntax errors:

<?xml version="1.0" encoding="ISO-8859-1"?>
<GradesDB3>

<student sid=’101’ first=’Ann’ last="Smith"
<result cat=’H’ eno = 1 points=10>
<result cat=’H’ eno =’1’ points=’8’>
<result cat=’M" eno ="1" points=’12’

>
</ student >
<!------------ Exercises ------------>
<ex cat=’H’ eno=’1’ note=’difficult’>

Rela tional Algebra</ex>
</Grades-DB>

1. XML Syntax 42/87

Software (1)

Although browsers are very generous with syntax errors in
HTML documents, they show all errors in XML documents.

E.g. Internet Explorer, Firefox.

They check only the syntax of well-formed XML, they do
not validate documents against a DTD.

If no style sheet is given, the document tree is displayed
(child nodes are indented under the parent).

It is possible to collapse/expand subtrees by clicking on the -/+ in front of
the elements.

1. XML Syntax 43/87

Software (2)

Xerces from the Apache Software Foundation is an
example for a validating parser for XML (supporting
DTDs and XML Schema).

See [http://xerces.apache.org/]. It has a DOM and a SAX interface for
accessing the parsed data. It comes with a test program domprint, which
can be used for checking the syntax (it is an unparser, i.e. it outputs the
result of parsing again as XML, but probably differently formatted). There
is a C++ and a Java version, and a Perl interface to the C++ version.

There are also validation services on the web, e.g.

[http://www.xmlvalidation.com/]

[https://www.w3schools.com/xml/xml validator.asp]

1. XML Syntax 44/87

http://xerces.apache.org/
http://www.xmlvalidation.com/
https://www.w3schools.com/xml/xml_validator.asp

Inhalt

1 Introduction

2 XML Documents

3 DTDs

4 DOCTYPE Decl.

1. XML Syntax 45/87

Example

Simple DTD for a HTML-Subset:

<!ELEMENT html (head, body)>
<!ELEMENT head (title)>
<!ELEMENT title (#PCDATA)>
<!ELEMENT body ((#PCDATA|p|em|ul)*)>
<!ELEMENT p ((#PCDATA|em|br)*)>
<!ELEMENT em (#PCDATA)>
<!ELEMENT br EMPTY>
<!ELEMENT ul (li+)>
<!ELEMENT li ((#PCDATA|p|em|ul|br)*)>

1. XML Syntax 46/87

Element-Type Declarations (1)

An Element-Type Declaration consists of:
“<!” followed by the keyword “ELEMENT”.

In SGML, one could define a different string instead of “<!”. This is the
parameter MDO (“Markup Deklaration Open Delimiter”) in the SGML
declaration. Correspondingly, “>” is called MDC (“Markup Declaration
Close Delimiter”). XML is based on a fixed SGML declaration, so one
cannot change these delimiters.

Name of the element type to be declared.
Such names are officially called “Generic Identifiers”.

Then one specifies what is permitted as content of this
type of elements (“content model”).

“>”.
1. XML Syntax 47/87

Element-Type Declarations (2)

Element-Type Declaration:

<!ELEMENT Name Content >

White space is required between “<!ELEMENT” and the name, and between the
name and the content specification. It is permitted but not required between
content specification and the “>”.
Names in XML must start with a letter, an underscore “_” or a colon “:”, and
can otherwise contain letters, digits, periods “.”, hyphens “-”, underscores “_”,
colons “:”, or certain special Unicode characters. Names starting with “xml” in
any capitalization are reserved, the colon is treated specially by the XML
namespace standard.
The element type declaration is SGML is more complicated: There, also
specifications for markup minimization are required (if the markup minimization
parameter OMITTAG is set), “exclusions” and “inclusions” are possible, several
element types can be declared together, etc.

1. XML Syntax 48/87

Content Specifications (1)

The building blocks of content specifications are

Names X of element types: This pattern matches exactly
one element of type X , i.e. basically <X>...</X>.

The keyword #PCDATA: Pure textual data without tags
(but possibly character/entity references).

#PCDATA stands for “Parsed Character Data” (it is checked that there
are no nested tags). SGML (not XML) has also CDATA (treats < as text).

One can specify the optionality/multiplicity of elements
and groups by attaching occurrence indicators:

A?: Optional, non repeatable (0 or 1 time).

A*: Optional, repeatable (0 or more times).

A+: Required, repeatable (1 or more times).

1. XML Syntax 49/87

Content Specifications (2)

Content specifications can be connected with

(A1|...|An): “Alternative”/“Choice” (one of the Ai).
E.g. (A | B): “A or B”. The content must match A or match B.

(A1,...,An): “Sequence” (all Ai in the given sequence).
E.g. (A, B): “First A, then B” (“A followed by B”). A prefix of the
content must match A, the rest B.
SGML (not XML) has also (A & B): “A and B”. A and B must both
appear, but in arbitrary sequence. This is equivalent to ((A,B)|(B,A)).

The Ai are

An element type (possibly with ?/*/+).

#PCDATA (in XML with restrictions, see below).

A nested model group (possibly with ?, *, +).

1. XML Syntax 50/87

Content Specifications (3)

A content specification (“content model”) is

A model group (possibly only of one element),
Element types must always be specified within parentheses.
XML has special restrictions for mixed content, see below.

the keyword EMPTY: No content permitted.

The keyword ANY: Character data and elements of
arbitrary type.

1. XML Syntax 51/87

Content Specifications (4)

Content:

Model Group
?

*

+

Text/Mixed

EMPTY

ANY

1. XML Syntax 52/87

Content Specifications (5)

Text/Mixed:

(#PCDATA)

(#PCDATA) *

Element Type |

In XML, the only content models that can contain
#PCDATA are (SGML has no such restriction):

(#PCDATA)

(#PCDATA | Element-Type | ... | Element-Type)*

1. XML Syntax 53/87

Content Specifications (6)

Model Group:
(Group Element)

|

(Group Element)

,

Group Element:

Element Type

Model Group
?

*

+
1. XML Syntax 54/87

Content Specifications (7)

In SGML and XML, the possible occurrence of white
space is defined by the grammar.

It is permitted but not required between each two tokens
(“word symbols”) in content models, except before the
occurrence indicators “?”, *”, “+”.

The keyword “#PCDATA” requires the symbol “#”
(RNI, “Reserved Name Indicator”) in order to distinguish
it from an element type named “PCDATA”.

Other keywords like “EMPTY” do not use it, since in the element type
declaration, they appear outside of parentheses, while user-defined names
must appear inside parentheses.

1. XML Syntax 55/87

Content Specifications (8)

In SGML and in XML, content models must be not
ambiguous. E.g. the following is forbidden:

<!ELEMENT E ((A, B?), B)>
When the parser has read an A and sees a B, it is not clear whether this is
the optional B in the middle or already the required B at the end.

Another example for an ambiguous content model:
<!ELEMENT E ((A, B) | (A, C))>

When the parser sees the element A, it does not know which path to follow.

This requirement simplifies the task of checking the input
with respect to a given DTD.

There are standard techniques for generating a nondeterministic finite
automaton for a given regular expression. SGML and XML are restricted in
such a way that the constructed automaton is already deterministic.
Some XML Parsers accept nondeterministic content models.

1. XML Syntax 56/87

Attribute Declarations (1)

Example (symbol used for marking list items):

<!ATTLIST UL type (disc|square|circle) #IMPLIED>

In HTML 4.01 Strict this attribute was removed.

Several attributes (of one element type) can be declared
in a single ATTLIST command.

E.g. some attributes of images in HTML:
<!ATTLIST IMG src CDATA #REQUIRED

alt CDATA #REQUIRED
width CDATA #IMPLIED
height CDATA #IMPLIED>

1. XML Syntax 57/87

Attribute Declarations (2)

<!ATTLIST Element Type

Name Data Type Default >

For each attribute, three things are defined:
Name, data type, and default value.

White space is required between each two components of the ATTLIST

command, except before the final “>”, where it is optional.

1. XML Syntax 58/87

Attribute Declarations (3)

The same attribute name can appear in an ATTLIST
declaration only once.

This is clear: There cannot be conflicting definitions for an attribute in the
same declaration.

If there are several ATTLIST declarations for the same
element type, they are merged. The first declaration for
an attribute becomes effective, all other declarations for
the same attribute are ignored.

This might be useful if a DTD is constructed in several pieces. It is
however recommended (required in SGML?) that for every element type,
there is only one ATTLIST declaration which defines all its attributes.

1. XML Syntax 59/87

Attribute Data Types (1)

E.g. (yes|no): Enumeration type.
The attribute value must be one of the listed values. Each value is a
“name token” (NMTOKEN), i.e. a sequence of characters that can appear
anywhere in identifiers (letters, digits, and certain special characters).
E.g. a sequence of digits would be valid. In SGML, it is forbidden that
same enumeration type value is used for two attributes of the same
element type. In XML, this is recommended “for interoperability”.

CDATA: Sequence of arbitrary characters.
The character “&” is interpreted, i.e. one can use character and entity
references in the attribute values. In XML, “<” is forbidden in attribute
values (so that missing quotes are easier found), and “>” is not interpreted
(treated as data). In SGML, “<” and “>” are valid, but not interpreted.
Thus, attribute values still cannot contain elements.

1. XML Syntax 60/87

Attribute Data Types (2)

ID: A name that uniquely identifies this element (within
the entire document).

The syntax is the same as for element type names (sequence of letters and
digits plus _, :, ., -, starting with letter or _, :, .). Two elements must
not have the same value for an attribute of type ID. This even holds for
elements of different type. The same element type cannot have two
attributes of type ID. One should use the same name for all attributes of
type ID, and the attribute name “ID” is very common.

IDREF: A name that appears as value of an ID-attribute
somewhere in the document.

IDREFS: List of IDREF-values.
The single values are separated by white space.

1. XML Syntax 61/87

Attribute Data Types (3)

NMTOKEN: Sequence of name characters.
An arbitrary sequence of letters, digits, “_”, “-”, “.”, and “:”.
This is the most restricted type one can use for numbers. There is no
numeric type in XML.

NMTOKENS: List of NMTOKEN-values.

ENTITY: Name of an entity (not in exam).
Entities are a kind of macros or include files (see appendix). An attribute
of type ENTITY takes as value the name of a declared unparsed entity.

ENTITIES: List of ENTITY-values (not in exam).

NOTATION (N1|...|Nm): One of the notations Ni .
(Not in exam.) The Ni must be declared as notations (data formats). Only
one attribute of an element type can have the type NOTATION. This
attribute defines the format of the content of the element.

1. XML Syntax 62/87

Default Values (1)

One must specify what should happen if an element of
the type has not defined a value for the attribute.

One possibility is to specify a default value:
<!ATTLIST UL type (disc|square|circle) "disc">

The quotation marks around the default value are not required in SGML,
but they are required in XML. This is a bit inconsistent, since in accordance
with SGML, there are no quotation marks in the enumeration of possible
values. In SGML, attribute values that are NMTOKENS do not need
quotes.

Then the tag in the document is equivalent to
<UL type="disc">.

1. XML Syntax 63/87

Default Values (2)

Instead of a default value, one can also specify:

#IMPLIED: The attribute is optional.
I.e. the default value is a “null value” different from all possible
normal values. The name for the keyword was chosen because it is
assumed that the application program can compute a value for the
attribute. E.g. a chapter number is usually the number of the last
chapter plus 1.

#REQUIRED: An attribute value must be specified.

#FIXED "Value": The attribute can have only this
single value that is specified in the DTD.

This is e.g. used when many/all element types have an attribute
with the same name, and for each element type a (possibly
different) value is declared in the DTD.

1. XML Syntax 64/87

Exercise (1)

Please find syntax errors:

<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE GradesDB4 [

<!-- contains syntax errors -->
<!ELEMENT GradesDB4 (STUDENT, RESULT)*>
<!ELEMENT STUDENT RESULT+>
<!ATTLIST STUDENT FIRST CDATA #REQUIRED

LAST CDATA #REQUIRED>
<!ELEMENT RESULT #EMPTY>
<!ATTLIST RESULT EX_ID IDREF #REQUIRED

POINTS NMTOKEN #OPTIONAL>
<!ELEMENT EXERCISE #PCDATA>
<!ATTLIST EXERCISE ID ID #REQUIRED>

]> <!-- continued on next slide -->

1. XML Syntax 65/87

Exercise (2)

Please validate against DTD on last slide:

<GradesDB4>
<student sid=’101’ first=’Ann’ last=’Smith’>

<email>smith@acm.org</email>
<result ex_id=’H1’ points=’A+’/>
<result ex_id=’2’ points=’8’/>
<result ex_id=’M1’ points=’12 points’/>

</student>
<student first=’Maria’ last=’Brown’/>
<exercise id=’H1’>ER</exercise>
<exercise id=’2’>SQL</exercise>

</GradesDB4>

1. XML Syntax 66/87

Exercise (3)

Please develop a DTD for this document:

<?xml version="1.0" encoding="ISO-8859-1"?>
<smallbusiness>

<product id=’P01’ name=’Apple’ price=’0.40’>
Really deliciousApples!</product>

<product id=’P02’ name=’Banana’ price=’0.50’>
The best bananas!</product>

<order id=’R100’ customer=’Ann Smith’>
<item prodid=’P01’/>
<item prodid=’P02’ quantity=’5’/> </order>

<order id=’R100’ customer=’Maria Brown’>
<item prodid=’P01’ quantity=’3’/> </order>

</smallbusiness>

1. XML Syntax 67/87

Inhalt

1 Introduction

2 XML Documents

3 DTDs

4 DOCTYPE Decl.

1. XML Syntax 68/87

Well-Formed vs. Valid (1)

In XML, the document type definition is optional.
In SGML, a DTD is required for every document. An SGML document can
normally not be parsed without knowing the DTD because of markup
minimization (optional start and end tags).

There are two classes of XML documents:

Well-formed documents satisfy the general rules of the
XML syntax (e.g. that tags must be properly nested).

Well-formed documents may in addition be valid if they
have an associated DTD and satisfy the syntax rules of
this DTD.

1. XML Syntax 69/87

Well-Formed vs. Valid (2)

Checking the syntax of a document with respect to a
DTD is called “to validate” the document.

Even if there is a DTD, not every XML processor is
required to read it and to validate the document.

Correspondingly, the XML specification distinguishes “validating” and
“non-validating XML processors”.

Web browsers (e.g. Internet Explorer, Firefox) typically do
not validate the displayed XML documents.

However, they do report an error if already the well-formed syntax rules are
not satisfied.

1. XML Syntax 70/87

System/Public Identifiers (1)

In SGML/XML DTDs and other objects (e.g. entities,
notations, see appendix) can be identified by system and
public identifiers.

In XML, the system identifier is more important.

In XML, the system identifier must be a URI/URL
(without fragment identifier, i.e. without #).

Local file names are relative URIs and are therefore
permitted.

In SGML, the system identifier typically was a local file name. Since the
directory structure can be different on different computers, the system
identifier was system dependent.

1. XML Syntax 71/87

System/Public Identifiers (2)

Public identifiers are system-independent and very stable.
They were especially important in SGML: Otherwise it was quite likely that
documents had to be changed when they were moved from one system to
another. For XML, this problem is much smaller, because a URI is typically
“global” and relatively stable (at least URIs for globally used DTDs).

However, public identifiers must be translated into system
identifiers.

In the end, there must be the possibility to retrieve the file with the DTD
(unless the DTD is built into the software, e.g. a web browser does not
need to read the HTML DTD). Normally, an SGML system contains a
configuration file that maps public IDs into system IDs.

1. XML Syntax 72/87

System/Public Identifiers (3)

An advantage of public identifiers even in the Web age is
that the contents of the URI does not have to be retrieved
if there is a local copy and the public identifier is mapped
to that copy.

Otherwise one (probably) must retrieve the DTD via the URI each time a
document is validated against that URI (there is no guarantee that the
DTD stored under the URI does not change).

In XML, a public ID can only be used in combination with
a system ID. Thus, if an XML system does not know the
public identifier, it can use the URI.

SGML permits to specify only a public identifier.

1. XML Syntax 73/87

System/Public Identifiers (4)

Public identifiers can be any string of letters, digits,
certain special characters, spaces and line breaks
(enclosed in single or double quotes: ’ or ").

Allowed special characters in XML: ’()+,-./:=?;!*#@$_%. Sequences of
line breaks and spaces are replaced by a single space, and ignored at the
very beginning or end.

Example: "-//W3C//DTD HTML 4.01//EN"
A subset of public identifiers are called “formal public identifiers”. They
have more structure and must be composed from an owner identifier, a
double slash “//”, and a text identifier. The owner identifier starts with
“ISO” for ISO publications, “+//” for registered owners, and “-//” for
unregistered owners. The text identifier starts with the public text class,
followed by a space, a description, a double slash “//”, and the language
of the text. Public text classes are, e.g., DTD and NOTATION.

1. XML Syntax 74/87

DOCTYPE Declaration (1)

One usually refers at the beginning of the document to
the corresponding DTD:

<?xml version="1.0"?>
<!DOCTYPE EMAIL SYSTEM "mail.dtd">
<EMAIL>

...
</EMAIL>

The file “mail.dtd” contains the declaration of
elements, attributes, and entities as described above.

<!ELEMENT EMAIL (TO, FROM, DATE, SUBJECT?,
CONTENTS)>...

1. XML Syntax 75/87

DOCTYPE Declaration (2)

One can also specify public and system identifier:
<!DOCTYPE html PUBLIC

"-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html>
...

</html>

The name of the DTD must always be identical to the
name of the outermost element (document element, root
of the element tree).

The DTD itself does not specify what is the root element.

1. XML Syntax 76/87

http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd

DOCTYPE Declaration (3)

It is possible to declare the DTD in the document itself:

<!DOCTYPE EMAIL [
<!ELEMENT EMAIL ...>
...

]>
<EMAIL> ... </EMAIL>

Also a mixture of both is possible:
<!DOCTYPE EMAIL SYSTEM "mail.dtd" [...]>

1. XML Syntax 77/87

DOCTYPE Declaration (4)

The part in the document itself (“[...], “internal DTD
subset”) is processed before the DTD file (“external subset”).

The same entity (a kind of macro, see below) can be declared several
times. Then the first declaration counts, all following declarations are
ignored. In this way, the external subset can declare a default value for the
entity, which can be overridden in the document.

In XML, the constructs used in the internal subset of the
DTD are somewhat restricted, such that a non-validating
XML processor can easily skip it.

See parameter entity references, marked sections.

1. XML Syntax 78/87

DOCTYPE Declaration (5)

DOCTYPE Declaration:

<!DOCTYPE Name

SYSTEM SysID

PUBLIC PubID SysID

[Declarations] >

1. XML Syntax 79/87

Processing Instructions (1)

Processing instructions are instructions for the application
program that processes the XML/SGML data.

E.g. they are used to add a link to an XSLT stylesheet to
the document.

Processing instructions can appear more or less anywhere
in the document (in the same places as comments).

Processing instructions start with “<?” and end with “?>”.

Processing instructions can contain any text, and are
system- and application-dependent.

1. XML Syntax 80/87

Processing Instructions (2)

Processing instructions must start with a name that is the
“target” for this instruction.

In this way, on can have processing instructions for different applications in
the file. Applications should ignore processing instructions that are not
intended for them. In SGML, a processing instruction can be any string,
but processing instructions must normally be exchanged when the file is
processed with a different application. In SGML, processing declarations by
default end with “>”, not “?>”. But of course, SGML is so parameterized
that the XML end marker can also be selected.

The special target “xml” (in any capitalization) is
reserved (see XML Declaration below).

One can e.g. use the attribute-value syntax in a
processing instruction, but this is not required.

1. XML Syntax 81/87

XML Declaration (1)

XML documents should start with an XML declaration
that specifies at least the XML version:

<?xml version="1.0"?>
For SGML processors, the XML declaration is simply a processing instruction.

Version “1.0” is still the most widely used version, but
there is now also a version “1.1”.

There are new editions of the W3C recommendation for XML 1.0. but they
only clarify/correct a few points. The W3C recommendation for XML 1.0
was published on February 10, 1998. The second edition was published on
October 6, 2000. The third edition of XML 1.0 was published on
February 4, 2004, together with the first edition of XML 1.1. The current,
fourth edition of XML 1.0 was published together with the second edition
of XML 1.1 on August 16, 2006, both were edited in place on
September 29, 2006. [http://www.w3.org/XML/].

1. XML Syntax 82/87

XML Declaration (2)

The changes from version 1.0 to 1.1 are small:

More characters are allowed in names.
In XML 1.0, the valid characters in names were specified.
In XML 1.1, the forbidden characters are specified (and characters
are forbidden only if there is a specific reason). This makes a
difference because the Unicode standard is developed further and
some new languages were discriminated by the old XML standard.

Line ends in IBM mainframes are now permitted.

The rules for control characters change a bit.
Character references to control characters in the range x01 to x1F

are now permitted, control characters in the range x7F to x9F

(except whitespace) must now be written as character references.

Normalization rules permit binary comparison.

1. XML Syntax 83/87

XML Declaration (3)

The XML declaration is optional, but it can be only the
first command in an XML document.

Even comments and white space is not allowed in front of it.

The reason for this is that it can help to automatically
detect the encoding used in the file.

XML processors must at least be able to read at least the UTF-8 and
UTF-16 encodings of Unicode. UTF-16 encoded files must start with the
“Byte Order Mark” (#xFeFF).

If one uses a different encoding (not Unicode), the XML
declaration at the begin of the document is required, and
must specify the encoding:
<?xml version="1.0" encoding="ISO-8859-1"?>

1. XML Syntax 84/87

XML Declaration (4)

The XML declaration can also specify whether markup
declarations that are not contained in the same file
(entity) may influence the information returned from the
parser to the application program.

<?xml version="1.0" encoding="ISO-8859-1"
standalone="yes"?>

The default is “no” (if there are external markup
declarations), and this is normally correct.

E.g. default values for attributes, entities used in the document, even
element types with element content where white space is inserted in the
document would all require “no”.

1. XML Syntax 85/87

Summary: XML Document

In summary, an XML document consists of:

An XML declaration (optional, recommended).

Comments, processing instructions, white space
(optional).

A document type declaration (optional).

Comments etc. (optional).

An element (the document element, required).

Comments etc. (optional).

1. XML Syntax 86/87

References

Boc DuCharme: XML — The Annotated Specification.
Prentice Hall, 1999. ISBN 0-13-082676-6, 339 pages.

Tim Bray, Jean Paoli, C.M. Sperberg-McQueen: Extensible Markup Language
(XML) 1.0, 1998. [http://www.w3.org/TR/REC-xml]
See also: [http://www.w3.org/XML] [https://www.w3.org/XML/Core/]

Tim Bray, Jean Paoli, C. M. Sperberg-McQueen, Eve Maler, François Yergeau,
John Cowan: Extensible Markup Language (XML) 1.1 (Second Edition),
W3C Recommendation 16 August 2006, edited in place 29 September 2006.
[http://www.w3.org/TR/xml11].

Elliotte Rusty Harold, W. Scott Means:
XML in a Nutshell, A Desktop Quick Ref., 3rd Ed.
O’Reilly, Okt. 2004, ISBN 0-596-00764-7, 689 Seiten, 37 Euro.

Liora Alschuler: ABCD . . . SGML — A User’s Guide to Structured Information.
International Thomson Computer Press (ITP), 1995, ISBN 1-850-32197-3,
414 pages.

Charles F. Goldfarb, Yuri Rubinsky: The SGML Handbook. Clarendon Press, 1990.

Elliotte Rusty Harold: XML 1.1 Bible.
John Wiley & Sons, 3rd Edition, 2004, ISBN: 0764549863, 1056 pages.

1. XML Syntax 87/87

http://www.w3.org/TR/REC-xml
http://www.w3.org/XML
https://www.w3.org/XML/Core/
http://www.w3.org/TR/xml11

	Introduction
	Introduction

	XML Documents
	XML Documents (Syntax)

	DTDs
	Document Type Definitions

	DOCTYPE Decl.
	DOCTYPE and XML Declaration
	References

