
4. XML Schema 4-1

Chapter 4: XML Schema
References:
• Meike Klettke, Holger Meyer: XML & Datenbanken. Abschnitt 5.1, 7.2.2

dpunkt.verlag, 2003, ISBN 3-89864-148-1.

• Harald Schöning, Walter Waterfeld: XML Schema.
In: Erhard Rahm, Gottfried Vossen: Web & Datenbanken, Seiten 33-64.
dpunkt.verlag, 2003, ISBN 3-89864-189-9.

• Elliotte Rusty Harold, W. Scott Means:
XML in a Nutshell, A Desktop Quick Ref., 3rd Ed.
O’Reilly, Okt. 2004, ISBN 0-596-00764-7, 689 Seiten, 37 Euro.

• Priscilla Walmsley: Definitive XML Schema.
Prentice Hall, 2001, ISBN 0130655678, 560 pages.

• W3C Architecture Domain: XML Schema.
[http://www.w3.org/XML/Schema]

• David C. Fallside, Priscilla Walmsley: XML Schema Part 0: Primer.
W3C, 28. October 2004, Second Edition. [http://www.w3.org/TR/xmlschema-0/]

• Henry S. Thompson, David Beech, Murray Maloney, Noah Mendelsohn:
XML Schema Part 1: Structures.
W3C, 28. October 2004, Second Edition [http://www.w3.org/TR/xmlschema-1/]

• Paul V. Biron, Ashok Malhotra: XML Schema Part 2: Datatypes.
W3C, 28. October 2004, Second Edition [http://www.w3.org/TR/xmlschema-2/]

• Matthias Hansch, Stefan Kulins, Martin Schrader: Aktuelles Schlagwort: XML Schema.
In: Informatik Spektrum, Oktober 2002, 363–366.
[http://www.wifo.uni-mannheim.de/xml-schema/]

• [http://www.w3schools.com/schema/]

Stefan Brass: XML und Datenbanken Universität Halle, 2012

4. XML Schema 4-2

Objectives

After completing this chapter, you should be able to:

• explain why DTDs are not sufficient for many ap-

plications.

• explain some XML schema concepts.

• write an XML schema.

• check given XML documents for validity according

to a given XML schema.

Stefan Brass: XML und Datenbanken Universität Halle, 2012

4. XML Schema 4-3

Overview

1. Introduction, Examples

2. Simple Types

3. Complex Types, Elements, Attributes

4. Integrity Constraints

5. Advanced Constructs

Stefan Brass: XML und Datenbanken Universität Halle, 2012

4. XML Schema 4-4

Introduction (1)

Problems of DTDs:

• The type system is very restricted.
E.g. one cannot specify that an element or an attribute must contain
a number.

• Concepts like keys and foreign keys (known from

the relational data model) cannot be specified.
The scope of ID and IDREF attributes is global to the entire document.
Furthermore, the syntax restrictions for IDs are quite severe.

• A DTD is not itself an XML document (i.e. it does

not use the XML syntax for data).

• No support for namespaces.

Stefan Brass: XML und Datenbanken Universität Halle, 2012

4. XML Schema 4-5

Introduction (2)

• DTDs were probably sufficient for the needs of the

document processing community, but do not satisfy

the expectations of the database community.

• Therefore, a new way of describing the application-

dependent syntax of an XML document was deve-

loped: XML Schema.

• In XML Schema, one can specify all syntax restric-

tions that can be specified in DTDs, and more

(i.e. XML Schema is more expressive).
Only entities cannot be defined in XML Schema.

Stefan Brass: XML und Datenbanken Universität Halle, 2012

4. XML Schema 4-6

Introduction (3)

• The W3C began work on XML Schema in 1998.

• XML Schema 1.0 was published as a W3C standard

(“recommendation”) on May 2, 2001.
A second edition appeared October 28, 2004.

• XML Schema 1.1 became a W3C recommendation

on April 5, 2012.

• The Standard consists of:

� Part 0: Tutorial introduction (non-normative).

� Part 1: Structures.

� Part 2: Datatypes.

Stefan Brass: XML und Datenbanken Universität Halle, 2012

4. XML Schema 4-7

Introduction (4)

• A disadvantage of XML schema is that it is very

complex, and XML schemas are quite long (much

longer than the corresponding DTD).

• Quite a number of competitors were developed.

E.g. XDR, SOX, Schematron, Relax NG. See: D. Lee, W. Chu: Com-
parative Analysis of Six XML Schema Languages. In ACM SIGMOD
Record, Vol. 29, Nr. 3, Sept. 2000.

• Relax NG is a relatively well-known alternative.

See: J. Clark, M. Makoto: RELAX NG Specification, OASIS Commit-
tee Specification, 3 Dec. 2001.
[http://www.oasis-open.org/committees/relax-ng/spec-20011203.html]

Stefan Brass: XML und Datenbanken Universität Halle, 2012

4. XML Schema 4-8

Introduction (5)

Comparison with DBMS:

• In a (relational) DBMS, data cannot be stored wi-

thout a schema.

• An XML document is self-describing: It can exist

and can be processed without a schema.

• In part, the role of a schema in XML is more like

integrity constraints in a relational DB.
It helps to detect input errors. Programs become simpler if they do
not have to handle the most general case.

• But in any case, programs must use knowledge

about the names of at least certain elements.

Stefan Brass: XML und Datenbanken Universität Halle, 2012

4. XML Schema 4-9

Example Document (1)

STUDENTS

SID FIRST LAST EMAIL

101 Ann Smith · · ·
102 Michael Jones (null)
103 Richard Turner · · ·
104 Maria Brown · · ·

EXERCISES

CAT ENO TOPIC MAXPT

H 1 Rel. Algeb. 10
H 2 SQL 10
M 1 SQL 14

RESULTS

SID CAT ENO POINTS

101 H 1 10
101 H 2 8
101 M 1 12
102 H 1 9
102 H 2 9
102 M 1 10
103 H 1 5
103 M 1 7

Stefan Brass: XML und Datenbanken Universität Halle, 2012

4. XML Schema 4-10

Example Document (2)

• Translation to XML with data values in elements:

<?xml version=’1.0’ encoding=’ISO-8859-1’?>

<GRADES-DB>

<STUDENTS>

<STUDENT>

<SID>101</SID>

<FIRST>Ann</FIRST>

<LAST>Smith</LAST>

</STUDENT>
...

</STUDENTS>
...

</GRADES-DB>

Stefan Brass: XML und Datenbanken Universität Halle, 2012

4. XML Schema 4-11

Example: First Schema (1)

• Part 1/4:

<?xml version="1.0" encoding="ISO-8859-1"?>

<xs:schema

xmlns:xs="http://www.w3.org/2001/XMLSchema">

<xs:element name="GRADES-DB">

<xs:complexType>

<xs:sequence>

<xs:element ref="STUDENTS"/>

<xs:element ref="EXERCISES"/>

<xs:element ref="RESULTS"/>

</xs:sequence>

</xs:complexType>

</xs:element>

Stefan Brass: XML und Datenbanken Universität Halle, 2012

4. XML Schema 4-12

Example: First Schema (2)

• Part 2/4:

<xs:element name="STUDENTS">

<xs:complexType>

<xs:sequence>

<xs:element ref="STUDENT"

minOccurs="0" maxOccurs="unbounded"/>

</xs:sequence>

</xs:complexType>

</xs:element>

Stefan Brass: XML und Datenbanken Universität Halle, 2012

4. XML Schema 4-13

Example: First Schema (3)

• Part 3/4:

<xs:element name="STUDENT">

<xs:complexType>

<xs:sequence>

<xs:element ref="SID"/>

<xs:element ref="FIRST"/>

<xs:element ref="LAST"/>

<xs:element ref="EMAIL" minOccurs="0"/>

</xs:sequence>

</xs:complexType>

</xs:element>

Stefan Brass: XML und Datenbanken Universität Halle, 2012

4. XML Schema 4-14

Example: First Schema (4)

• Part 4/4:

<xs:element name="SID">

<xs:simpleType>

<xs:restriction base="xs:integer">

<xs:minInclusive value="100"/>

<xs:maxInclusive value="999"/>

</xs:restriction>

</xs:simpleType>

</xs:element>

<xs:element name="FIRST" type="xs:string"/>

<xs:element name="LAST" type="xs:string"/>

<xs:element name="EMAIL" type="xs:string"/>
...

</xs:schema>

Stefan Brass: XML und Datenbanken Universität Halle, 2012

4. XML Schema 4-15

Example: First Schema (5)

Remarks:

• The prefix used for the namespace is not important.

E.g. sometimes one sees “xsd:” instead of “xs:”.

• A complex type is a type that contains elements

and/or attributes.

• A simple type is something like a string or number.

A simple type can be used as the type of an attribute, and as the data
type of an element (content and attributes). A complex type can only
be the data type of an element (attributes cannot contain elements
or have themselves attributes). Instead of “element”, I should really
say “element type”, but that might be confusing (it is not an XML
Schema type).

Stefan Brass: XML und Datenbanken Universität Halle, 2012

4. XML Schema 4-16

Example: First Schema (6)

• In XML Schema, the sequence of declarations (and

definitions, see below) is not important.

The example contains many references to element types that are
declared later. Actually, a schema can contain references to elements
that are not declared at all, as long as these elements do not occur in
the document, i.e. they are not needed for validation. Some validators
even in this case print no error message: They use “lax validation”
and check only for what they have declarations.

• It is necessary to use a one-element sequence (or

choice) in the declaration of STUDENTS.

One cannot use xs:element directly inside xs:complexType. This is si-
milar to the content model in DTDs, which always needs “(...)”.

Stefan Brass: XML und Datenbanken Universität Halle, 2012

4. XML Schema 4-17

Example: First Schema (7)

• The default for minOccurs and maxOccurs is 1.

• In XML Schema, one cannot define what must be

the root element type. E.g., a document consisting

only of a STUDENT-element would validate.

Every “globally” declared element type can be used. Global declarati-
ons are declarations that appear directly below xs:schema. As explained
below, it is often possible to declare only the intended root element ty-
pe globally, then there is no problem. Otherwise the application must
check the root element type. Note that DTDs also do not define the
root element type, this happens only in the DOCTYPE-declaration.

Stefan Brass: XML und Datenbanken Universität Halle, 2012

4. XML Schema 4-18

Validation (1)

• Documents in the Web can be validated using the

XSV validator on the W3C server:

[http://www.w3.org/2001/03/webdata/xsv].

If one wants to check only the correctness of a schema, one can enter
its URL an check the box “Check as complete schema”. If one wants
to validate a document, one enters the URL of the document, then
a space, and then the URL of the schema into the input field. In this
case, “Check as complete schema” must not be checked.

• One can also download XSV:

[http://www.ltg.ed.ac.uk/˜ht/xsv-status.html]

It was developed at the University of Edinburgh and is available under
the GNU public license. It is a command line program.

Stefan Brass: XML und Datenbanken Universität Halle, 2012

4. XML Schema 4-19

Validation (2)

• Depending on the validator used, it is not necessary

that the XML data file (the instance of the schema)

contains a reference to the schema.

• If one wants to refer to the schema, this can be

done as follows:

<?xml version=’1.0’ encoding=’ISO-8859-1’?>

<GRADES-DB xmlns:xsi=

"http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation="ex2.xsd">

...

</GRADES-DB>

Stefan Brass: XML und Datenbanken Universität Halle, 2012

4. XML Schema 4-20

Validation (3)

• More online validators:

� [http://www.validome.org/xml/]

This evaluates the xsi:noNamespaceSchemaLocation-Link in the XML
document to the schema. In order to check the schema only, use
[http://www.validome.org/grammar/].

� [http://tools.decisionsoft.com/schemaValidate/]

It permits to upload the XML data file and the XML schema file,
so the files do not have to be stored on a web server.

Stefan Brass: XML und Datenbanken Universität Halle, 2012

4. XML Schema 4-21

Validation (4)

• Validating parser libraries:

� Apache Xerces

[http://xerces.apache.org/]

� Oracle XDK

[http://www.oracle.com/technology/software/tech/xml/xdk/]

� Microsoft MSXML

[http://msdn2.microsoft.com/en-us/xml/default.aspx]

Stefan Brass: XML und Datenbanken Universität Halle, 2012

4. XML Schema 4-22

Schema Styles (1)

• The same restrictions on XML documents can be

specified in different ways in XML.
I.e. there are equivalent, but very differently structured XML schemas.

• The above XML schema is structured very simi-

lar to a DTD: All element types are declared with

global scope. No named types (see below) are used.

• This style is called “Salami Slice”.
The schema is constructed in small pieces on equal level.

“‘Salami slice’ caputes both the disassembly process, the resulting flat
look of the schema, and implies reassembly as well (into a sandwich).”
[http://www.xfront.com/GlobalVersusLocal.html]

Stefan Brass: XML und Datenbanken Universität Halle, 2012

4. XML Schema 4-23

Schema Styles (2)

• One can also nest element declarations.

• Element declarations that are not defined as child-

ren of xs:schema cannot be referenced.
They are local declarations in contrast to the global ones used above.

• In this way, one can have elements with the sa-

me name, but different content models in different

contexts within one document.
This is impossible with DTDs. It might be useful for complex do-
cuments, especially if the schema is composed out of independently
developed parts. In relational DBs, different tables can have columns
with the same name, but different types. Then the above XML trans-
lation of a relational schema cannot be done in “Salami Slice” style.

Stefan Brass: XML und Datenbanken Universität Halle, 2012

4. XML Schema 4-24

Schema Styles (3)

• XML Schema in “Russian Doll” style:

<xs:element name="GRADES-DB">

<xs:complexType>

<xs:sequence>

<xs:element name="STUDENTS">

<xs:complexType>

<xs:sequence>

<xs:element name="STUDENT"

minOccurs="0"

maxOccurs="unbounded">

<xs:element name="SID">

<xs:simpleType>

...

Stefan Brass: XML und Datenbanken Universität Halle, 2012

4. XML Schema 4-25

Schema Styles (4)

• Advantages of “Russian Doll” style:

� The structure of the schema is similar to the

structure of the document.

� In “Russian Doll” style, there is only one global

element, thus the root element type is enforced.

• Disadvantages:

� The declaration of equal subelements has to be

duplicated.

� Recursive element types are not possible.

� No reuse of schema components.

Stefan Brass: XML und Datenbanken Universität Halle, 2012

4. XML Schema 4-26

Schema Styles (5)

• Actually, in XML schema, one

� defines (data) types and

� declares elements to have a (data) type.
A declaration binds names that occur in the XML data file (the
instance) to (data) types. A definition introduces names that can
be used only in the schema.

• In the above examples, all types are anonymous.

In “Venetian Blind” design, explicit types are used.
At least for elements with similar content models. Elements are de-
clared locally as in the “Russian Doll” style.
“‘Venetian Blind’ captures the ability to expose or hide namespaces
with a simple switch, and the assembly of slats captures reuse of
components.” [http://www.xfront.com/GlobalVersusLocal.html]

Stefan Brass: XML und Datenbanken Universität Halle, 2012

4. XML Schema 4-27

Schema Styles (6)

• XML Schema in “Venetian Blind” style, Part 1/4:

<xs:simpleType name="SIDType">

<xs:restriction base="xs:integer">

<xs:minInclusive value="100"/>

<xs:maxInclusive value="999"/>

</xs:restriction>

</xs:simpleType>

<!-- Continued on next three slides -->

Stefan Brass: XML und Datenbanken Universität Halle, 2012

4. XML Schema 4-28

Schema Styles (7)

• “Venetian Blind” Style, Part 2/4:

<xs:complexType name="StudentType">

<xs:sequence>

<xs:element name="SID" type="SIDType"/>

<xs:element name="FIRST" type="xs:string"/>

<xs:element name="LAST" type="xs:string"/>

<xs:element name="EMAIL" type="xs:string"

minOccurs="0"/>

</xs:sequence>

</xs:complexType>

Stefan Brass: XML und Datenbanken Universität Halle, 2012

4. XML Schema 4-29

Schema Styles (8)

• “Venetian Blind” Style, Part 3/4:

<xs:complexType name="StType">

<xs:sequence>

<xs:element name="STUDENT" type="studentType"

minOccurs="0" maxOccurs="unbounded"/>

</xs:sequence>

</xs:complexType>

Stefan Brass: XML und Datenbanken Universität Halle, 2012

4. XML Schema 4-30

Schema Styles (9)

• “Venetian Blind” Style, Part 4/4:

<xs:complexType name="GradesType">

<xs:sequence>

<xs:element name="STUDENTS" type="StType"/>

<xs:element name="EXERCISES" type="ExType"/>

<xs:element name="RESULTS" type="ResType"/>

</xs:sequence>

</xs:complexType>

<xs:element name="GRADES-DB" type="GradesType">

Stefan Brass: XML und Datenbanken Universität Halle, 2012

4. XML Schema 4-31

Schema Styles (10)

• Remarks about “Venetian Blind” style:

� There is only one global element declaration,

thus the root element type is enforced.

All other elements are known only locally within their type.

� Probably, this is often the best style.

The content model (and attributes) of equal subelements is spe-
cified only once (in the corresponding type). The components
(types) are resuable. The reusability is even better than in the
“Salami Slice” style, because the (data) types can be used with
different element (type) names.

� It is possible to define types and elements with

the same name.

Stefan Brass: XML und Datenbanken Universität Halle, 2012

4. XML Schema 4-32

Example with Attributes (1)

• Document:

<?xml version=’1.0’ encoding=’ISO-8859-1’?>

<GRADES-DB>

<STUDENT SID=’101’ FIRST=’Ann’ LAST=’Smith’/>

<STUDENT SID=’102’ FIRST=’Michael’ LAST=’Jones’/>

...

<EXERCISE CAT=’H’ ENO=’1’ TOPIC=’Rel. Algeb.’/>

...

<RESULT SID=’101’ CAT=’H’ ENO=’1’ POINTS=’10’/>

...

</GRADES-DB>

Stefan Brass: XML und Datenbanken Universität Halle, 2012

4. XML Schema 4-33

Example with Attributes (2)

• Schema, Part 1/3:

<xs:element name="GRADES-DB">

<xs:complexType>

<xs:sequence>

<xs:element ref="STUDENT"

minOccurs="0" maxOccurs="unbounded"/>

<xs:element ref="EXERCISE"

minOccurs="0" maxOccurs="unbounded"/>

<xs:element ref="RESULT"

minOccurs="0" maxOccurs="unbounded"/>

</xs:sequence>

</xs:complexType>

</xs:element>

Stefan Brass: XML und Datenbanken Universität Halle, 2012

4. XML Schema 4-34

Example with Attributes (3)

• Schema, Part 2/3:

<xs:element name="STUDENT">

<xs:complexType>

<xs:attribute name="SID" use="required">

<xs:simpleType>

<xs:restriction base="xs:integer">

<xs:minInclusive value="100"/>

<xs:maxInclusive value="999"/>

</xs:restriction>

</xs:simpleType>

</xs:attribute>

<!--- declaration continued on next slide -->

Stefan Brass: XML und Datenbanken Universität Halle, 2012

4. XML Schema 4-35

Example with Attributes (4)

• Schema, Part 3/3:

<xs:attribute name="FIRST"

use="required"

type="xs:string"/>

<xs:attribute name="LAST"

use="required"

type="xs:string"/>

<xs:attribute name="EMAIL"

type="xs:string"/>

</xs:complexType>

</xs:element> <!-- STUDENT -->

Stefan Brass: XML und Datenbanken Universität Halle, 2012

4. XML Schema 4-36

Example with Attributes (5)

• The same (simple) data type can be used for attri-

butes and for element content.

In contrast, DTDs had some data types for attributes, but basically no
data types for element content (only strings) (and of course content
models, but that is a separate issue).

• In the example, the elements have empty content

(xs:complexType contained no content model).

• If an element type has element content and attri-

butes, inside xs:complexType, one must specify

� first the content model (e.g., with xs:sequence)

� and then declare the attributes.

Stefan Brass: XML und Datenbanken Universität Halle, 2012

4. XML Schema 4-37

Example with Attributes (6)

• Element types with attributes and simple types as

content, e.g.

<length unit="cm">12</length>

can be defined by extension of the simple type:

<xs:complexType name="lengthType">

<xs:simpleContent>

<xs:extension base="xs:integer">

<xs:attribute name="unit" type="xs:string">

</xs:extension>

</xs:simpleContent>

<xs:complexType>

Stefan Brass: XML und Datenbanken Universität Halle, 2012

4. XML Schema 4-38

Overview

1. Introduction, Examples

2. Simple Types

3. Complex Types, Elements, Attributes

4. Integrity Constraints

5. Advanced Constructs

Stefan Brass: XML und Datenbanken Universität Halle, 2012

4. XML Schema 4-39

Data Types: Introduction (1)

• The second part of the XML schema standard de-

fines

� a set of 44 built-in simple types,
In addition, there are two “ur types”: anyType and anySimpleType.

� possibilities for defining new simple types by re-

striction (similar to CHECK constraints in SQL),

and the type constructors union and list.

• Many of the built-in types are not primitive, but

defined by restriction of other built-in types.

19 types are primitive.

Stefan Brass: XML und Datenbanken Universität Halle, 2012

4. XML Schema 4-40

Data Types: Introduction (2)

• These definitions were put into a separate standard

document because it is possible that other (XML)

standards (besides XML schema) might use them

in future.

• The requirements for this standard include

� It must be possible to represent the primitive

types of SQL and Java as XML Schema types.

� The type system should be adequate for im-

port/export from database systems (e.g., rela-

tional, object-oriented, OLAP).

Stefan Brass: XML und Datenbanken Universität Halle, 2012

4. XML Schema 4-41

Data Types: Introduction (3)

• Datatypes are seen as triples consisting of:

� a value space (the set of possible values of the

type),

� a lexical space (the set of constants/literals of

the type),
Every element of the value space has one or more representations
in the lexical space (exactly one canonical representation).

� a set of “facets”, which are properties of the type,

distinguished into “fundamental facets” that de-

scribe the type (e.g. ordered), and “constraining

facets” that can be used to restrict the type.

Stefan Brass: XML und Datenbanken Universität Halle, 2012

4. XML Schema 4-42

Data Types: Introduction (4)

• The standard does not define data type operations

besides equality (=) and order (<, >).
E.g., the standard does not talk about +, string concatenation, etc.
(But Appendix E explains how durations are added to dateTimes.).

• One should define application-specific data types,

even if they are equal to a built-in type:

� This makes the semantics and comparability of

attributes and element contents clearer.

� If one later has to change/extend a data type,

this is automatically applied to all attributes/

elements that contain values of the type.

Stefan Brass: XML und Datenbanken Universität Halle, 2012

4. XML Schema 4-43

Built-in Simple Types (1)

• Strings and Names

string, normalizedString, token, Name, NCName, QName, language

• Numbers

float, double, decimal, integer, positiveInteger, nonPositiveInteger,
negativeInteger, nonNegativeInteger, int, long, short, byte,
unsignedInt, unsignedLong, unsignedShort, unsignedByte

• Date and Time

duration, dateTime, date, time, gYear, gYearMonth, gMonth, gMonthDay,
gDay

• Boolean

boolean

Stefan Brass: XML und Datenbanken Universität Halle, 2012

4. XML Schema 4-44

Built-in Simple Types (2)

• Legacy Types

ID, IDREF, IDREFS, ENTITY, ENTITIES, NMTOKEN, NMTOKENS, NOTATION

• Character Encodings for Binary Data

hexBinary, base64Binary

• URIs

anyURI

• “Ur-types”

anyType, anySimpleType

Stefan Brass: XML und Datenbanken Universität Halle, 2012

4. XML Schema 4-45

Facets (1)

Constraining Facets:

• Bounds: minInclusive, maxInclusive,

minExclusive, maxExclusive

• Length: length, minLength, maxLength

• Precision: totalDigits, FractionDigits

• Enumerated Values: enumeration

• Pattern matching: pattern

• Whitespace processing: whiteSpace

Stefan Brass: XML und Datenbanken Universität Halle, 2012

4. XML Schema 4-46

Facets (2)

Fundamental Facets:

• equal

Every value space supports the notion of equality, The value spaces
of all primitive data types are disjoint.

• ordered: false, partial, total

The specification defines the order between data type values. Some-
times, values are incomparable, which means that the order relation
is a partial order. Some types are not ordered at all.

• bounded: true, false

• cardinality: finite, countably infinite

• numeric: true, false

Stefan Brass: XML und Datenbanken Universität Halle, 2012

4. XML Schema 4-47

Strings and Names (1)

• A string is a finite-length sequence of characters as

defined in the XML standard.
The XML standard in turn refers to the Unicode standard, and exclu-
des control characters (except tab, carriage return, linefeed), “surro-
gate blocks”, FFFE, FFFF.

• In XML Schema, string values are not ordered.

• The following (constraining) facets can be applied

to string and its subtypes: length, minLength,

maxLength, pattern, enumeration, whitespace.

• The hierarchy of types derived from string by re-

striction is shown on the next slide.

Stefan Brass: XML und Datenbanken Universität Halle, 2012

4. XML Schema 4-48

Strings and Names (2)

ID IDREF ENTITY

NCName

language Name NMTOKEN

token

normalizedString

string

Stefan Brass: XML und Datenbanken Universität Halle, 2012

4. XML Schema 4-49

Strings and Names (3)

• normalizedString are strings that do not contain

the characters carriage return, line feed, and tab.

• The XML processor will replace line ends and tabs

by spaces.
The combination “carriage return, linefeed” is replaced by a single
space. The XML Schema Standard says that even the lexical space
does not contain carriage return, linefeed, tab. If I understand cor-
rectly, that would mean that they are forbidden in the input. However,
the book “Definite XML Schema” states that the processor does this
replacement. This seems plausible, because even in the original XML
standard, CDATA attributes were normalized in this way. By the way,
this gives an apparent incompatibility with the original XML standard,
when one defines an attribute of type string: Does normalization oc-
cur anyway, because it is built into XML?

Stefan Brass: XML und Datenbanken Universität Halle, 2012

4. XML Schema 4-50

Strings and Names (4)

• token is a string without

� carriage return, linefeed, tab,

� sequences of two or more spaces,

� leading or trailing spaces.

• The name “token” is misleading: It is not a single

“word symbol”, but a sequence of such “tokens”.

Again, I and the book “Definite XML Schema” believe that the XML
processor normalizes input strings in this way, whereas the standard
seems to say that the external representation must already fulfill the
above requirements. In the XML standard, this normalization is re-
quired for all attribute types except CDATA.

Stefan Brass: XML und Datenbanken Universität Halle, 2012

4. XML Schema 4-51

Strings and Names (5)

• normalizedString and token can be derived from

string by using the facet whiteSpace, which has

three possible values:

� preserve: the input is not changed.

The XML standard requires that any XML processor replaces the
sequence “carriage return, linefeed” by a single linefeed.

� replace: carriage return, linefeed, and tab are re-

placed by space.

� collapse: Sequences of spaces are reduced to a

single one, leading/trailing spaces are removed.

Stefan Brass: XML und Datenbanken Universität Halle, 2012

4. XML Schema 4-52

Strings and Names (6)

• Name: An XML name.
I.e. a sequence of characters that starts with a letter, an undersco-
re “_”, or a colon “:”, and otherwise contains only letters, digits, and
the special characters underscore “_”, colon “:”, hyphen “-”, and
period “.”. Letter means an Unicode letter, not only an ASCII letter
(actually, there are also more digits in Unicode than in ASCII).

• NMTOKEN: Any sequence of XML name characters.
This is like Name, but without the requirement that it must start with a
letter etc. E.g., a sequence of digits would be valid. For compatibility,
NMTOKEN should be used only for attributes (not element content).

• NCName: “Non-colonized name”, i.e. like Name, but

without colon “:”.
Important because the colon has a special meaning for namespaces.

Stefan Brass: XML und Datenbanken Universität Halle, 2012

4. XML Schema 4-53

Strings and Names (7)

• ID: Syntax like NCName, but the XML processor en-

forces uniqueness in the document.

Actually, the XML Schema standard (Part 2) does not mention the
uniqueness requirement, but the book “Definite XML Schema” does
mention it (it is probably inherited from the XML standard). As all
legacy types, ID should be used only for attributes. The XML standard
forbids that an element type has two or more attributes of type ID.
Furthermore, ID-attributes cannot have default or fixed values speci-
fied.

• IDREF: Syntax like NCName, value must appear as va-

lue of an ID-attribute in the document.

Stefan Brass: XML und Datenbanken Universität Halle, 2012

4. XML Schema 4-54

Strings and Names (8)

• ENTITY: Syntax like NCName, must be declared as an

unparsed entity in a DTD.

It is interesting that the XML Schema standard does mention the
restriction with the DTD.

• language: Language identifier, see RFC 3066.

E.g. en, en-US, de. These are language identifiers according to the
ISO standard ISO 639, optionally with a country code as defined in
ISO 3166. However, also the IANA (Internet Assigned Numbers Au-
thority) registers languages, their names start with “i-”. Unofficial
languages start with “x-”. The pattern given in the XML Schema
standard permits an arbitrary number of pieces (at least one), sepa-
rated by hyphens, each consisting of 1 to 8 letters and digits (the first
piece must be only letters).

Stefan Brass: XML und Datenbanken Universität Halle, 2012

4. XML Schema 4-55

Strings and Names (9)

• The preceding types are derived from string direct-

ly or indirectly by restriction.

With the facets whiteSpace and pattern (see below).

• However, there are also built-in types that are de-

rived using the type constructor list. The result is

a space-separated list of values of the base type.

• The following legacy types are defined as lists:

� IDREFS: list of IDREF values.

� NMTOKENS: list of NMTOKEN values.

� ENTITIES: list of ENTITY values.

Stefan Brass: XML und Datenbanken Universität Halle, 2012

4. XML Schema 4-56

Strings and Names (10)

• QName is the type for qualified names, i.e. names

that can contain a namespace prefix.

The prefix is not required, either because there is a default namespace
declaration, or because the name belongs to no namespace.

• QName is not derived from string, since it is not a

simple string, but contains two parts:

� The local name, and

� the namespace URI.

Note the distinction between lexical space and value space: The
lexical space contains the prefix (like xs:), the value space the
corresponding URI.

Stefan Brass: XML und Datenbanken Universität Halle, 2012

4. XML Schema 4-57

Length Restrictions (1)

• One can define a type by constraining the length

(measured in characters) of a string type, e.g.

<xs:simpleType name="varchar20">
<xs:restriction base="xs:string">

<xs:maxLength value="20"/>
</xs:restriction>

</xs:simpleType>

• There are three length constraining facets:

� maxLength: String length must be ≤ value.

� minLength: String length must be ≥ value.

� length: String length must be = value.
Using the length restrictions for QName is deprecated.

Stefan Brass: XML und Datenbanken Universität Halle, 2012

4. XML Schema 4-58

Length Restrictions (2)

• One can use minLength and maxLength together, but

not together with length.

• For example, strings with 3 to 10 characters:

<xs:simpleType name="From3To10Chars">

<xs:restriction base="xs:string">

<xs:minLength value="3"/>

<xs:maxLength value="10"/>

</xs:restriction>

</xs:simpleType>

• One cannot specify any of the three facets more

than once in the same restriction.

Stefan Brass: XML und Datenbanken Universität Halle, 2012

4. XML Schema 4-59

Length Restrictions (3)

• One can further constrain a defined type, but one

cannot extend it, e.g. the following is invalid:

<xs:simpleType name="varchar40">

<xs:restriction base="xs:varchar20">

<xs:maxLength value="40"/> <!-- ERROR -->

</xs:restriction>

</xs:simpleType>

Actually, one can extend a type, but not in xs:restriction. E.g., one
can add values with union (see below).

• It would, however, be possible to define strings of

maximal length 10 in this way.

Stefan Brass: XML und Datenbanken Universität Halle, 2012

4. XML Schema 4-60

Enumeration Types

• Example:
<xs:simpleType name="weekday">

<xs:restriction base="xs:token">

<xs:enumeration value="Sun"/>

<xs:enumeration value="Mon"/>

<xs:enumeration value="Tue"/>
...

</xs:restriction>

</xs:simpleType>

By using xs:token as base type, leading and trailing white space is
accepted and automatically removed.

• If one wants to restrict an enumeration type fur-

ther, one must again list all possible values.

Stefan Brass: XML und Datenbanken Universität Halle, 2012

4. XML Schema 4-61

Regular Expressions (1)

• The facet “pattern” can be used to derive a new

(restricted) type from the above string types by re-

quiring that the values match a regular expression.

The facet pattern can also be applied to some other types, see below.

• The regular expressions in XML Schema are inspi-

red by the regular expressions in Perl.

However, XML schema requires that the regular expressions matches
the complete string, not only some part inside the string (i.e. there is
an implicit ^ at the beginning and $ at the end: If necessary, use .*

to allow an arbitrary prefix of suffix).

Stefan Brass: XML und Datenbanken Universität Halle, 2012

4. XML Schema 4-62

Regular Expressions (2)

• E.g., a type for product codes that consist of an

uppercase letter and four digits (e.g., A1234) could

be defined as follows:
<xs:simpleType name="prodCode">

<xs:restriction base="xs:token">

<xs:pattern value="[A-Z][0-9]{4}"/>

</xs:restriction>

</xs:simpleType>

• One can specify more than one pattern, then it

suffices if one of the pattern matches.

Stefan Brass: XML und Datenbanken Universität Halle, 2012

4. XML Schema 4-63

Regular Expressions (3)

• A regular expression is composed from zero or more

branches, separated by “|” characters.

As usual, “|” indicates an alternative: The language defined by the
regular expression b1| . . . |bn is the union of the languages defined by
the branches bi (see below).

• A branch consists of zero or more pieces, concate-

nated together.

The language defined by the regular expression p1 . . . pn consists of all
words w that can be constructed by concatenating words wi of the
languages defined by the pieces pi, i.e. w = w1 . . . wn.

Stefan Brass: XML und Datenbanken Universität Halle, 2012

4. XML Schema 4-64

Regular Expressions (4)

• A piece consists of an atom and an optional quan-

tifier: ?, *, +, {n,m}, {n}, {n,}.
The quantifier permits repetition of the piece, see below. If the quan-
tifier is missing, the language defined by the piece is of course equal
to the language defined by the atom. Otherwise, the language de-
fined by the piece consists of all words of the form w1 . . . wk, where
each wi is from the language defined by the atom, and k satisfies the
requirements of the quantifier (see next slide).

• An atom is

� a character (except metacharacters, see below)

� a character class (see below),

� or a regular expression in parentheses “(...)”.

Stefan Brass: XML und Datenbanken Universität Halle, 2012

4. XML Schema 4-65

Regular Expressions (5)

• Meaning of quantifiers (permitted repetitions k):

� (No quantifier): exactly once (k = 1).

� ?: optional (k = 0 or k = 1).

� *: arbitrarily often (no restriction on k).

� +: once or more (k ≥ 1).

� {n,m}: between n and m times (n ≤ k ≤ m).

� {n}: exactly n times (k = n).

� {n,}: at least n times (k ≥ n).

Stefan Brass: XML und Datenbanken Universität Halle, 2012

4. XML Schema 4-66

Regular Expressions (6)

• Metacharacters are characters that have a special

meaning in regular expressions. One needs a charac-

ter class escape (see below) for a regular expression

that matches them.

Metacharacters are: ., \, ?, *, +, |, {, }, (,), [,].

• Character classes are:

� Character class escape: \... (see below)

� Character class expressions: [...] (see below)

� The wildcard “.”
Matches any character except carriage return and newline.

Stefan Brass: XML und Datenbanken Universität Halle, 2012

4. XML Schema 4-67

Regular Expressions (7)

• Character class escapes (slide 1/2):

� \x for every metacharacter x: matches x.

� \n: newline

� \r: carriage return

� \t: tab

� \d: any decimal digit

� \s: any whitespace character

� \i: any character allowed first in XML name

I.e. a letter, underscore “_”, or colon “:”.

� \c: any character allowed inside XML name

Stefan Brass: XML und Datenbanken Universität Halle, 2012

4. XML Schema 4-68

Regular Expressions (8)

• Character class escapes (slide 2/2):

� \w: any character not in categories “punctation”,

“separator”, “other” in the Unicode standard.
In Perl, this is simply an alphanumeric “word character”, i.e. a
letter, a digit, or the underscore “_”.

� \p{x}: Any character in Unicode category x.
E.g.: \p{L}: all letters, \p{Lu}: all uppercase letters, \p{Ll}: all
lowercase letters, \p{Sc}: all currency symbols, \p{isBasicLatin}:
all ASCII characters (codes #x0000 to #x007F), \isCyrillic{Sc}: all
cyrillic characters (codes #x0400 to #x04FF).
[www.unicode.org/Public/3.1-Update/UnicodeCharacterDatabase-3.1.0.html].

� \D, \S, \I, \C, \W, \P{x}: complement of corre-

sponding lowercase escape.

Stefan Brass: XML und Datenbanken Universität Halle, 2012

4. XML Schema 4-69

Regular Expressions (9)

• A character class expression has one of the forms

(slide 1/2):

� [c1 . . . cn] with characters, character ranges, or

character escapes ci.

It matches every character matched by one of the ci, i.e. it is
basically an abbreviation for (c1|...|cn), where character ranges
x-y are replaced by all characters with Unicode value between
the Unicode values of x and y. E.g. [a-d] is equivalent to [abcd].
Because of the special meaning of -, it must be the first or last
character if it is meant literally. In a character range x-y, one
cannot use multi character escapes (character escapes that match
more than one character, e.g. \d) as x and y.

Stefan Brass: XML und Datenbanken Universität Halle, 2012

4. XML Schema 4-70

Regular Expressions (10)

• Character class expressions (slide 2/2):

� [^c1 . . . cn]: complement of [c1 . . . cn].

Because of the special meaning of ^, it must be not the first
character if it is meant literally.

� [c1 . . . cn-E]: Characters matched by [c1 . . . cn],

but not matched by the character class expres-

sion E.

E.g. [a-z-[aeiou]] is equivalent to [bcdfghjklmnpqrstvwxyz].

� [^c1 . . . cn-E]: Characters matched by [^c1 . . . cn],

but not matched by E.

Stefan Brass: XML und Datenbanken Universität Halle, 2012

4. XML Schema 4-71

Floating Point Numbers

• float: 32-bit floating point type

It can be represented as m ∗2e, where m is an integer whose absolute
value is less than 224, and e is an integer with −149 ≤ e ≤ 104. In
addition, it contains the three special values -INF (negative infinity),
+INF (positive infinity), and NaN (“not a number”: error value). NaN is
incomparable with all other values. This type is very similar to the
one defined in IEEE 754-1985, but has only one zero and one NaN.
Furthermore, NaN=NaN in XML Schema. Constants (literals) are, e.g.,
-1E2, +1.2e-3, 1.23, -0.

• double: 64-bit floating point type

It can be represented as m ∗2e, where m is an integer whose absolute
value is less than 253, and e is an integer with −1075 ≤ e ≤ 970.

• The two are distinct primitive types.

Stefan Brass: XML und Datenbanken Universität Halle, 2012

4. XML Schema 4-72

Fixed Point Numbers (1)

• decimal: primitive type for fixed point numbers.
Exact numeric types in contrast to float/double, which are approxi-
mate numeric types, because the rounding errors are not really for-
seeable. E.g., one should not use float for amounts of money.

• Value space: numbers of the form i ∗10−n, where i

and n are integers and n ≥ 0 (e.g. 1.23).

• Lexical space: finite-length sequences of decimal di-

gits with at most one decimal point in the sequence,

optionally preceded by a sign (+, -).
The book “Definitive XML Schema” states that the sequence may
start of end with a period (e.g. “.123”), the standard does not clearly
specify this.

Stefan Brass: XML und Datenbanken Universität Halle, 2012

4. XML Schema 4-73

Fixed Point Numbers (2)

• Leading zeros and trailing zeros after the decimal

point are not significant, i.e. 3 and 003.000 are the

same decimal number.

The option + sign is also not significant.

• Every XML Schema processor must support at least

18 digits.

E.g. it could use 64 bit binary integer numbers, plus an indication
of where the decimal point is. However, also using strings or a BCD
encoding (4 bit per digit) would be possible internal representations.

• All integer types are derived from decimal by re-

striction (see below).

Stefan Brass: XML und Datenbanken Universität Halle, 2012

4. XML Schema 4-74

Fixed Point Numbers (3)

• By using the facets totalDigits and fractionDigits,

one can get the SQL data type NUMERIC(p,s).
p is the precision (totalDigits), s is the scale (fractionDigits).

• E.g. NUMERIC(5,2) permits numbers with 5 digits

in total, of which two are after the decimal point

(like 123.45):

<xs:simpleType name="NUMERIC_5_2">

<xs:restriction base="xs:decimal">

<xs:totalDigits value="5"/>

<xs:fractionDigits value="2"/>

</xs:restriction>

</xs:simpleType>

Stefan Brass: XML und Datenbanken Universität Halle, 2012

4. XML Schema 4-75

Fixed Point Numbers (4)

• One can specify bounds b for the data value d with

the facets

� minExclusive: d > b.
b is the contents of the value-Attribute of the xs:minExclusive

element. The same for the other facets.

� minInclusive: d ≥ b.

� maxInclusive: d ≤ b.

� maxExclusive: d < b.

• The factes length, minLength, maxLength are not ap-

plicable for numeric types.
If necessary, one can use a pattern.

Stefan Brass: XML und Datenbanken Universität Halle, 2012

4. XML Schema 4-76

Fixed Point Numbers (5)

• The facet whiteSpace has the fixed value collapse

for the numeric types: leading and trailing spaces

are automatically skipped.

Because the facet value is fixed, one cannot change this behaviour.

• The facet pattern is applicable, e.g. one could ex-

clude or require leading zeros.

pattern applies to the lexical representation of the value.

• The facet enumeration is applicable.

E.g. one could list the valid grades in the German system: 1.0, 1.3,
1.7, 2.0, . . . , 4.3, 5.0.

Stefan Brass: XML und Datenbanken Universität Halle, 2012

4. XML Schema 4-77

Fixed Point Numbers (6)

• Integer types are derived from decimal by setting

fractionDigits to 0 and selecting the bounds shown

on the next slide.

• There are four classes of integer types:

� integer: no restrictions

� positiveInteger etc.: restrictions at -1, 0, 1.

� long, int, short, byte: restriction given by repre-

sentability in 64, 32, 16, 8 Bit.

� unsigned long etc.: minimum 0, maximum x Bit.

Using a sign is invalid for these types, even -0 is not allowed.

Stefan Brass: XML und Datenbanken Universität Halle, 2012

4. XML Schema 4-78

Fixed Point Numbers (7)

Type minInclusive maxInclusive

integer
positiveInteger 1
nonPositiveInteger 0
negativeInteger -1
nonNegativeInteger 0
long (64 Bit) -9223372036854775808 9223372036854775807

int (32 Bit) -2147483648 2147483647

short (16 Bit) -32768 32767
byte (8 Bit) -128 127
unsigned long 0 18446744073709551615

unsigned int 0 4294967295

unsigned short 0 65535
unsigned byte 0 255

Stefan Brass: XML und Datenbanken Universität Halle, 2012

4. XML Schema 4-79

Boolean

• The value space consists of the truth values true,

false.

• The lexical space consists of true, false, 1, 0.

As one would expect, 1 represents the value true, and 0 represents
the value false.

Stefan Brass: XML und Datenbanken Universität Halle, 2012

4. XML Schema 4-80

Date and Time Types (1)

• A dateTime-value has the form (similar to ISO 8601)

yyyy-mm-ddThh:mi:ss.xxxzzzzzz

where (continued on next slide)

� yyyy is the year,
It is possible to use negative years for the time Before Christ (“Be-
fore Common Era”), but the meaning might change: Currently,
there is no year 0000, the year before 0001 is -0001. This was chan-
ged in the corresponding ISO standard, 0000 is now 1 BC. More
than four digits are permitted (then leading zeros are disallowed).

� mm is the month (1 to 12)

� dd is the day (1 to max. 31, restricted by month)
E.g., February 30 is impossible, and February 29 only in leap years.

Stefan Brass: XML und Datenbanken Universität Halle, 2012

4. XML Schema 4-81

Date and Time Types (2)

• Components of dateTime values, continued:

� hh is the hour (0 to 23)
The value 24 is permitted if minute and second is 0, it is the same
as 00:00:00 on the following day.

� mi is the minute (0 to 59)

� ss is the second (0 to 59)
When a leap second is inserted, also 23:59:60 is possible. From
1972 to 2005, this has happend 23 times. Note that the seconds
part of dateTime-values cannot be left out.

� xxx is an optional fractional part of a second
It can have arbitrary length, not only milliseconds.

� zzzzzz is optional timezone information

Stefan Brass: XML und Datenbanken Universität Halle, 2012

4. XML Schema 4-82

Date and Time Types (3)

• The suffix Z, e.g. 2007-05-14T15:30:00Z marks a va-

lue as UTC (“Universal Coordinated Time”).

This is May 14, 2007, 3:30pm, in Greenwich, UK.

• 2007-05-14T15:30:00Z is the same as

� 2007-05-14T16:30:00+01:00

CET: Central European Time, e.g. in Germany (“MEZ”)

� 2007-05-14T17:30:00+02:00

CEDT/CEST: Central European Daylight savings/Summer Time

� 2007-05-14T10:30:00-05:00

EST: Eastern Standard Time, e.g. New York, Pittsburgh.

Stefan Brass: XML und Datenbanken Universität Halle, 2012

4. XML Schema 4-83

Date and Time Types (4)

• If timezone information is not specified, as e.g. in

2007-05-14T16:00:00

the time is considered to be local time in some

(unknown) timezone.

• One should avoid comparing local time and time

with timezone information (UTC).

E.g., 2007-05-14T15:30:00Z and 2007-05-14T16:00:00 are uncompara-
ble (e.g. in Germany, 2007-05-14T16:00:00 would actually be before
2007-05-14T15:30:00). If, however, the time difference is greater than
14 hours (maximal zone difference), local time and UTC are compa-
rable. Note that all dateTime-values without timezone are considered
comparable, i.e. it is assumed that they are all in the same timezone.

Stefan Brass: XML und Datenbanken Universität Halle, 2012

4. XML Schema 4-84

Date and Time Types (5)

date:

• Value space: top-open intervals of dateTime-values

(they include 00:00:00, but not 24:00:00).
This means that 2007-05-14+13:00 is actually the same date-value as
2007-05-13-11:00. In general, values are not necessarily printed on
output in the same way as they are read from input. This also applies
to dateTime values: The actual timezone is lost, values are stored
internally as UTC. The application program could know the timezone.

• Lexical space: date-values are written in the form

yyyy-mm-dd

with optional timezone information as before.

• E.g.: 2007-05-14 (local time), 2007-05-14+01:00.

Stefan Brass: XML und Datenbanken Universität Halle, 2012

4. XML Schema 4-85

Date and Time Types (6)

gYearMonth:

• Value space: Intervals of dateTime-values from the

beginning of the month (inclusive) to the beginning

of the next month (exclusive).

The “g” indicates that this depends on the Gregorian calendar (this
is the ususal calender e.g. in Germany and the US). Whereas also
dateTime-literals are written using the Gregorian Calender, they can
easily be converted into other calendars. For year/month combinati-
ons, this conversion is usually not possible.

• Lexical space: Constants are written in the form

yyyy-mm, with optional time zone information.

• E.g.: 2007-05 (local time), 2007-05+01:00.

Stefan Brass: XML und Datenbanken Universität Halle, 2012

4. XML Schema 4-86

Date and Time Types (7)

gYear:

• Value space: years (intervals of dateTime values cor-

responding to one year in the Gregorian calendar).

• Lexical space: Constants are written in the form

yyyy, with optional time zone information.

• E.g. 2007 (local time), -0001 (local time, 1/2 BC),

2007+01:00, 2007Z (UTC).

• dateTime, date, gYearMonth, gYear form a hierarchy

of larger and larger timeline intervals.

Actually, dateTime values are points on the timeline (zero duration).

Stefan Brass: XML und Datenbanken Universität Halle, 2012

4. XML Schema 4-87

Date and Time Types (8)

time:

• An instant of time that recurs every day.

• Constants are written in the form hh:mi:ss, with

optional fractional seconds and timezone.

This is simply the suffix of dateTime literals after the T. This especially
means that the seconds cannot be left out (15:30 is invalid).

• E.g. 15:30:00, 15:30:00.123+01:00, 15:30:00Z.

• time-values are ordered, with the usual problem that

local time and timezoned time can can be compared

only if the difference is large enough.

Stefan Brass: XML und Datenbanken Universität Halle, 2012

4. XML Schema 4-88

Date and Time Types (9)

gDay:

• A day that recurs every month, e.g. the 15th.
More precisely, it is a recurring time interval of length one day.

• Lexical representation: ---dd (plus opt. timezone).

gMonth:

• A month that recurs every year, e.g. May.

• Lexical representation: --mm (plus opt. timezone).

gMonthDay:

• A day that recurs every year, e.g. December 24.

• Lexical representation: --mm-dd (opt. timezone).

Stefan Brass: XML und Datenbanken Universität Halle, 2012

4. XML Schema 4-89

Date and Time Types (10)

duration:

• A duration of time, consisting of seven components:

sign, and number of years, months, days, hours,

minutes, seconds.

Seconds can have a fractional part, the other numbers are integers.

• The constants are written as optional sign, then the

letter “P”, then one or more numbers with unit (Y,

M, D, H, M, S — in this order), with the letter T used

as separator in front of the time-related values.

E.g. P2M is two months, and PT2M is two minutes. The letter “T” must
be written if and only if hours, minutes, or seconds are specified.

Stefan Brass: XML und Datenbanken Universität Halle, 2012

4. XML Schema 4-90

Date and Time Types (11)

• Examples:

� P1Y2M3D is a duration of one year, two months,

and three days.

� P2DT12H is a duration of two days and twelve

hours.

� -P1D is the duration that gives yesterday if added

to today’s date.

• The values of the components are not restricted by

the size of the next larger component, e.g. PT36H is

possible (36 hours).

Stefan Brass: XML und Datenbanken Universität Halle, 2012

4. XML Schema 4-91

Date and Time Types (12)

• duration values are ordered only partially, e.g. P30D

and P1M are not comparable.

P1M is larger than P27D, it is uncomparable to P28D, P29D, P30D, P31D, and
it is smaller than P32D. However, P5M not simply multiplies these values
by 5, but looks at an arbitrary sequence of five consecutive months.
Thus, p5M is larger than P149D, smaller than P154D, and uncomparable
to the values in between.

• One can use the pattern facet to enforce that du-

rations are specified in a single unit, P\d+D permits

only days.

Stefan Brass: XML und Datenbanken Universität Halle, 2012

4. XML Schema 4-92

Date and Time Types (13)

• Applicable constraining facets:

� pattern

� enumeration

� minExclusive, minInclusive,

maxExclusive, maxInclusive

As explained above, mixing UTC and local time should be avoided.
If a value is not comparable with the bound, it is considered illegal.

� whiteSpace has the fixed value collapse.

Stefan Brass: XML und Datenbanken Universität Halle, 2012

4. XML Schema 4-93

Binary Data

• Values of the types hexBinary and base64Binary are

finite-length sequences of bytes (“binary octets”).

• The lexical space of hexBinary is the set of even-

length strings of decimal digits and letters a-f/A-F.
Every hexadecimal digit represents 4 bits of the binary string.

• The Base64-encoding packs 6 Bits into every cha-

racter by using the characters A-Z, a-z, 0-9, “+”,

“/” (and “=” at the end to mark characters deri-

ved from fill bytes).
See RFC 2045. The string length is always a multiple of four (4 cha-
racters from the encoding are mapped to 3 bytes of binary data).

Stefan Brass: XML und Datenbanken Universität Halle, 2012

4. XML Schema 4-94

URIs

• The value space of the built-in type anyURI is the

set of (absolute or relative) URIs, optionally with a

fragment identifier (i.e., “#”).
See RFC 2396 and RFC 2732.

• Some international characters are allowed directly

in constants of type anyURI that would normally

have to be escaped with “%xy”.
See the XLink specification, Section 5.4 “Locator Attribute”, and
Section 8 “Character Encoding in URI References”.

• It is not required that the URI can be dereferenced

(accessed).

Stefan Brass: XML und Datenbanken Universität Halle, 2012

4. XML Schema 4-95

NOTATION

• One can declare notations (non-XML data formats)

in XML schema:

<xs:notation name="gif" public=
"-//IETF//NOTATION Media Type image/gif//EN"/>

• Values of the built-in data type NOTATION are the

qualified names of the declared notations.

• One cannot use this type directly for elements and

attributes, but must declare an enumeration:
<xs:simpleType name="imageFormat">

<xs:restriction base="xs:NOTATION">
<xs:enumeration value="gif"/>
<xs:enumeration value="jpeg"/>
...

Stefan Brass: XML und Datenbanken Universität Halle, 2012

4. XML Schema 4-96

Union Types (1)

• One can define a new simple type by constructing

the union of two or more simple types.
One can construct the union of a union, but this is equivalent to a
“flat” union. One cannot take the union of complex types.

• Example: The attribute maxOccurs permits integers

(≥ 0) and the special value “unbounded” (a string).

• The components of a union type can be specified

by the attribute “memberTypes” or by simpleType-

children, or a mixture of both.
The order of the menber types is insofar significant, as the value will
count as a value of the first member type for which it is a legal value.

Stefan Brass: XML und Datenbanken Universität Halle, 2012

4. XML Schema 4-97

Union Types (2)

<!-- Enumeration type with only value "unbounded" -->
<xs:simpleType name="uType">

<xs:restriction base="xs:stringQ>
<xs:enumeration value="unbounded"/>

</xs:restriction>
</xs:simpleType>

<!-- Defining a union with attribute memberTypes: -->

<xs:simpleType name="cardinality">
<xs:union memberTypes="nonNegativeInteger uType"/>

</xs:simpleType>

Stefan Brass: XML und Datenbanken Universität Halle, 2012

4. XML Schema 4-98

Union Types (3)

<!-- Defining a union with simpleType children: -->
<xs:simpleType name="cardinality">

<xs:union>
<xs:simpleType>

<xs:restriction base="xs:integer">
<xs:minInclusive value="0>

</xs:restriction>
</xs:simpleType>
<xs:simpleType>

<xs:restriction base="xs:string">
<xs:enumeration value="unbounded"/>

</xs:restriction>
</xs:simpleType>

</xs:union>
</xs:simpleType>

Stefan Brass: XML und Datenbanken Universität Halle, 2012

4. XML Schema 4-99

Union Types (4)

<!-- Using a mixture of both: -->

<xs:simpleType name="cardinality">
<xs:union memberTypes="nonNegativeInteger">

<xs:simpleType>
<xs:restriction base="xs:string">

<xs:enumeration value="unbounded"/>
</xs:restriction>

</xs:simpleType>
</xs:union>

</xs:simpleType>

Stefan Brass: XML und Datenbanken Universität Halle, 2012

4. XML Schema 4-100

Union Types (5)

<union>:

• Possible attributes:

� id: Unique ID

All XML Schema elements have attribute id of type ID. It will not
be explicitly mentioned for the other element types.

� memberTypes: component types of the union

This is a list of QName values. The attribute or a simpleType-child
(or both) must be present (empty unions are not reasonable).

• Content model:

annotation?, simpleType*

Stefan Brass: XML und Datenbanken Universität Halle, 2012

4. XML Schema 4-101

Union Types (6)

<union>, continued:

• Possible parent element types: simpleType.

Normally, it is not really necessary to specify the possible parent ele-
ment types, since this information can be derived from the content
model of the other element types. However, this is at least useful
cross-reference information: It simplifies the understanding where the
current element type can be used. Furthermore, sometimes an ele-
ment type has different syntactic variants depending on the context
in which it appears (remember that this is a feature of XML Schema
that goes beyond the possibilities of DTDs). Then the parent type
really gives important information.

• Union types can be restricted by facets pattern and

enumeration.

Stefan Brass: XML und Datenbanken Universität Halle, 2012

4. XML Schema 4-102

List Types (1)

• A simple type can be constructed as list of values

of another simple type.

The component type cannot be itself a list type, not a union that
contains a list, and so on. Because of the lexical representation, nested
lists could not be distinguished from the corresponding flat list. List
types can be defined only for simple types, not for complex types.

• The lexical represenation of a list value is a string

that consists of the lexical representation of the

single values, separated by whitespace.

Whitespace is one or more spaces, tabs, and line breaks. This is the
same representation that is used in classical SGML/XML e.g. for
IDREFS: This type is defined in XML Schema as list of IDREF values.

Stefan Brass: XML und Datenbanken Universität Halle, 2012

4. XML Schema 4-103

List Types (2)

• Suppose we want to define a list of weekdays when

a museum is open:

<museum name="Big Art Gallery"
open="Tue Wed Thu Fri Sat Sun"
from="09:00:00" to="17:00:00"/>

<museum name="Private Computer Collection"
open="Sat Sun"
from="15:00:00" to="18:00:00"/>

• This can be done as follows:

<xs:simpleType name="weekdayList">
<xs:list itemType="weekday"/>

</xs:simpleType>

Stefan Brass: XML und Datenbanken Universität Halle, 2012

4. XML Schema 4-104

List Types (3)

• Instead of specifying a named component type in

the itemType attribute, one can also define a type

in a simpleType child element:

<xs:simpleType name="weekdayList">
<xs:list>

<xs:simpleType>

<xs:restriction base="xs:token">

<xs:enumeration value="Sun"/>
...

</xs:restriction>

</xs:simpleType>

</xs:list>
</xs:simpleType>

Stefan Brass: XML und Datenbanken Universität Halle, 2012

4. XML Schema 4-105

List Types (4)

• The constants of the list item type must not con-

tain whitespace.
The input string is split into list elements at whitespace before the
single list elements are validated.

• Instead of a list type, one could also use a sequence

of elements:

� Advantage of list type: shorter.

� Advantage of element list: List items can be

structured (e.g. attributes can be added).
Furthermore, currently XPath and XSLT do not permit access to
the single items in a list type, but one can of course select single
elements in a sequence.

Stefan Brass: XML und Datenbanken Universität Halle, 2012

4. XML Schema 4-106

List Types (5)

<list>:

• Possible attributes:

� itemType: Type of list elements (a QName).

One must use either this attribute or a simpleType child element.
One cannot use both.

• Content model:

annotation?, simpleType?

• Possible parent element types: simpleType.

Stefan Brass: XML und Datenbanken Universität Halle, 2012

4. XML Schema 4-107

List Types (6)

• List types can be restricted by facets:

� length, minLength, maxLength,

The length is the number of list items, not the string length
of the lexical representation. If necessary, the string length can
be restricted with pattern. Note that empty lists are possible. If
necessary, use minLength with a value of 1.

� pattern,

This is a pattern for the entire list, not for the list items. A pattern
for the list items can be specified in the definition of the item type.

� enumeration.

Stefan Brass: XML und Datenbanken Universität Halle, 2012

4. XML Schema 4-108

Restrictions: Summary (1)

<restriction> (for simple types):

• Possible attributes:

� base: Name of the type to be restricted (a QName).
Either this attribute or a simpleType child must be used.

• Content model:
annotation?, simpleType?,

(minExclusive | minInclusive
| maxExclusive | maxInclusive
| length | minLength | maxLength
| totalDigits | fractionDigits
| enumeration | pattern | whiteSpace)*

• Possible parent element types: simpleType.

Stefan Brass: XML und Datenbanken Universität Halle, 2012

4. XML Schema 4-109

Restrictions: Summary (2)

<restriction>, continued:

• The above content model is a little too generous:

� length cannot be used together with minLength

or with maxLength.

� Also minExclusive and minInclusive cannot be

used together.

� The same for maxExclusive and maxInclusive.

� Except enumeration and pattern, one cannot use

the same facet twice.

• And there are restrictions given by the base type.

Stefan Brass: XML und Datenbanken Universität Halle, 2012

4. XML Schema 4-110

Restrictions: Summary (3)

<minInclusive>, <minExclusive>, . . . (facets):

• Possible attributes:

� value: The parameter of the restriction.
This attribute is required. Its type depends on the facet.

� fixed: A boolean value that indicates wether this

facet can be further restricted in derived types.
The default value is false. Note that this attribute is not appli-
cable for pattern and enumeration.

• Content model:

annotation?

• Possible parent element types: restriction.

Stefan Brass: XML und Datenbanken Universität Halle, 2012

4. XML Schema 4-111

Simple Types: Declaration (1)

<simpleType> (with name):

• Possible attributes:

� name: Name of the type (an NCName).

� final: Restrictions for the derivation of other ty-

pes from this one (see below).

• Content model:

annotation?, (restriction | list | union)

• Possible parent element types: schema, redefine.

Stefan Brass: XML und Datenbanken Universität Halle, 2012

4. XML Schema 4-112

Simple Types: Declaration (2)

<simpleType> (without name):

• Possible attributes:

� (only id)

• Content model:

annotation?, (restriction | list | union)

• Possible parent element types: element, attribute,

restriction, list, union.

Stefan Brass: XML und Datenbanken Universität Halle, 2012

4. XML Schema 4-113

Simple Types: Declaration (3)

Attribute final:

• One can forbid that a type is used for deriving other

types (inspired by object-oriented languages).

• Possible values of the attribute are:

� #all: There cannot be any derived type.

� Lists of restriction, list, union: Only the expli-

citly listed type derivations are forbidden.

• If final is not specified, the value of the attribute

finalDefault of the schema-element is used (which

in turn defaults to "", i.e. no restrictions).

Stefan Brass: XML und Datenbanken Universität Halle, 2012

4. XML Schema 4-114

Overview

1. Introduction, Examples

2. Simple Types

3. Complex Types, Elements, Attributes

4. Integrity Constraints

5. Advanced Constructs

Stefan Brass: XML und Datenbanken Universität Halle, 2012

4. XML Schema 4-115

Content Models (1)

• Content models are used to describe the sequence

of elements that are nested inside an element (child

elements).

• Content models in XML Schema offer basically the

same possibilities as content models in DTDs:

� sequence: Corresponds to “,” in DTDs.

� choice: Corresponds to “|” in DTDs.

� all: Corresponds to “&” in (SGML) DTDs.

• The attributes minOccurs and maxOccurs take the

place of “?”, “*”, “+” in DTDs.

Stefan Brass: XML und Datenbanken Universität Halle, 2012

4. XML Schema 4-116

Content Models (2)

• all means that the elements in the group must

occur (unless minOccurs=0 for that element), but the

order is arbitrary (any permutation is permitted).

• In XML Schema, all groups are very restricted:

� They must appear on the outermost level, and

they cannot contain other model groups, only

elements.
I.e. all cannot be used together with choice and sequence.

� For every element it contains, maxOccurs must

be 1 (minOccurs may be 0 or 1).

Stefan Brass: XML und Datenbanken Universität Halle, 2012

4. XML Schema 4-117

Content Models (3)

• Like XML DTDs, XML Schema requires determi-

nistic content models, e.g. this is not permitted:

<!-- Invalid! Corresponds to (A | (A, B)) -->

<xs:complexType name="nondeterministic">

<xs:choice>

<xs:element name="A" type="xs:string"/>

<xs:sequence>

<xs:element name="A" type="xs:string"/>

<xs:element name="B" type="xs:string"/>

</xs:sequence>

</xs:choice>

</xs:complexType>

Stefan Brass: XML und Datenbanken Universität Halle, 2012

4. XML Schema 4-118

Content Models (4)

<sequence>, <choice>:

• Possible attributes:

� minOccurs: Minimum number of times the group

must occur (nonNegativeInteger)
The default value of both, minOccurs and maxOccurs, is 1.

� maxOccurs: Maximum number of times the group

may occur (nonNegativeInteger or “unbounded”)

• Content model:
annotation?, (element|group|choice|sequence|any)*

• Possible parent elements: complexType, restriction,

extension, group, choice, sequence.

Stefan Brass: XML und Datenbanken Universität Halle, 2012

4. XML Schema 4-119

Content Models (5)

<all>:

• Possible attributes:

� minOccurs: Minimum number of times the group

must occur (0 or 1)
The default value of both, minOccurs and maxOccurs, is 1.

� maxOccurs: Maximum number of times the group

may occur (1 is the only legal value)

• Content model:
annotation?, element*

• Possible parent elements: complexType, restriction,

extension, group.

Stefan Brass: XML und Datenbanken Universität Halle, 2012

4. XML Schema 4-120

Content Models (6)

<element> (element reference):

• Possible attributes:

� ref: Name of the element being referenced (a

QName, the element must be declared globally).

If element is used as element reference, this attribute is required.
The element may be declared later or (if it does not occur in the
data) may be declared not at all.

� minOccurs, maxOccurs: (see above)

• Content model:
annotation?

• Possible parent elements: all, choice, sequence.

Stefan Brass: XML und Datenbanken Universität Halle, 2012

4. XML Schema 4-121

Content Models (7)

Named Model Groups:

• It is possible to introduce a name for a model group,

and to use this “named model group” as part of

other model groups (like macro/parameter entity).

• Thus, if one must declare several element types

that have in part equal content models, it suffices

to define the common part only once.

If one wants to define a common part only once without named model
groups, one needs an element as a container for this part. This makes
the instance (data file) more complicated (additional level of nesting).

Stefan Brass: XML und Datenbanken Universität Halle, 2012

4. XML Schema 4-122

Content Models (8)

Named Model Groups, continued:

• Advantages:

� This helps to ensure the consistency of similar

content models.
This especially holds also for later changes: The common part has
to be changed only in a single place.

� Makes equal parts obvious in the schema.

� The schema becomes shorter.
If the common part is sufficently large.

� Permits reusable components below the element

/ complex type level.

Stefan Brass: XML und Datenbanken Universität Halle, 2012

4. XML Schema 4-123

Content Models (9)

<group> (named model group definition):

• Possible attributes:

� name: Name of the model group being defined

(an NCName).

If group is used for defining a named model group, this attribute
is required.

• Content model:

annotation?, (all | choice | sequence)

• Possible parent element types: schema, redefine.

Stefan Brass: XML und Datenbanken Universität Halle, 2012

4. XML Schema 4-124

Content Models (10)

<group> (named model group reference):

• Possible attributes:

� ref: Name of the model group being referenced

(a QName).
If group is used to refer to a named model group, this attribute is
required.

� minOccurs, maxOccurs: (see above)

• Content model:
annotation?

• Possible parent elements: complexType, restriction,

extension, choice, sequence.

Stefan Brass: XML und Datenbanken Universität Halle, 2012

4. XML Schema 4-125

Content Models (11)

Wildcard:

• With “<any>” it is possible to allow arbitrary ele-

ments (one can restrict the namespace).

• E.g., to permit arbitrary XHTML in a product de-

scription (without explicitly listing elements):

<xs:complexType name="Description" mixed="true">

<xs:sequence>

<xs:any minOccurs="0" maxOccurs="unbounded"

namespace="http://www.w3.org/1999/xhtml"

processContents="skip"/>

</xs:sequence>

</xs:complexType>

Stefan Brass: XML und Datenbanken Universität Halle, 2012

4. XML Schema 4-126

Content Models (12)

Wildcard, continued:

• With the attribute processContents, one can select

whether the contents of elements inserted for the

wildcard should be checked:

� skip: Only the well-formedness is checked.

� lax: If the XML Schema process can find de-

clarations of the elements, it will validate their

contents. Otherwise no warning is printed.
For instance, there might be a configuration file that contains a
mapping from namespaces to schemas. Or an RDDL description
is stored under the namespace URI, with a link to the schema.

� strict: Full validation.

Stefan Brass: XML und Datenbanken Universität Halle, 2012

4. XML Schema 4-127

Content Models (13)

Wildcard, continued:

• A wildcard is a “quick&dirty” solution. There are

safer ways to use elements from another schema

(see below).

In this case, processContents was set to “skip”. But even if it were
set to “strict”, this would not prevent XHTML elements like meta

(intended for the head). Thus, even then it is not guaranteed that a
product catalog generated in XHTML will be valid XHTML. Further-
more, one could also use h1 (biggest headline) and other elements
that will not look nice if they appear in a product description. The
only safe solution is probably to explicitly list the allowed XHTML ele-
ments. With a bit of luck, the schema for XHTML contains a named
model group that can be used.

Stefan Brass: XML und Datenbanken Universität Halle, 2012

4. XML Schema 4-128

Content Models (14)

Wildcard, continued:

• With the attribute namespace, one can restrict the

namespace of the elements matched with any:

� ##any: no restriction (this is the default).

� ##other: any namespace except the target name-

space of this schema.
In this case, it is required that the elements have a namespace.

� List of URIs, “##local”, “##targetNamespace”:

Only these namespaces are permitted.
“##local” allows elements without a namespace,
“##targetNamespace” allows elements from this schema.

Stefan Brass: XML und Datenbanken Universität Halle, 2012

4. XML Schema 4-129

Content Models (15)
<any>:

• Possible attributes:

� namespace: Restrictions for the namespace of the

elements inserted for the wildcard.
See Slide 4-128. The default is no restriction (“##any”).

� processContents: Defines whether the contents

of elements matched with “any” is checked.
See slide 4-126. The default is “strict”.

� minOccurs, maxOccurs: (see above)

• Content model:
annotation?

• Possible parent element types: choice, sequence.

Stefan Brass: XML und Datenbanken Universität Halle, 2012

4. XML Schema 4-130

Complex Types (1)

• Complex types are used to define the characteristics

of elements (content model and attributes).

• However, if an element has no attributes and no

element content (only a string, number, etc.), a

simple type suffices.

• There are two ways to use complex types:

� Define a named complex type and reference it in

the type-attribute of element.

� Define an anonymous complex type as a child of

element.

Stefan Brass: XML und Datenbanken Universität Halle, 2012

4. XML Schema 4-131

Complex Types (2)

• The possibilities for defining a complex type are:

� List the content model (see above), followed by

the attributes (see below).
If the content model is missing (empty), elements of this type
have empty content. If the attribute part is not used, elements of
this type have no attributes.

� Use a simpleContent child: For type derivation.
This is used for deriving a complex type from a simple type (by
adding attributes), or from another complex type with simple con-
tent (by restriction or extension). See last section of this chapter.

� Use a complexContent child: For type derivation.
This is used for restricting or extending a complex type with ele-
ment content. See last section of this chapter.

Stefan Brass: XML und Datenbanken Universität Halle, 2012

4. XML Schema 4-132

Complex Types (3)

<complexType> (anonymous type):

• Possible attributes:

� mixed: Can additional character data appear bet-

ween the elements of the content model?
Used for specifying mixed content models. The default is false.

• Content model:

annotation?, (simpleContent | complexContent |

((all|choice|sequence|group)?,

(attribute|attributeGroup)*,

anyAttribute?))

• Possible parent element types: element.

Stefan Brass: XML und Datenbanken Universität Halle, 2012

4. XML Schema 4-133

Complex Types (4)

<complexType> (for defining a named type):

• Possible attributes:

� name: Name of the type to be defined (NCName).

� mixed: For mixed content models, see above.

� abstract, block, final: See following slides.

• Content model:
annotation?, (simpleContent | complexContent |

((all|choice|sequence|group)?,

(attribute|attributeGroup)*,

anyAttribute?))

• Possible parent element types: schema, redefine.

Stefan Brass: XML und Datenbanken Universität Halle, 2012

4. XML Schema 4-134

Complex Types (5)

Attribute final (forbids type derivation):

• One can forbid that other types are derived from

this type. Possible values of the attribute final are:

� #all: There cannot be any derived type.
"extension restriction" (in either order) is equivalent.

� "extension": Type derivation by extension is ex-

cluded, type derivation by restriction is possible.

� "restriction": Conversely.

� "": Both forms of type derivation are possible.
If final is not specified, the value of the attribute finalDefault of
the schema-element is used (which in turn defaults to "").

Stefan Brass: XML und Datenbanken Universität Halle, 2012

4. XML Schema 4-135

Complex Types (6)

Attribute block (forbids type substitution):

• If an element type E is declared with a complex

type C, and C′ is derived from C, elements of ty-

pe E can state that they are really of type C′ (with

xsi:type=C′), and e.g. use the additional attributes

or child elements of type C′.

• The attribute block can be used to prevent this.
Possible values are: "#all" (i.e. type substitution is not permitted),
"" (i.e. type substitution is possible), "restriction" (i.e. only types
defined by extension can be used), "extension" (i.e. only types defined
by restriction can be used), "extension restriction" (in either order:
same as "#all"). The default is blockDefault in the schema-element,
which in turn defaults to "" (no restriction).

Stefan Brass: XML und Datenbanken Universität Halle, 2012

4. XML Schema 4-136

Complex Types (7)

Attribute abstract (forbids instantiation):

• If abstract is "true", no elements can have this

complex type.

The default value is "false".

• Thus the type is defined only as a basis for type

derivation.

Actually, one can define element types of an abstract complex type,
but then type substitution must be used for all elements of this type.

• This corresponds to the notion of abstract super-

classes in object-oriented programming.

Stefan Brass: XML und Datenbanken Universität Halle, 2012

4. XML Schema 4-137

Attributes (1)

• Elements can have attributes, therefore complex

types must specify which attributes are allowed or

required, and which data types the attribute values

must have.

• Attributes can be declared

� globally, and then referenced in complex types,

� locally within a complex type (immediately used,

never referenced).
This is a counterpart to “anonymous types” which are defined
when they used (and cannot be reused). However, attributes al-
ways have a name.

Stefan Brass: XML und Datenbanken Universität Halle, 2012

4. XML Schema 4-138

Attributes (2)

• If a target namespace is declared for the schema,

globally declared attributes are in this namespace.

• Thus, they need an explicit namespace prefix in

each occurrence in the data file.

Default namespaces do not apply to attributes.

• For locally declared attributes, one can choose whe-

ther they must be qualified with a namespace.

This is done with the form attribute ("qualified" or "unqualified").
A default can be set with the attributeFormDefault-attribute of the
schema-element. If this is not set, the default is "unqualified", i.e. the
attribute is used without namespace prefix.

Stefan Brass: XML und Datenbanken Universität Halle, 2012

4. XML Schema 4-139

Attributes (3)

• Since one usually does not want to specify a name-

space prefix, global attribute declarations are sel-

dom used.
Global attributes with a namespace prefix are typically used when
many or all elements can have this attribute.

• If several elements/complex types have the same

attribute, one can define an attribute group (see

below), in order to specify the characteristics of

the attribute only once.
When the attribute group is used, it becomes a local declaration (it
works like a parameter entity/macro).

Stefan Brass: XML und Datenbanken Universität Halle, 2012

4. XML Schema 4-140

Attributes (4)

• As in DTDs, one can specify a default or fixed value

for an attribute.
Fixed values are mainly interesting for global attributes, see Chapter 1.

• If the attribute does not occur in the start tag of an

element, the XML Schema processor automatically

adds it with the default/fixed value.
Thus the application gets this value. Attributes with fixed value can
have only this single value and usually do not appear in the data file.

• In XML Schema, default/fixed values are specified

with the attributes default/fixed of attribute ele-

ments. These attributes are mutually exclusive.

Stefan Brass: XML und Datenbanken Universität Halle, 2012

4. XML Schema 4-141

Attributes (5)

• As in DTDs, one can specify whether an attribute

value must be given in every start tag or not.
In XML DTDs, the alternatives are: (1) a default value, (2) #REQUIRED,
(3) #IMPLIED (meaning optional), and (4) #FIXED with a value.

• In XML Schema, this is done with the attribute

“use”. It can have three possible values:

� "optional": Attribute can be left out.

� "required": Attribute value must be given.
This cannot be used together with a default value.

� "prohibited": Attribute value cannot be specified.
This is only used for restricting complex types, see below.

Stefan Brass: XML und Datenbanken Universität Halle, 2012

4. XML Schema 4-142

Attributes (6)

<attribute> (attribute reference):

• Possible attributes:

� ref: Name of the attribute (QName, required).

� use: "optional", "required", or "prohibited".
The default is "optional", i.e. the attribute can be left out.

� default: Default value for the attribute.

� fixed: Fixed value for the attribute.

• Content model: annotation?

• Possible parent element types:

complexType, restriction, extension, attributeGroup.

Stefan Brass: XML und Datenbanken Universität Halle, 2012

4. XML Schema 4-143

Attributes (7)

<attribute> (global attribute declaration):

• Possible attributes:

� name: Name of the declared attribute (NCName).
This attribute is required.

� type: Data type of the attribute (QName).
This attribute is mutually exclusive with the simpleType child.
If neither is used, the default is anySimpleType (no restriction).

� default: Default value for the attribute.

� fixed: Fixed value for the attribute.

• Content model: annotation?, simpleType?

• Possible parent element types: schema.

Stefan Brass: XML und Datenbanken Universität Halle, 2012

4. XML Schema 4-144

Attributes (8)

<attribute> (local attribute declaration):

• Possible attributes:

� name: Name of the attribute (NCName, required).

� type: Data type of the attribute (QName).

� form: "qualified" or "unqualified" (→ 4-138).

� use: "optional", "required", or "prohibited".

� default, fixed: see above.

• Content model: annotation?, simpleType?

• Possible parent element types:

complexType, restriction, extension, attributeGroup.

Stefan Brass: XML und Datenbanken Universität Halle, 2012

4. XML Schema 4-145

Attributes (9)

Constraint on Attributes within a Complex Type:

• A complex type cannot have more than one attri-

bute with the same name.

This is not surprising, because the XML standard requires this already
for well-formed XML. Note that the qualified name counts: One could
have attributes with the same name in different namespaces.

• A complex type cannot have more than one attri-

bute of type ID.

Also this is a restriction given by the XML standard (although only for
DTDs, maybe one could have removed it in XML Schema, but XML
Schema anyway has more powerful identification mechanisms). Note
also that attributes of type ID cannot have default or fixed values.

Stefan Brass: XML und Datenbanken Universität Halle, 2012

4. XML Schema 4-146

Attributes (10)

Attribute Wildcard:

• One can permit that the start tags of an element

type can contain additional attributes besides the

attributes declared for that element type.

Actually, certain attributes such as namespace declarations, and xsi:*

are always allowed, and do not have to be explicitly declared.

• This is done by including the attribute wildcard

“<anyAttribute>” in the complex type definition.

• The wildcard matches any number of attributes.

This is a difference to the element wildcard <any>. Thus, it makes no
sense to specify <anyAttribute> more than once in a complex type.

Stefan Brass: XML und Datenbanken Universität Halle, 2012

4. XML Schema 4-147

Attributes (11)

<anyAttribute>:

• Possible attributes:

� namespace: Restrictions for the namespace of the

attributes inserted for the wildcard.
See Slide 4-128. The default is no restriction (“##any”).

� processContents: Defines whether the value of

the additional attributes is type-checked.
See slide 4-126. The default is “strict”.

• Content model: annotation?

• Possible parent element types:

complexType, restriction, extension, attributeGroup.

Stefan Brass: XML und Datenbanken Universität Halle, 2012

4. XML Schema 4-148

Attributes (12)

Attribute Groups:

• If several complex types have attributes in com-

mon, one can define these attributes only once in

an attribute group (example see next slide).

Since elements / complex types cannot have two attributes with the
same name, also attribute groups cannot contain attributes with the
same name. In the same way, multiple ID-attributes are forbidden.

• This attribute group can then be referenced in a

complex type, or in other attribute groups.

• Like model groups, attribute groups are similar to

a special kind of parameter entity.

Stefan Brass: XML und Datenbanken Universität Halle, 2012

4. XML Schema 4-149

Attributes (13)

• Example for attribute group definition (CAT, ENO):

<xs:attributeGroup name="exIdent">
<xs:attribute name="CAT" use="required">

<xs:simpleType>
<xs:restriction base="xs:token">

<xs:enumeration value="H"/>
<xs:enumeration value="M"/>
<xs:enumeration value="F"/>

</xs:restriction>
</xs:simpleType>

</xs:attribute>
<xs:attribute name="ENO" use="required"

type="xs:positiveInteger"/>
</xs:attributeGroup>

Stefan Brass: XML und Datenbanken Universität Halle, 2012

4. XML Schema 4-150

Attributes (14)

• A reference to the attribute group “exIdent” (see

previous slide) looks as follows:

<attributeGroup ref="exIdent"/>

• The attributes of the attribute group (e.g., CAT and

ENO) are inserted in place of the group reference.

This is basically done like the expansion of a macro/entity. However,
a complex type can contain only one attribute wildcard. In XML Sche-
ma, it was decided that referencing two attribute groups that both
contain wildcards in the same complex type is no error. In this case,
the namespace constraints are intersected, and the processContents-
value of the first group is chosen (a wildcard directly in the complex
type counts as first).

Stefan Brass: XML und Datenbanken Universität Halle, 2012

4. XML Schema 4-151

Attributes (15)

<attributeGroup> (attribute group definition):

• Possible attributes:

� name: Name of the attribute group (NCName).

This attribute is required.

• Content model:

annotation?,

(attribute|attributeGroup)*, anyAttribute?

• Possible parent element types: schema, redefine.

Stefan Brass: XML und Datenbanken Universität Halle, 2012

4. XML Schema 4-152

Attributes (16)

<attributeGroup> (attribute group reference):

• Possible attributes:

� ref: Name of the attribute group (QName).

This attribute is required.

• Content model:

annotation?

• Possible parent element types:

complexType, restriction, extension, attributeGroup.

Stefan Brass: XML und Datenbanken Universität Halle, 2012

4. XML Schema 4-153

Elements (1)

• The main purpose of an element declaration is to

introduce an element type name and associate it

with a (simple or) complex type.

In addition, they can define a default/fixed value for the content,
permit or forbid a nil value, define keys or foreign keys, block type
substitution, and define substitution groups. See below.

• Simple and complex types together are called data

types (to distinguish them from “element types”).

At least in the book “Definitive XML Schema”. The Standard uses
simply “type” (for simple and complex type) and avoids the word
“element type”. On my slides, I sometimes incorrectly use “element”
instead of “element type”. Maybe, “element name” would be good.

Stefan Brass: XML und Datenbanken Universität Halle, 2012

4. XML Schema 4-154

Elements (2)

• The association of the declared element type with

the simple/complex type can be done in two ways:

� By including a simpleType or complexType child

element (anonymous type definition).

� By referencing a named (globally declared) sim-

ple or complex type with the type-attribute.
The two possibilities are mutually exclusive.

• If none of the two is used, the element type is as-

sociated with anyType, and permits arbitrary (well-

formed) content and arbitrary attributes.
Unless the element type is part of a substitution group, see below.

Stefan Brass: XML und Datenbanken Universität Halle, 2012

4. XML Schema 4-155

Elements (3)

• Element declarations can be

� global (later referenced by the element name),
For element references, see above (“Content Models”: 4-120).

� local inside a complex type declaration (imme-

diately used and never referenced again).

• As with attributes,

� globally declared element types always belong to

the target namespace of the schema,

� whereas one can choose whether locally declared

element types belong to the target namespace or

remain unqualified (no namespace).

Stefan Brass: XML und Datenbanken Universität Halle, 2012

4. XML Schema 4-156

Elements (4)

• The namespace decision for local element declara-

tions is done with the attribute form. It can be

� "qualified": The element type name belongs to

the target namespace of the schema.

� "unqualified": The element type name has no

namespace.

If a local element type declaration does not contain the form-attribute,
the default is defined with elementFormDefault in the schema-element.
This in turn defaults to "unqualified". The possibility to switch nearly
all element types between unqualified and qualified form with a single
attribute setting is one aspect of the “Venetian Blind” design.

Stefan Brass: XML und Datenbanken Universität Halle, 2012

4. XML Schema 4-157

Elements (5)

• The namespace of elements can be defined impli-

citly with a default namespace declaration.
Important difference to attributes: For elements, it is no problem if
every element belongs to a namespace (if it is the same namespace).

• However, the user of a schema must know which

elements belong to a namespace and which not.

One should use a simple rule, e.g.

� The root element belongs to the target name-

space of the schema, the others not.

� All elements belong to the target namespace.

� The schema has no target namespace.

Stefan Brass: XML und Datenbanken Universität Halle, 2012

4. XML Schema 4-158

Elements (6)

• Global declarations must be used:

� for the possible root element type(s),

� for element types that participate in substitution

groups (see below).

• Local declarations must be used:

� if the same element type has different attributes

or content models depending on the context.
It might be better to say if there are different element types with
the same name.

� if the element type name should be unqualified.
And at least one name in the schema needs a namespace.

Stefan Brass: XML und Datenbanken Universität Halle, 2012

4. XML Schema 4-159

Elements (7)

Default and Fixed Values:

• Whereas in DTDs, one can specify default and fixed

values only for attributes, in XML Schema, this is

possible for attributes and elements.

• However,

� for an attribute, the default/fixed value is auto-

matically added if the attribute is missing,

� for an element, the element must still be present,

but with empty content.
In both cases, the validation adds data to the data explicitly given
in the input document. This might simplify the application.

Stefan Brass: XML und Datenbanken Universität Halle, 2012

4. XML Schema 4-160

Elements (8)

• Only values of simple types can be specified as

default/fixed values.

This is a technical restriction, because default/fixed values are spe-
cified in an attribute. But probably default/fixed values for elements
were mainly added to make attributes and elements with simple con-
tent more similar/interchangable.

• Of course, the default/fixed value must be legal for

the declared element content.

Thus, default/fixed values can be used only for elements with simple
content, or mixed content when all child elements are optional.

Stefan Brass: XML und Datenbanken Universität Halle, 2012

4. XML Schema 4-161

Elements (9)

• If a default value is declared, there is no way to

enter the empty string as element content.
Then the element is empty, and the default value is added. If the
whitespace-facet is collapse, the default value is added even if there
are spaces between start and end tag. But see xsi:nil below.

• Note that empty elements can have attributes.
The default value added as long as the contents is empty.

• A fixed value is very similar to a default value, with

the additional constraint that if a value is explicitly

specified, it can be only this value.
Possibly a different lexical representation of the same value.

Stefan Brass: XML und Datenbanken Universität Halle, 2012

4. XML Schema 4-162

Elements (10)

Nil:

• Also “nil values” are possible for element content

if the element type declaration contains

nillable="true"

The default value is false.

• This is probably similar to a null value in databases.

The specific meaning of the nil value depends on the application
(i.e. is not defined by XML Schema). The nil value is different from
the empty string (and from the missing element).

• Fixed values cannot be combined with nillable.

Stefan Brass: XML und Datenbanken Universität Halle, 2012

4. XML Schema 4-163

Elements (11)

• In the input document, elements with nil content

are mared with xsi:nil="true".
Where xsi is mapped to http://www.w3.org/2001/XMLSchema-instance.
Note that the attribute xsi:nil can be used even if it is not declared
for the element type (if the element type is nillable).

• In this case, the element content must be empty

(but the element can still have attributes).

• It is not required that the element type permits an

empty content (but it must be nillable).

• If an element is nil, a default value is not added,

although the contents looks empty (it is nil).

Stefan Brass: XML und Datenbanken Universität Halle, 2012

4. XML Schema 4-164

Elements (12)

<element> (global element type declaration):

• Possible attributes:

� name: Element type name (NCName, required).

� type: Name of simple or complex type (QName).

� default, fixed, nillable: see above.

� abstract, substitutionGroup, block, final:

see below.

• Content model:
annotation?, (simpleType | complexType)?

(key | keyref | unique)*

• Possible parent element types: schema.

Stefan Brass: XML und Datenbanken Universität Halle, 2012

4. XML Schema 4-165

Elements (13)

<element> (local element type declaration):

• Possible attributes:
� name: Element type name (NCName, required).
� form: "qualified" or "unqualified" (see above).
� type: Name of simple or complex type (QName).
� minOccurs, maxOccurs: see above.
� default, fixed, nillable: see above.
� block: see below.

• Content model:
annotation?, (simpleType | complexType)?

(key | keyref | unique)*

• Possible parent elements: all, choice, sequence.

Stefan Brass: XML und Datenbanken Universität Halle, 2012

4. XML Schema 4-166

Elements (14)

• The scope of a local element type declaration is

the enclosing complex type definition.
One can have two completely different local element type declarations
inside different complex types.

• Within the same complex type, one can declare the

same element type more than once, if the associa-

ted data type is identical.
Only the types must be identical. Other properties (like default values)
can be different. Anonymous types are never identical, even if they
have the same content model and attributes.

This double declaration might be necessary if the element type ap-
pears more than once in a content model and one wants a local
declaration.

Stefan Brass: XML und Datenbanken Universität Halle, 2012

4. XML Schema 4-167

Elements (15)

Attribute substitutionGroup:

• It is possible to define a hierarchy on element types,

again similar to subclasses.

• The name of the “superclass” (called the “head of

the substitution group” in XML Schema) is defined

in the attribute substitutionGroup (a QName).

• If the declaration of element type E contains

substitutionGroup="S"

then E is permitted everywhere where S is permit-

ted, i.e. E can be substituted for S.

Stefan Brass: XML und Datenbanken Universität Halle, 2012

4. XML Schema 4-168

Elements (16)

• This is also possible over several levels (if X defines

E as the head of its substitution group, X can be

substituted for E and for S).

• Of course, the data types of these element types

must be compatible, e.g. the data type of E must be

derived from the data type of S (maybe indirectly)

(it can also be the same).

• Alternatives to substitution groups are:

� choice model group with all “subclass elements”,

� “superclass element” with type substitution.

Stefan Brass: XML und Datenbanken Universität Halle, 2012

4. XML Schema 4-169

Elements (17)

Attribute abstract:

• If this is "true", the element type cannot be used

in input documents (i.e. it cannot be instantiated).

• It can only be used as head of a substitution group

(“superclass”).

It appears of course in model groups of the schema, but only as
placeholder for one of the element types that can be substituted for
this element type. The element type substitution is required in this
case.

• The default is "false".

Stefan Brass: XML und Datenbanken Universität Halle, 2012

4. XML Schema 4-170

Elements (18)

Attribute final:

• With final="#all", one can prevent that the cur-

rent type can be used as head of a substitution

group.
The default is the value of the finalDefault-attribute of the schema-
element, which defaults to "", i.e. no restriction.

• One can also specify restrictions on the data types

of the element types that can be substituted for

the current element type.
E.g. final="restriction" means that the current element type can be
head of a substitution group, but the data type of the substituted
element type must be derived by restriction.

Stefan Brass: XML und Datenbanken Universität Halle, 2012

4. XML Schema 4-171

Elements (19)

Attribute block:

• The attribute block can be used to forbid type sub-

stitution or usage of substitution groups in the in-

stance (input document, data file).
As mentioned on Slide 4-135, one can use xsi:type in the input do-
cument (data file) to state that an element type E has not its normal
data type C, but a data type C ′ that is derived from C.

With the attribute block, certain forms of type derivation (restriction
or extension) can be excluded from this possibility.
block="restriction extension" completely excludes type substitution.

The list can also contain substitution, which forbids element type
substitution (via substitution groups). This is basically the same as
final="#all", but now only the concrete occurrence in the input do-
cument is false, not the schema.

Stefan Brass: XML und Datenbanken Universität Halle, 2012

4. XML Schema 4-172

Exercise

• Please define complex types that correspond to the

following part of a DTD:

<!ELEMENT EXERCISES (EXERCISE)*>
<!ELEMENT EXERCISE (ENO, TOPIC, MAXPT, RESULT*)>
<!ELEMENT ENO (#PCDATA)>

<!-- Should be positive integer -->
<!ELEMENT TOPIC (#PCDATA)>
<!ELEMENT MAXPT (#PCDATA)>

<!-- Should be non-negative integer -->
<!ELEMENT RESULT (SID, POINTS)>
<!ELEMENT SID (#PCDATA)>
<!ELEMENT POINTS (#PCDATA)>

<!-- number with one digit after ’.’ -->

Stefan Brass: XML und Datenbanken Universität Halle, 2012

4. XML Schema 4-173

Overview

1. Introduction, Examples

2. Simple Types

3. Complex Types, Elements, Attributes

4. Integrity Constraints

5. Advanced Constructs

Stefan Brass: XML und Datenbanken Universität Halle, 2012

4. XML Schema 4-174

Integrity Constraints (1)

• DTDs have ID/IDREF to permit a unique identifica-

tion of nodes and links between elements.

• This mechanism is quite restricted:

� The identification must be a single XML name.
A number cannot be used as identification. Composed keys are
not supported. On the other hand, DTDs do not allow further
restrictions of the possible values (certain format of the names).

� The scope is global for the entire document.
One cannot state that the uniqueness only has to hold within an
element (e.g., representing a relation). One cannot specify any
constraints of the element type that is referenced with IDREF.

� This works only for attributes, not for elements.

Stefan Brass: XML und Datenbanken Universität Halle, 2012

4. XML Schema 4-175

Integrity Constraints (2)

• XML Schema has mechanisms corresponding to

keys and foreign keys in relational databases that

solve the problems of ID/IDREF.
They are more complex than the relational counterparts, because the
hierarchical structure of XML is more complex than the flat tables of
the relational model. The simplicity of the relational model was one
of its big achievements. This is given up in XML databases.

• The facets correspond to CHECK-constraints that re-

strict the value set of a single column.
Not all SQL conditions that refer to only one column can be expressed
with facets. On the other hand, patterns in XML Schema are much
more powerful than SQL’s LIKE-conditions. It is strange that patterns
refer to the external representation.

Stefan Brass: XML und Datenbanken Universität Halle, 2012

4. XML Schema 4-176

Integrity Constraints (3)

• Otherwise, XML Schema is not very powerful with

respect to constraints.

E.g., CHECK-constraints in relational databases can state that if one
column has a certain value then another column must be not null,
or that two columns exclude each other. Such constraints are not
possible in XML Schema (certain cases can be specified with content
models).

• For example, XML Schema itself requires that the

type-attribute of element is mutually exclusive with

simpleType/complexType-child elements. This cons-

traint cannot be specified in XML Schema.

Stefan Brass: XML und Datenbanken Universität Halle, 2012

4. XML Schema 4-177

Unique/Key Constraints (1)

• Consider again the example:

<?xml version=’1.0’ encoding=’ISO-8859-1’?>

<GRADES-DB>

<STUDENTS>

<STUDENT>

<SID>101</SID>

<FIRST>Ann</FIRST>

<LAST>Smith</LAST>

</STUDENT>
...

</STUDENTS>
...

</GRADES-DB>

Stefan Brass: XML und Datenbanken Universität Halle, 2012

4. XML Schema 4-178

Unique/Key Constraints (2)

• SID-values uniquely identify the children of STUDENTS:

<xs:element name="STUDENTS">

<xs:complexType>

<xs:sequence>

<xs:element ref="STUDENT"

minOccurs="0" maxOccurs="unbounded"/>

</xs:sequence>

</xs:complexType>

<xs:unique name="STUDENTS_KEY">

<xs:selector xpath="*"/>

<xs:field xpath="SID"/>

</xs:unique>

</xs:element>

Stefan Brass: XML und Datenbanken Universität Halle, 2012

4. XML Schema 4-179

Unique/Key Constraints (3)

• There are three components to a unique-constraint

(basically corresponds to relation, row, column(s)):

� The scope, which delimits the part of the XML

document, in which the uniqueness must hold.
Every element of the type in which the unique-constraint is defined
is one such scope.

� The elements which are identified.
The XPath-expression in selector specifies how to get from a
scope-element to these elements (“target node set”).

� The values which identify these elements.
The XPath-expressions in one or more field-elements specify how
to get from the identified elements to the identifying values.

Stefan Brass: XML und Datenbanken Universität Halle, 2012

4. XML Schema 4-180

Unique/Key Constraints (4)

• In the example:

� The scope is the STUDENTS-element.

In the example, there is only one STUDENTS-element. If there were
more than one, the uniqueness has to hold only within each single
element.

� The elements that are identified are the children

of STUDENTS (the STUDENT-elements).

One could also write xpath="STUDENT".

� The value that identifies the elements is the va-

lue of the SID-child.

Stefan Brass: XML und Datenbanken Universität Halle, 2012

4. XML Schema 4-181

Unique/Key Constraints (5)

• The correspondence of the scope to a relation is

not exact:

� In the example, it is also possible to define the

entire document as scope, but to select only

STUDENT-elements (see next slide).

� In contrast to the ID-type, it is no problem if

other keys contain the same values.
Even if the scope is global, the uniqueness of values must hold
only within a key (i.e. one could say that the scope is the key).

• Only values of simple types can be used for unique

identification.

Stefan Brass: XML und Datenbanken Universität Halle, 2012

4. XML Schema 4-182

Unique/Key Constraints (6)

• SID-values uniquely identify STUDENT-elements:

<xs:element name="GRADES-DB">
<xs:complexType>

<xs:sequence>
<xs:element ref="STUDENTS"/>
<xs:element ref="EXERCISES"/>
<xs:element ref="RESULTS"/>

</xs:sequence>
</xs:complexType>
<xs:unique name="STUDENTS_KEY">

<xs:selector xpath="STUDENTS/STUDENT"/>
<xs:field xpath="SID"/>

</xs:unique>
</xs:element>

Stefan Brass: XML und Datenbanken Universität Halle, 2012

4. XML Schema 4-183

Unique/Key Constraints (7)

• Example with composed key:

<xs:element name="GRADES-DB">
<xs:complexType>

...
</xs:complexType>
<xs:unique name="EXERCISES_KEY">

<xs:selector xpath="EXERCISES/*"/>
<xs:field xpath="CAT"/>
<xs:field xpath="ENO"/>

</xs:unique>
</xs:element>

Stefan Brass: XML und Datenbanken Universität Halle, 2012

4. XML Schema 4-184

Unique/Key Constraints (8)

• Suppose we store the data in attributes:
<EXERCISE CAT=’H’ ENO=’1’

TOPIC=’Rel. Algeb.’ MAXPT=’10’/>

• Attributes as fields are marked with “@”:

<xs:element name="GRADES-DB">
...
<xs:unique name="EXERCISES_KEY">

<xs:selector xpath="EXERCISES/*"/>
<xs:field xpath="@CAT"/>
<xs:field xpath="@ENO"/>

</xs:unique>
</xs:element>

Stefan Brass: XML und Datenbanken Universität Halle, 2012

4. XML Schema 4-185

Unique/Key Constraints (9)

• Example with exercise info nested in categories:

<EXERCISES>
<CATEGORY CAT="H">

<EX ENO="1" TOPIC="Rel. Algeb." MAXPT="10"/>
<EX ENO="2" TOPIC="SQL" MAXPT="10"/>

</CATEGORY>
<CATEGORY CAT="M">

<EX ENO="1" TOPIC="SQL" MAXPT="14"/>
</CATEGORY>

</EXERCISES>

• XML Schema supports only a subset of XPath. In

particular, one cannot access ancestors in xs:field.

But the unique identification of EX needs CAT.

Stefan Brass: XML und Datenbanken Universität Halle, 2012

4. XML Schema 4-186

Unique/Key Constraints (10)

• The problem is solved by defining two keys:

� One key ensures that the CAT-value uniquely iden-

tifies CATEGORY-elements.

� The other key is defined within the CATEGORY ele-

ment type (thus, there is one instance of the key,

i.e. scope, for every category element). This key

ensures the unique identification of EX-elements

by the ENO within each CATEGORY element.

• However, in this way no foreign keys can be speci-

fied that reference EX-elements by CAT and ENO.

Stefan Brass: XML und Datenbanken Universität Halle, 2012

4. XML Schema 4-187

Unique/Key Constraints (11)

• Key on CATEGORY:

<xs:element name="GRADES-DB">
...
<xs:unique name="CATEGORY_KEY">

<xs:selector xpath="EXERCISES/CATEGORY"/>
<xs:field xpath="@CAT"/>

</xs:unique>
</xs:element>

The XPath-expression in selector could also be EXERCISES/* (because
EXERCISES has only CATEGORY-elements as children).

One could define the key also under EXERCISES (instead of GRADES-DB)
since the document contains only one element of type EXERCISES, and
all elements to be identified are nested within this element.

Stefan Brass: XML und Datenbanken Universität Halle, 2012

4. XML Schema 4-188

Unique/Key Constraints (12)

• Key on EX-elements within CATEGORY:

<xs:element name="CATEGORY">
...
<xs:unique name="EX_KEY">

<xs:selector xpath="*"/>
<xs:field xpath="@ENO"/>

</xs:unique>
</xs:element>

• It is no problem that there are two EX-elements with

the same ENO (e.g., 1) as long as they are nested

within different CATEGORY-elements.

• This is similar to a weak entity.

Stefan Brass: XML und Datenbanken Universität Halle, 2012

4. XML Schema 4-189

Unique/Key Constraints (13)

• For a given “context node” (in which the key is

defined), the selector defines a “target node set”.

• For each node in the target node set, the XPath-

expression in each field must return 0 or 1 values.

It is an error if more than one value is returned.

• The target nodes, for which each field has a value

(that is not nil), form the “qualified node set”.

• The unique identification is required only for the

qualified node set. Multiple elements with undefined

or partially defined key values can exist.

Stefan Brass: XML und Datenbanken Universität Halle, 2012

4. XML Schema 4-190

Unique/Key Constraints (14)

• If one writes xs:key instead of xs:unique, the fields

must exist. In this case, it is an error if the XPath-

expression in xs:field returns no values (and it it

always an error if it returns more than one value).

Furthermore, neither the identified nodes nor the identifying fields
may be nillable.

• Note that value equality respects the type:

� For a field of type integer, "03" and "3" are the

same (so the uniqueness would be violated).

� For a field of type string, they are different.

Stefan Brass: XML und Datenbanken Universität Halle, 2012

4. XML Schema 4-191

Unique/Key Constraints (15)

<unique>/<key>:

• Possible attributes:

� name: Name of the key constraint (NCName).

This attribute is required. The value must be unique in the schema
among all unique, key, and keyref-constraints.

• Content model:

annotation?, selector, field+

• Possible parent element types: element.

Stefan Brass: XML und Datenbanken Universität Halle, 2012

4. XML Schema 4-192

Unique/Key Constraints (16)

<selector>:

• Possible attributes:

� xpath: Defines the nodes that are to be identified

by the key (restricted XPath expression).

It is required. The XPath subset is explained below.

• Content model:

annotation?

• Possible parent element types: unique, key, keyref.

Stefan Brass: XML und Datenbanken Universität Halle, 2012

4. XML Schema 4-193

Unique/Key Constraints (17)

<field>:

• Possible attributes:

� xpath: Defines a component of the tuple of va-

lues that uniquely identifies the nodes.

This attribute is required. The value must again be a restricted
XPath expression, see below.

• Content model:

annotation?

• Possible parent element types: unique, key, keyref.

Stefan Brass: XML und Datenbanken Universität Halle, 2012

4. XML Schema 4-194

XPath Subset (1)

• The standard states: “In order to reduce the burden

on implementers, in particular implementers of stre-

aming processors, only restricted subsets of XPath

expressions are allowed in {selector} and {fields}.”

• Indeed, the subset of XPath that can be used to

define the components of keys, is quite simple.

• The purpose of XPath is to select a set of nodes in

the XML tree, given a context node as a starting

point. In the XPath subset, one can navigate only

downward in the tree (in full XPath, also upward).

Stefan Brass: XML und Datenbanken Universität Halle, 2012

4. XML Schema 4-195

XPath Subset (2)

• The XPath subset that can be used in selector and

the subset that can be used in field differ slightly.

• A selector XPath expression consists of one or more

“Paths”, separated by “|”:

Selector ::= Path (’|’ Path)*

The set of nodes that are selected by this expression

is the union of the nodes selected by the single

paths (as usual, “|” means disjunction).

• Between any two tokens, whitespace is allowed.

Stefan Brass: XML und Datenbanken Universität Halle, 2012

4. XML Schema 4-196

XPath Subset (3)

• A Path

� can optionally start with “.//”.

� After that, it is a sequence of steps, separated

with “/”:

Path ::= (’.//’)? Step (’/’ Step)*

• Let the start node set be:

� If “.//” is present:

The context node and all its descendants.

� Otherwise: Only the context node.

Stefan Brass: XML und Datenbanken Universität Halle, 2012

4. XML Schema 4-197

XPath Subset (4)

• Each step defines a new set of nodes, given the

resulting nodes from the previous step (initialized

with the start node set).

Formally, a step defines a set of selected nodes for a single given
node. If the current node set consists of several nodes, take the union
of the selected nodes given each element in the current node set.

• A step can be: Step ::= ’.’ | NameTest

� “.”: Selects the current node (nothing changed).

� A “name test”: This selects those children of

the current node that are element nodes with an

element type name satisfying the “name test”.

Stefan Brass: XML und Datenbanken Universität Halle, 2012

4. XML Schema 4-198

XPath Subset (5)

• A “name test” is:

� An element type name (a QName).
Default namespace declarations do not affect XPath expressions.
If the element type is in a namespace, one must use the prefix.

� A wildcard “*” (satisfied by all element nodes).

� A namespace with a wildcard (satisfied by all

element nodes that belong to that namespace).

NameTest ::= QName | ’*’ | NCName ’:’ ’*’

A name test can also be used for attribute nodes (see below).

• That completes the definition of XPath expressions

that can be used in the attribute xpath of selector.

Stefan Brass: XML und Datenbanken Universität Halle, 2012

4. XML Schema 4-199

XPath Subset (6)

• The XPath expressions in field permit in addition

to select an attribute node as last step in Path:

Path ::= (’.//’)? (Step ’/’)* (Step | ’@’ NameTest)

Although one can use “|” (disjunction) and wildcards, this is probably
seldom applied because the XPath expression in field must select a
single node. The node contents/value is taken implicitly at the end.

• A name test for attributes offers the same three

possibilities as explained for element nodes above:

� “Name”: Attribute with that qualified name.

� “*”: Any attribute.

� “Prefix:*”: All attributes in that namespace.

Stefan Brass: XML und Datenbanken Universität Halle, 2012

4. XML Schema 4-200

XPath Subset (7)

Exercise:

• Consider again the example:

<GRADES-DB>

<STUDENTS>

<STUDENT>

<SID>

• The key is defined in the GRADES-DB element.

• Above, the following XPath expression was used to

select the nodes to be identified: STUDENTS/STUDENT.

• Give three alternatives.

Stefan Brass: XML und Datenbanken Universität Halle, 2012

4. XML Schema 4-201

Key References (1)

• A “key reference” identity constraint corresponds

to a foreign key in relational databases.

• It demands that certain (tuples of) values must

appear as identifying values in a key constraint.

“Key constraint” means key or unique.

• Example: For each SID-value in a RESULT element,

there must be a STUDENT-element with the same SID

(one can store points only for known students).

As in relational databases, it is not required that the two fields have
the same name.

Stefan Brass: XML und Datenbanken Universität Halle, 2012

4. XML Schema 4-202

Key References (2)

• SID-values in RESULT reference SID-values in STUDENT:

<xs:element name="GRADES-DB">

...

<xs:key name="STUDENT_KEY">
<xs:selector xpath="STUDENTS/STUDENT"/>
<xs:field xpath="SID"/>

</xs:key>

<xs:keyref name="RESULT_REF_STUDENT"
refer="STUDENT_KEY">

<xs:selector xpath="RESULTS/RESULT"/>
<xs:field xpath="SID"/>

</xs:keyref>

</xs:element>

Stefan Brass: XML und Datenbanken Universität Halle, 2012

4. XML Schema 4-203

Key References (3)

<keyref>:

• Possible attributes:

� name: Name of the foreign key constraint (NCName).
This attribute is required. The value must be unique in the schema
among all unique, key, and keyref-constraints.

� refer: Name of a unique/key-constraint (NCName).
This attribute is required: By linking the foreign key to the refe-
renced key, it defines which values are possible.

• Content model:

annotation?, selector, field+

• Possible parent element types: element.

Stefan Brass: XML und Datenbanken Universität Halle, 2012

4. XML Schema 4-204

Key References (4)

• The referenced key must be defined in the same

node or in a descendant node (i.e. “below”) the

node in which the foreign key constraint is defined.
I would have required the opposite direction, because on the way up,
there could be only one instance of the referenced key, on the way
down, there can be several (see below). But the committee certainly
had reasons, probably related to the parsing/checking algorithms.

• The standard explains that “node tables” which

map key values to the identified nodes are compu-

ted bottom-up.
The standard talks of “key sequence” instead of “key values” to
include also composed keys (with more than one field).

Stefan Brass: XML und Datenbanken Universität Halle, 2012

4. XML Schema 4-205

Key References (5)

• It is possible that several instances of the referenced

key exist below the foreign key.

• In that case, the union of the node tables is taken,

with conflicting entries removed.

I.e. if two instances of the referenced key contain the same key value
with different identified nodes, that key value is removed from the
table: It cannot be referenced (the reference would not be unique).

The situation is even more complicated, if the key is defined in an
element type that has descendants of the same type. Then key value-
node pairs originating in the current node take precedence over pairs
that come from below. Values that come from below are only entered
in the node table if they do not cause a conflict.

Stefan Brass: XML und Datenbanken Universität Halle, 2012

4. XML Schema 4-206

Key References (6)

• Fields of key and foreign key are matched by po-

sition in the identity constraint definition, not by

name (as in relational databases).

• Normally, the types of corresponding fields (of the

key and the foreign key) should be the same.

• However, if the types of both columns are derived

from the same primitive type, it might still work

(for values in the intersection of both types).

• But values of unrelated types are never identical:

E.g. the string “1” is different from the number “1”.

Stefan Brass: XML und Datenbanken Universität Halle, 2012

4. XML Schema 4-207

Overview

1. Introduction, Examples

2. Simple Types

3. Complex Types, Elements, Attributes

4. Integrity Constraints

5. Advanced Constructs

Stefan Brass: XML und Datenbanken Universität Halle, 2012

4. XML Schema 4-208

Derived Complex Types (1)

• There are two ways to derive complex types:

� by extension, e.g. adding new elements at the

end of the content model, or adding attributes,

� by restriction, e.g. removing optional elements

or attributes, or restricting the data type of at-

tributes, etc.

• Derived simple types are always restrictions.

One can extend a simple type by adding attributes, but then it beco-
mes a complex type.

Stefan Brass: XML und Datenbanken Universität Halle, 2012

4. XML Schema 4-209

Derived Complex Types (2)

• Extension looks very similar to subclass definitions

in object-oriented languages.

There all attributes from the superclass are inherited to the subclass,
and additional attributes can be added.

• However, a basic principle in object-oriented lan-

guages is that a value of a subclass can be used

wherever a value of the superclass is needed.

• In XML, it depends on the application, whether it

breaks if there are additional elements/attributes.

Since XML Schema has this feature, future applications should be
developed in a way that tolerates possible extensions.

Stefan Brass: XML und Datenbanken Universität Halle, 2012

4. XML Schema 4-210

Derived Complex Types (3)

• Additional attributes are probably seldom a pro-

blem, since attributes are typically accessed by na-

me (not in a loop).

• It was tried to minimize the problems of additional

child elements by allowing them only at the end of

the content model.

• Formally, the content model of the extended type

is always a sequence consisting of

� the content model of the base type,

� the added content model (new child elements).

Stefan Brass: XML und Datenbanken Universität Halle, 2012

4. XML Schema 4-211

Derived Complex Types (4)

• Consider a type for STUDENT-elements:

<xs:complexType name="STUDENT_TYPE">
<xs:sequence>

<xs:element name="SID" type="SID_TYPE"/>
<xs:element name="FIRST" type="xs:string"/>
<xs:element name="LAST" type="xs:string"/>
<xs:element name="EMAIL" type="xs:string"

minOccurs="0"/>
</xs:sequence>

</xs:complexType>

• Suppose that exchange students must in addition

contain the name of the partner university.

Stefan Brass: XML und Datenbanken Universität Halle, 2012

4. XML Schema 4-212

Derived Complex Types (5)

• Example for type extension:

<xs:complexType name="EXCHANGE_STUDENT_TYPE">
<xs:complexContent>

<xs:extension base="STUDENT_TYPE">
<xs:sequence>

<xs:element name="PARTNER_UNIV"
type="UNIV_TYPE"/>

</xs:sequence>
</xs:extension>

</xs:complexContent>
</xs:complexType>

• The effective content model is now:

((SID, FIRST, LAST, EMAIL?), (PARTNER_UNIV))

Stefan Brass: XML und Datenbanken Universität Halle, 2012

4. XML Schema 4-213

Derived Complex Types (6)

• In the same way, one can add attributes. Suppose

that STUDENT_TYPE2 has attributes SID, FIRST, LAST,

EMAIL (and empty content).

• Then a new attribute is added as follows:
<xs:complexType name="EXCHANGE_STUDENT_TYPE2">

<xs:complexContent>
<xs:extension base="STUDENT_TYPE2">

<xs:attribute name="PARTNER_UNIV"
type="UNIV_TYPE" use="required"/>

</xs:extension>
</xs:complexContent>

</xs:complexType>

Stefan Brass: XML und Datenbanken Universität Halle, 2012

4. XML Schema 4-214

Derived Complex Types (7)

• Let us return to the case where STUDENT has child

elements SID, FIRST, LAST, EMAIL.

• The type of EMAIL might be a simple type:

<xs:simpleType name="EMAIL_TYPE">
<xs:restriction base="xs:string">

<xs:maxLength value="80"/>
</xs:restriction>

</xs:simpleType>

• Suppose that an attribute must be added that in-

dicates whether emails can be formatted in HTML

or must be plain text.

Stefan Brass: XML und Datenbanken Universität Halle, 2012

4. XML Schema 4-215

Derived Complex Types (8)

• When an attribute is added to a simple type, one

gets a complex type:

<xs:complexType name="EMAIL_TYPE2">
<xs:simpleContent>

<xs:extension base="EMAIL_TYPE">
<xs:attribute name="HTML_OK"

type="xs:boolean" use="optional"/>
</xs:extension>

</xs:simpleContent>
</xs:complexType>

• Example (element EMAIL of type EMAIL_TYPE2):

<EMAIL HTML_OK="false">brass@acm.org</EMAIL>

Stefan Brass: XML und Datenbanken Universität Halle, 2012

4. XML Schema 4-216

Derived Complex Types (9)

<simpleContent>/<complexContent>:

• Possible attributes:

� mixed (only for complexContent): Is character data

is allowed between child elements?

Possible values are true (for mixed content models) and false

(else). The default value is the value in the enclosing complexType

element, which defaults to false. This attribute in complexContent

is simply an alternative to specifying it in complexType.

• Content model:

annotation?, (extension | restriction)

• Possible parent element types: complexType.

Stefan Brass: XML und Datenbanken Universität Halle, 2012

4. XML Schema 4-217

Derived Complex Types (10)

<extension> (inside <simpleContent>):

• Possible attributes:

� base: The base type that is extended to define a

new type (QName, required).

For an extension inside simpleContent, the base type must be a
simple type, or a complex type derived from a simple type (i.e. with
a simple type as content).

• Content model:
annotation?,

(attribute | attributeGroup)*, anyAttribute?

• Possible parent element types: simpleContent.

Stefan Brass: XML und Datenbanken Universität Halle, 2012

4. XML Schema 4-218

Derived Complex Types (11)

<extension> (inside <complexContent>):

• Possible attributes:

� base: The base type that is extended to define a

new type (QName, required).

For an extension inside complexContent, the base type must be a
complex type, i.e. it must have element, mixed, or empty content.

• Content model:
annotation?,

(group | all | choice | sequence)?,

(attribute | attributeGroup)*, anyAttribute?

• Possible parent element types: complexContent.

Stefan Brass: XML und Datenbanken Universität Halle, 2012

4. XML Schema 4-219

Derived Complex Types (12)

• If one uses restriction to define a derived type, it is

guaranteed that every value of the derived type is

also a valid value of the original type.

• If one wants to restrict a content model, one must

repeat the complete content model.

I.e. also the unmodified parts must be listed. The restricted content
model does not have to be structurally identical. E.g. groups with
only a single element can be eliminated (if minOccurs and maxOccurs are
both 1), a sequence group with minOccurs="1" and maxOccurs="1" can be
merged with an enclosing sequence group, the same for choice-groups.
However, for all and choice groups, subgroups must be listed in the
same order, although the sequence is semantically not important.

Stefan Brass: XML und Datenbanken Universität Halle, 2012

4. XML Schema 4-220

Derived Complex Types (13)

• If one wants to restrict an attribute, it suffices to

repeat only this attribute.

• Consider again STUDENT_TYPE2 with attributes SID,

FIRST, LAST, EMAIL. The optional attribute EMAIL can

be removed as follows:

<xs:complexType name="STUDENT_TYPE3">
<xs:complexContent>

<xs:restriction base="STUDENT_TYPE2">
<xs:attribute name="EMAIL"

use="prohibited"/>
</xs:restriction>

</xs:complexContent>
</xs:complexType>

Stefan Brass: XML und Datenbanken Universität Halle, 2012

4. XML Schema 4-221

Derived Complex Types (14)

• The same change for the type STUDENT with child

elements SID, FIRST, LAST, EMAIL (minOccurs="0"):

<xs:complexType name="STUDENT_TYPE4">
<xs:complexContent>
<xs:restriction base="STUDENT_TYPE">

<xs:sequence>
<xs:element name="SID" type="SID_TYPE"/>
<xs:element name="FIRST" type="xs:string"/>
<xs:element name="LAST" type="xs:string"/>

</xs:sequence>
</xs:restriction>

</xs:complexContent>
</xs:complexType>

Stefan Brass: XML und Datenbanken Universität Halle, 2012

4. XML Schema 4-222

Derived Complex Types (15)

• Possible restrictions for complex types:

� Optional attribute becomes required/prohibited.

� The cardinality of elements or model groups be-

comes more restricted (minOccurs ↑, maxOccurs ↓).

� Alternatives in choice-groups are reduced.

� A restricted type can be chosen for an attribute

or a child element.

� A default value can be changed.

� An attribute or element can get a fixed value.

� Mixed content can be forbidden.

Stefan Brass: XML und Datenbanken Universität Halle, 2012

4. XML Schema 4-223

Documentation, App. Info (1)

• Documentation about the schema can be stored

within the XML Schema definition.
And not only as XML comments: Many XML tools suppress com-
ments, and very little formatting can be done there.

• This is one purpose of the annotation element type,

which is allowed

� as first child of every XML Schema element type
But it cannot be nested, i.e. it cannot be used within annotation

or its children documentation and appinfo.

� anywhere as child of schema and redefine.
There, multiple annotation elements are allowed. Inside all other
element types, only one annotation element is permitted.

Stefan Brass: XML und Datenbanken Universität Halle, 2012

4. XML Schema 4-224

Documentation, App. Info (2)

• Many relational databases also have the possibility

to store comments about tables and columns in the

data dictionary.

Of course, this is usually pure text, quite short and without formatting.

• The other purpose of the annotation element is to

store information for tools (programs) that process

XML Schema information within the schema.

E.g. tools that compute a relational schema from an XML schema,
and map data between the two, or tools that generate form-based
data entry programs out of the schema data.

• This makes XML Schema extensible.

Stefan Brass: XML und Datenbanken Universität Halle, 2012

4. XML Schema 4-225

Documentation, App. Info (3)

<annotation>:

• Possible attributes: (only id)

• Content model:

(documentation | appinfo)*

• Possible parent element types:

all, any, anyAttribute, attribute, attributeGroup, choice,
complexContent, complexType, element, enumeration, extension, field,
fractionDigits, group, import, include, key, keyref, length, list,
maxExclusive, maxInclusive, maxLength, minExclusive, minInclusive,
minLength, notation, pattern, redefine, restriction, schema, selector,
sequence, simpleContent, simpleType, totalDigits, union, unique,
whitespace.

Stefan Brass: XML und Datenbanken Universität Halle, 2012

4. XML Schema 4-226

Documentation, App. Info (4)

<documentation>:

• Possible attributes:

� source: URI pointing to further documentation

� xml:lang: natural language of the documentation

E.g. de, en, en-US (it has type xs:language).

• Content model: ANY

In XML schema, this is the any wildcard, together with mixed="true".
It is processed using lax validation, i.e. one can specify a schema
location with xsi:schemaLocation (e.g. in the root xs:schema element
of the schema). Otherwise only the well-formedness is checked.

• Possible parent element types: annotation

Stefan Brass: XML und Datenbanken Universität Halle, 2012

4. XML Schema 4-227

Documentation, App. Info (5)

<appinfo>:

• Possible attributes:

� source: URI pointing to further documentation

• Content model: ANY

I.e. any wildcard with mixed content. Processed using lax validation.
So appinfo has the same declaration as documentation, only without
the xml:lang attribute.

• Possible parent element types: annotation

Stefan Brass: XML und Datenbanken Universität Halle, 2012

4. XML Schema 4-228

Documentation, App. Info (6)

• Example:
<xs:schema

xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns:doc="http://doc.org/d1"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://doc.org/d1 doc.xsd">

<xs:element name="GRADES-DB">
<xs:annotation>

<xs:documentation xml:lang="en">
<doc:title>Grades Database</doc:title>
This is the root element.
...

<xs:complexType>
...

Stefan Brass: XML und Datenbanken Universität Halle, 2012

4. XML Schema 4-229

Stefan Brass: XML und Datenbanken Universität Halle, 2012

