
Detecting Semantic Errors in SQL Queries

Stefan Brass, Christian Goldberg, and Alexander Hinneburg

Martin-Luther-Universität Halle-Wittenberg, Institut für Informatik,
Von-Seckendorff-Platz 1, D-06099 Halle (Saale), Germany
(brass|goldberg|hinneburg)@informatik.uni-halle.de

Abstract. We investigate classes of SQL queries which are syntactically
correct, but certainly not intended, no matter for which task the query
was written. For instance, queries that are contradictory, i.e. always re-
turn the empty set, are quite often written in exams of database courses.
Current database management systems, e.g. Oracle, execute such queries
without any warning. In this paper, we explain serveral classes of such
errors, and give algorithms for detecting them. Of course, questions like
the satisfiability are in general undecidable, but our algorithm can treat
a significant subset of SQL queries. We believe that future database
management systems will perform such checks and that the generated
warnings will help to develop code with fewer bugs in less time.

1 Introduction

Errors in SQL queries can be classified into syntactic errors and semantic errors.
A syntactic error means that the entered character string is not a valid SQL
query. In this case, any DBMS will print an error message because it cannot
execute the query. Thus, the error is certainly detected and usually easy to
correct.

A semantic error means that a legal SQL query was entered, but the query
does not or not always produce the intended results, and is therefore incorrect
for the given task. Semantic errors can be further classified into cases where the
task must be known in order to detect that the query is incorrect, and cases
where there is sufficient evidence that the query is incorrect no matter what the
task is. Our focus in this paper is on this latter class.

For instance, consider the following query:

SELECT *
FROM EMP
WHERE JOB = ’CLERK’ AND JOB = ’MANAGER’

This is a legal SQL query, and it is executed e.g. in the Oracle8i DBMS without
any warning. However, the condition is actually inconsistent, so the query result
will be always empty. Since nobody would use a database in order to get an
always empty result, we can state that this query is incorrect without actually
knowing what the task of the query was. Such cases do happen, e.g. in one exam
exercise that we analyzed, 10 out of 70 students wrote an inconsistent condition.



2 Stefan Brass, Christian Goldberg, and Alexander Hinneburg

It is well known that the consistency of formulas is undecidable, and that this
applies also to database queries. E.g. one can write a query that checks whether
the database contains a solution to a Post’s correspondence problem, see [1],
Section 6.3. This query does not contain any datatype operations.

However, although the task is in general undecidable, we will show that many
cases that occur in practice can be detected with relatively simple algorithms.

Our work is also inspired by the program lint, which is or was a semantic
checker for the “C” programming language. Today C compilers do most of the
checks that lint was developed for, but in earlier times, C compilers checked
just enough so that they could generate machine code. We are still at this de-
velopment stage with SQL today. Printing warnings for strange SQL queries is
very uncommon in current database management systems.

The program lint tried to find also errors like uninitialized variables. This
is a clearly undecidable task, and therefore lint sometimes produced error mes-
sages for programs there were correct (and missed some other errors). But in
general, lint was a useful tool. In case of a wrong warning, a good programmer
will think about possible alternative formulations that are easier to verify. Such
formulations will often also be easier to understand by other programmers who
later have to read the code. If there was no better formulation, one could put a
special comment into the program that suppressed the warning.

We believe that such a tool would be useful not only in teaching, but also
in application software development. E.g. something like the following puzzled
a team of software engineers for quite some time, they even thought that their
DBMS contained a bug:

SELECT ENAME
FROM EMP
WHERE DEPTNO IN (SELECT EMPNO

FROM DEPT
WHERE LOC = ’BOSTON’)

The underlined attribute is a typing error, correct would be DEPTNO. Although
the tuple variable declared in the subquery has no attribute EMPNO, no error is
generated, and the tuple variable in the outer query is accessed. However, a test
for missing join conditions would have revealed the error.

Also in some contexts, SQL queries or subqueries must return not more
than one row. Otherwise a runtime error is generated, and the application is
terminated. Certainly it would be good to prove that all queries in an application
program can never violate this condition.

2 Related Work

It seems that the general question of detecting semantic errors in SQL queries
(as defined above) is new.

Actually, Oracle’s precompiler for Embedded SQL (Pro*C/C++) has an
option for semantic checking, but this means only that it checks whether ta-
bles and columns exist and that the types match. Also “Trouble Checker” from



Detecting Semantic Errors in SQL Queries 3

http://www.msqlproducts.com claims semantic checking, by it concentrates on
procedures and triggers, e.g. it finds loops in triggers. These checks do not cover
semantic errors in the most important declarative part of SQL.

The need of semantically rich error and warning messages for SQL statements
in a learning context has been investigated in [11, 12]. However, the SQL Tutor
system proposed there has knowledge about the task that has to be solved (in
form of a correct query). In contrast, our approach assumes no such knowledge,
which makes it applicable also for software development, not only for teaching.

Of course, for the special problem of detecting inconsistent conditions, a large
body of work exists in the literature. In general, all work in automated theo-
rem proving can be applied (see, e.g., [6]). The problem whether there exists a
contradiction in a conjunction of inequalities is very relevant for many database
problems and has been intensively studied in the literature. Klug’s classic pa-
per [10] checks for such inconsistencies but does not treat subqueries and assumes
dense domains for the attributes. The algorithm in [8] can handle recursion, but
only negations of EDB predicates, not general NOT EXISTS subqueries. A very
efficient method has been proposed by Guo, Sun, Weiss [7]. We use it here as
a subroutine. Our main contribution is the way we treat subqueries. Although
this uses ideas known from Skolemnization, the way we apply it combined with
an algorithm like [7] seems new. We also can handle integrity constraints and
null values.

Consistency checking in databases has also been applied for testing whether
a set of constraints is satisfiable. A classic paper about this problem is [2] (see
also [3]). They give an algorithm which terminates if the constraints are finitely
satisfiable or if they are unsatisfiable, which is the best one can do. However, the
approach presented here can immediately tell whether it can handle the given
query and constraints. If it cannot, one can start the [2] algorithm, but otherwise
our algorithm is probably faster and termination is guaranteed.

The use of semantic knowledge about SQL statements has also been studied
in the context of semantic query optimization. E.g. in the work of [4, 5], integrity
constraints were used to transform queries into a form that can be answered
more efficiently. The approach by Hsu and Knoblock [9] learns semantic rules
from user queries and uses these rules for further query optimization. There is a
strong connection of semantic query optimization to detecting semantic errors,
but the goals are different. As far as we know, DB2 contains some semantic
query optimzation, but prints no warning message if the optimizations are “too
good to be true”. Also the effort for query optimization must be amortized when
the query is executed, whereas for error detection, we would be willing to spend
more time. Finally, soft constraints (that can have exceptions) can be used for
generating warnings about possible errors. but not for query optimization.

3 Inconsistent Conditions

In this section, we present an algorithm for detecting inconsistent conditions in
SQL queries. Since the problem is in general undecidable, we can handle only



4 Stefan Brass, Christian Goldberg, and Alexander Hinneburg

a subset of all queries. However, our algorithm is reasonably powerful and can
decide the consistency of surprisingly many queries. To be precise, consistency
in databases means that there is a finite model, i.e. a relational database state
(sometimes called a database instance), such that the query result is not empty.

In this paper, we assume that the given SQL query contains no datatype
operations, i.e. all atomic formulas are of the form t1 θ t2 where θ is a comparison
operator (=, <>, <, <=, >, >=), and t1, t2 are attributes (possibly qualified with
a tuple variable) or constants (literals). It should be quite easy to extend it at
least to linear equations. Null values and IS NULL are treated in Section 3.5,
before that, they are excluded. Aggregations are not treated in this paper, they
are subject of our future research.

3.1 Conditions Without Subqueries

If that the query contains no subqueries, the consistency can be decided with
methods known in the literature, especially the algorithms of Guo, Sun and
Weiss [7].

The condition then consists of the above atomic formulas connected with AND,
OR, NOT. We first push negation down to the atomic formulas, where it simply
“turns around” the comparison operator, so it is eliminated from the formula.
Then, we translate the formula in disjunctive normal form: ϕ1 ∨ · · · ∨ ϕn is
consistent iff at least one of the ϕi is consistent.

Now a conjunction of the above atomic formulas can be tested for satisfia-
bility with the method of [7]. They basically create a directed graph in which
nodes are labelled with “Tuplevariable.Attribute” (maybe a representative for
an equivalence class with respect to =) and edges are labelled with < or ≤. Then
they compute an interval of possible values for each node. Note that SQL data
types like NUMERIC(1) also restrict the interval of possible values.

Unfortunately, if there are only finitely many values that can be assigned
to nodes, inequality conditions (t1 <> t2) between the nodes become important
and can encode graph-coloring problems. Therefore, we cannot expect an effi-
cient algorithm if there are many <>-conditions. Otherwise, the method of [7] is
fast. (However, the DNF computation that we apply before [7] can lead to an
exponential increase in size.)

3.2 Subqueries

For simplicity, we treat only EXISTS subqueries. Other kinds of subqueries (IN,
>=ALL, etc.) can be reduced to the EXISTS case. E.g. Oracle performs such a
query rewriting before the optimizer works on the query.

Definition 1. Given a query Q, let us call a tuple variable in Q existential if
it is declared in a subquery that is nested inside an even number of NOTs, and
universal otherwise. For instance, the tuple variables in the outermost (main)
query are existential.



Detecting Semantic Errors in SQL Queries 5

Example 1. The following SQL query lists all locations of departments, such
that all departments at the same location have at least one “Salesman”:

SELECT DISTINCT L.LOC
FROM DEPT L
WHERE NOT EXISTS(SELECT *

FROM DEPT D
WHERE D.LOC = L.LOC
AND NOT EXISTS(SELECT *

FROM EMP E
WHERE E.DEPTNO = D.DEPTNO
AND E.JOB = ’SALESMAN’))

L and E are existential tuple variables, and D is a universal tuple variable. ut

In automated theorem proving (see, e.g., [6]), it is a well-known technique
to eliminate existential quantifiers by introducing Skolem constants and Skolem
functions. This simply means that a name is given to the tuples that are required
to exist. For tuple variables that are not contained in the scope of a universal
quantifier (such as L in the example), a single tuple is required in the database
state. However, for an existential tuple variable like E that is declared within
the scope of a universal tuple variable (D) a different tuple might be required for
every value for D. Therefore, a function fE is introduced that takes a value for D
as a parameter and returns a value for E. Such a function is called a Skolem
function. There is also a Skolem function fL for L, but this function has no
parameters (it is a Skolem constant).

Let us make precise what parameters Y the Skolem function fX for a tuple
variable X must have:

Definition 2. An existential tuple variable X depends on a universal tuple vari-
able Y iff

1. the declaration of X appears inside the scope of Y , and
2. Y appears in the subquery in which X is declared (including possibly nested

subqueries).

The second part of the condition is not really required, but it reduces the
number of parameters which will help us to handle more queries (“arity reduc-
tion” for Skolem functions is also a known technique in automated theorem
proving).

In contrast to the classical case of automated theorem proving, we use a
“sorted” logic: Each tuple variable can range only over a specific relation. There-
fore our Skolem functions have parameter and result types. E.g. the function fE
in the example assumes that a tuple from the relation DEPT is given, and returns
a tuple from the relation EMP.

Definition 3. Given a query Q, a set of sorted Skolem constants and func-
tions SQ is constructed as follows: For each existential tuple variable X ranging



6 Stefan Brass, Christian Goldberg, and Alexander Hinneburg

over relation R, a skolem constant/function fX of sort R is introduced. Let
Y1, . . . , Yn be all universal tuple variables, on which X depends, and let Yi range
over relation Si. Then fX has n parameters of sort S1, . . . , Sn.

In the example, there is one Skolem constant and one Skolem function:

– fL: DEPT,
– fE: DEPT→ EMP.

Definition 4. Given a query Q, and a relation R, let TQ(R) be the set of all
terms of sort R that can be built from the constants and function symbols in SQ

respecting the sorts. Let TQ be the union of the TQ(R) for all relation symbols R
appearing in Q.

In Example 1, TQ = {fL, fE(fL)}.
Of course, in general it is possible that infinitely many terms can be con-

structed. Then we cannot predict how large a model (database state/instance)
must be and our method is not applicable. However, this requires at least a
nested NOT EXISTS subquery (otherwise only Skolem constants are produced,
no real functions). And as the example shows, even heavily nested subqueries do
not necessarily produce an infinite set of Skolem terms. We treat this problem
further in Section 3.4.

Once we know how many tuples each relation must have, we can easily reduce
the general case (with subqueries) to a consistency test for a simple formula as
treated in [7] (see Section 3.1):

Definition 5. Let a query Q be given, and let TQ be finite. The flat form of the
WHERE-clause is constructed as follows:

1. Replace each tuple variable X of the main query by the corresponding Skolem
constant fX .

2. Next, treat subqueries nested inside an even number of NOT: Replace the
subquery

EXISTS (SELECT . . . FROM R1 X1, . . ., Rn Xn WHERE ϕ)

by σ(ϕ) with a substitution σ that replaces the existential tuple variable Xi

by fXi
(Yi,1, . . . , Yi,mi

), where Yi,1, . . . , Yi,mi
are all universal tuple variables

on which Xi depends.
3. Finally treat subqueries that appear within an odd number of negations as

follows: Replace the subquery

EXISTS (SELECT . . . FROM R1 X1, . . ., Rn Xn WHERE ϕ)

by (σ1(ϕ) OR . . . OR σk(ϕ)), where σi are all substitutions that map the
variables Xj to a term in TQ(Rj). Note that k = 0 is possible, in which case
the empty disjunction can e.g. be written 1=0 (falsity).

In the above example, we would first substitute L by fL and E by fE(D). Since
D is of type DEPT and fL is the only element of TQ(DEPT), the disjunction consists
of a single case with D replaced by fL. Thus, the flat form of the above query is



Detecting Semantic Errors in SQL Queries 7

NOT(fL.LOC = fL.LOC /* D.LOC = L.LOC */
AND NOT(fE(fL).DEPTNO = fL.DEPTNO /* E.DEPTNO = D.DEPTNO */

AND fE(fL).JOB = ’SALESMAN’)) /* E.JOB = ’SALESMAN’ */

This is logically equivalent to

fE(fL).DEPTNO = fL.DEPTNO AND fE(fL).JOB = ’SALESMAN’

A model (database state/instance) will have two tuples, one (fL) in DEPT, and
another (fE(fL)) in EMP. The requirements are that their attributes DEPTNO are
equal and that the attribute JOB of the tuple in EMP has the value ’SALESMAN’.

As in this example, it is always possible to construct a database state that
produces an answer to the query from a model of the flat form of the query.
The database state/instance will have one tuple in relation R for each term in
TQ(R) (and no other tuples). It is possible that two of the constructed tuples
are completely identical (i.e. there can be fewer tuples than elements in TQ(R)).

In the opposite direction, note that NOT EXISTS (∀) conditions are only more
difficult to satisfy if the database state/instance contains more tuples. E.g. with
a single level NOT EXISTS subquery, we need one tuple for each of the tuple
variables in the outer query, but we would introduce no additional tuples for the
relations listed under NOT EXISTS. It is the basic idea of Skolemnization that we
can give names to the tuples that the formula requires to exist, and then reduce
the given model to all the named elements.

Theorem 1. Let a query Q be given such that TQ is finite. Q is consistent iff
the flat form of Q is consistent.

3.3 Integrity Constraints

Consider the following query:

SELECT ...
FROM EMP X, EMP Y
WHERE X.EMPNO = Y.EMPNO
AND X.JOB = ’MANAGER’ AND Y.JOB = ’PRESIDENT’

This query is inconsistent, but we need to know that EMPNO is a key of EMP in
order to prove that. The above algorithm constructs just any model of the query,
not necessarily a database state/instance that satisfies all constraints. However,
it is easy to add conditions to the query that ensure that all constraints are
satisfied. E.g. instead of the above query, we would check the following one
which explicitly requires that there is no violation of the key:



8 Stefan Brass, Christian Goldberg, and Alexander Hinneburg

SELECT ...
FROM EMP X, EMP Y
WHERE X.EMPNO = Y.EMPNO
AND X.JOB = ’MANAGER’ AND Y.JOB = ’PRESIDENT’
AND NOT EXISTS(SELECT *

FROM EMP A, EMP B
WHERE A.EMPNO = B.EMPNO
AND (A.ENAME <> B.ENAME OR

A.JOB <> B.JOB OR ...))

The original query is consistent relative to the constraints iff this extended query
is consistent without constraints.

Note that pure “for all” constraints like keys or CHECK-constraints need only
a single level of NOT EXISTS and therefore never endanger the termination of
the method. Foreign keys, however, require the existence of certain tuples, and
therefore might sometimes result in an infinite set TQ. This is subject of the next
section.

3.4 Restrictions and Possible Solutions

As mentioned above, the main restriction of our method is that the set TQ must
be finite, i.e. no tuple variable over a relation R may depend directly or indirectly
on a tuple variable over the same relation R. This is certainly satisfied if there
is only a single level of subqueries.

However, EMP has a foreign key MGR (manager) that references the relation
itself. This is expressed as the following condition:

NOT EXISTS(SELECT *
FROM EMP E
WHERE E.MGR IS NOT NULL
AND NOT EXISTS(SELECT *

FROM EMP M
WHERE E.MGR = M.EMPNO))

We now get a Skolem function fM : EMP → EMP, which will generate infinitely
many terms (if there is at least one Skolem constant of type EMP).

Because of the undecidability, this problem can in general not be eliminated.
However, it turns out that if we introduce Skolem constants and functions not
for tuple variables, but for attributes of tuple variables (domain variables), and
do a stricter arity reduction, e.g. the cyclic foreign key can actually still be
handled. This foreign key only requires that for every value in the MGR column
of EMP, there is the corresponding value in EMPNO, i.e. there is a Skolem function
fM,EMPNO : EMP.MGR → EMP.EMPNO. However, there is no restriction for the MGR-
column of the tuples constructed for M: They can all have the same value. Thus
fM,MGR is a Skolem constant (of type EMP.MGR).

If even this should not work, one could at least heuristically try to construct a
model by assuming that e.g. 2 tuples in the critical relation suffice. Then TQ(R)



Detecting Semantic Errors in SQL Queries 9

would consist of two constants and one would replace each subquery declaring
a tuple variable over R by a disjunction with these two constants. For relations
not in the cycle, the original method could still be used. If the algorithm of
Section 3.1 constructs a model, the query is of course consistent. If no model is
found, the system can print a warning that it cannot verify the consistency. At
user option, it would also be possible to repeat the step with more constants.

3.5 Null Values

Null values are handled in SQL with a three-valued logic.

Example 2. The following query is inconsistent in two-valued logic (without null
values):

SELECT X.A
FROM R X
WHERE NOT EXISTS (SELECT *

FROM R Y
WHERE Y.B = Y.B)

However, this query is satisfiable in SQL if the attribute B can be null: It has a
model in which R contains e.g. one tuple t with t.A=1 and t.B is null. ut

We can handle null values by introducing new logic operators NTF (“null to
false”) and NTT (“null to true”) with the following truth tables:

p NTF(p) NTT(p)
FALSE FALSE FALSE
NULL FALSE TRUE
TRUE TRUE TRUE

In SQL, a query or subquery generates a result only when the WHERE-condition
evaluates to TRUE. Thus, when EXISTS subqueries are eliminated in Definition 5,
we add the operator NTF:

NTF(σ1(ϕ) OR . . . OR σk(ϕ)).

In Example 2, a Skolem constant fX is introduced for the tuple variable X, and
the elimination of the subquery gives the following formula:

NOT NTF(fX=fX)

As usual, NOT is first pushed down to the atomic formulas and is there elim-
inated by inverting the comparison operator. This needs the following equiva-
lences (which can easily be checked with the truth tables):

– NOT NTF(ϕ) ≡ NTT(NOT ϕ)
– NOT NTT(ϕ) ≡ NTF(NOT ϕ)

Next the operators NTF and NTT can be pushed down to the atomic formulas by
means of the following equivalences:



10 Stefan Brass, Christian Goldberg, and Alexander Hinneburg

– NTF(ϕ1 AND ϕ2) ≡ NTF(ϕ1) AND NTF(ϕ2)
– NTF(ϕ1 OR ϕ2) ≡ NTF(ϕ1) OR NTF(ϕ2)
– NTT(ϕ1 AND ϕ2) ≡ NTT(ϕ1) AND NTT(ϕ2)
– NTT(ϕ1 OR ϕ2) ≡ NTT(ϕ1) OR NTT(ϕ2)
– NTF(NTF(ϕ)) ≡ NTF(ϕ)
– NTT(NTF(ϕ)) ≡ NTF(ϕ)
– NTF(NTT(ϕ)) ≡ NTT(ϕ)
– NTT(NTT(ϕ)) ≡ NTT(ϕ)

Next, the formula is as usual converted to DNF. After that, we must check the
satisfiablility of conjunctions of atomic formulas that have possibly the opera-
tor NTF or NTT applied to them. An attribute can be set to null iff it appears
only in atomic formulas inside NTT and the formula is not IS NOT NULL. Then it
should be set to null, because these atomic formulas are already satisfied without
any restrictions on the remaining attributes. Otherwise the attribute cannot be
set to null. IS NULL and IS NOT NULL conditions can now be evaluated. After
that, we apply the algorithm from Section 3.1 to the remaining atomic formulas
(that are not already satisfied because of the null values).

3.6 Program Variables in SQL Statements

In order to be practical, such a tool must also be able to check SQL queries in
application programs. E.g. in embedded SQL, these queries can contain program
variables. In general, the program variables can be treated like attributes of a
new relation. However, the user should at least be warned if a variable can have
only a single value in a consistent state, or if two variables must always have the
same value.

4 Unnecessary Complications

Another reason why queries can be considered as “not good” independent of the
application is when they are unnecessarily complicated. Suppose the user wrote
a query Q, and there is an equivalent query Q′ that is significantly simpler, and
basically can be derived from Q by deleting certain parts. There might be the
following reasons why the user did not write Q′:

– The user knew that Q′ is not a correct formulation of the task at hand. In
this case, Q is of course also not correct, but the error might be hidden in
the more complicated query, so that the user did not realize this. A warning
would certainly be helpful in this case.

– The user did not know that Q′ is equivalent. Since Q′ is not a completely
different query, but results from Q by deleting certain parts, this shows that
the user does not yet master SQL. Again, a warning would be helpful. Often,
the simpler query will actually run faster (e.g. the Oracle query optimizer
does not remove unnecessary joins).



Detecting Semantic Errors in SQL Queries 11

– The user knew that Q′ is equivalent, but he or she believed that Q would
run faster. Since SQL is a declarative language this should only be the last
resort. With modern optimizers, this should not happen often in practice. If
it is necessary, there probably should be some comment, and this could also
be used to shut off the warning.

– The user knew that Q′ is equivalent, but he or she thought that Q would
be clearer for the human reader and easier to maintain. One must be careful
to define the possible transformations from Q to Q′ such that this does not
happen.

Not only students write queries that are unnecessarily complicated, but also
certain tools that generate SQL queries sometimes construct queries that are
more difficult than needed. E.g. unnecessary joins are a typical example. Writing
a simpler, but equivalent query often helps to improve the performance of query
evaluation.

Note that inconsistent conditions can be seen as an extreme case of an un-
necessary complication: If one does not want any results, the entire query is
superfluous.

For space reasons, we can give here only a list of possible errors of this type:

1. Unnecessary Joins: If only the key attributes of a tuple variable are ac-
cessed, it might be possible to use the foreign key in another tuple variable
instead. E.g. the following query prints all employees in department 20, but
the tuple variable D could be eliminated:

SELECT E.ENPNO, E.ENAME
FROM EMP E, DEPT D
WHERE E.DEPTNO = D.DEPTNO AND D.DEPTNO = 20

Some such unnecessary joins are eliminated in the DB2 query optimizer [5].
2. Tuple Variables that are Required to be Equal: If two tuple variables

are declared over the same relation, and their key attributes are equated,
they must always point to the same tuple.

3. Conditions that can be replaced by TRUE or FALSE: Implied, tau-
tological, or inconsistent subconditions in a larger condition are unnecessary.
E.g. it happens sometimes that conditions are tested in a query that is ac-
tually a constraint on the relation. Also if one uses views, it is unnecessary
to repeat a condition that is already contained in the view definition. In
general, if one replaces a subcondition by TRUE or FALSE, the resulting query
should not be equivalent to the original one.

4. Unncessarily General Comparison Operator: Consider the query:

SELECT ENAME, SAL
FROM EMP
WHERE SAL >= (SELECT MAX(SAL) FROM EMP)

In this case, one could write = instead of >=. We have also seen students
writing IN here, which is again quite confusing.



12 Stefan Brass, Christian Goldberg, and Alexander Hinneburg

5. Non-Correlated EXISTS Subqueries: For a given database state, such
subqueries are either true for all assignments of the tuple variables in the
outer query, or false for all such assignments. Most likely a join condition is
missing. Also subqueries that have a constant truth value under the heuristic
assumption that relations are non-empty or that attributes contain at least
two different values are suspicious.

6. Unnecessary DISTINCT: DISTINCT normally requires an expensive du-
plicate elimination. However, if, e.g., the SELECT list contains a key, the
DISTINCT is superfluous, and a good database programmer should not write
it. One might argue that it is the job of the query optimizer to eliminate
an unnecessary DISTINCT, but at least the Oracle 8i optimizer does not do
it, even in really obvious cases, and in the general case, it is again unde-
cidable. The DB2 query optimizer discovers an unnecessary DISTINCT in
some cases [5]. DISTINCT is always superfluous inside the aggregations MIN,
MAX.

7. Strange DISTINCT: DISTINCT inside SUM or AVG is most likely an error.
8. Unefficient UNION: Also a UNION should be replaced by a UNION ALL if

one can prove that the results of the two queries are always disjoint.
9. GROUP BY with singleton groups: If it can be proven that each group

consists only of a single row, the entire aggregation is unnecessary.
10. GROUP BY with only a single group: If it can be proven that there

is always only a single group, the GROUP BY clause is unnecessary (except
when the GROUP BY attribute should be printed under SELECT).

11. Unnecessary GROUP BY attributes: If a grouping attribute is func-
tionally determined by other such attributes and if it does not appear un-
der SELECT or HAVING outside of aggregations, it can be removed from the
GROUP BY clause.

12. Inefficient HAVING: If a condition uses only GROUP BY attributes and no
aggregation function, it can be written under WHERE or under HAVING. It is
much cheaper to check it already under WHERE. E.g. in one homework, a join
was done under HAVING, and it was syntactically correct SQL, because the
student added the join attributes under GROUP BY.

13. Strange HAVING: HAVING without GROUP BY is strange: Such a query can
have only one result or none at all. In special situations this may be a useful
trick, but more often it is probably an error.

We do not have space to give algorithms for all of these problems. However,
most can be reduced to a consistency test. As an example, let us consider the
test whether DISTINCT is necessary. It is quite typical. Let the following general
query be given:

SELECT DISTINCT t1, . . ., tk
FROM R1 X1, . . ., Rn Xn

WHERE ϕ

Now we modify the query as follows (we duplicate the tuple variables and check
whether there are two different assignments that produce the same result for the
SELECT terms):



Detecting Semantic Errors in SQL Queries 13

SELECT *
FROM R1 X1, ..., Rn Xn, R1 X ′

1, ..., Rn X ′
n

WHERE ϕ AND ϕ′

AND (t1 = t′1 OR t1 IS NULL AND t′1 IS NULL)
AND . . .
AND (tk = t′k OR tk IS NULL AND t′k IS NULL)
AND (X1 6= X ′

1 OR · · · OR Xn 6= X ′
n)

This query is tested for consistency with the method of Chapter 3. If it is in-
consistent, the DISTINCT is superfluous: The original query can never produce
duplicates.

We use Xi 6= X ′
i as an abbreviation for requiring that the primary key values

of the two tuple variables are different (we assume that primary keys are always
NOT NULL). If one of the relations Ri has no declared key, duplicate result tuples
are always possible and the DISTINCT is not superfluous. The formula ϕ′ results
from ϕ by replacing each Xi by X ′

i.

5 Results That Are Too Large

Of course, it is in general difficult to detect that a query is incorrect if one does
not know for which task the query was written. If the condition is inconsistent,
it is clear that the query result is too small (it is always empty). Conversely, it is
often also possible to conclude with reasonable likelihood that the query result
is larger than intended.

A general approach might be to consider queries as problematic if there is
another query that produces the same information in a smaller query result.
We need to investigate this idea further in future research, however, it seems
to cover all of the cases listed in this section. In general, it is bad if the query
result is larger than necessary: It has to be sent from the server to the client over
the network and a program or a human must somehow process the query result.
Note that a query with an inconsistent condition gives no information from the
database: Its result is fixed, no matter what the database state is.

Again, for space reason, we only list possible errors of this type:

1. Missing Join Conditions: A very common error is to forget a join condi-
tion. In one exam exercise, 11 out of 70 students had an error of this type.

2. Many Duplicate Answers: Another case where the query result is prob-
ably too large is when it contains (many) duplicates. E.g. consider the fol-
lowing query:

SELECT JOB
FROM EMP

Normally, there will be many employees with the same job. Then it would
have been better either to add DISTINCT or to use GROUP BY and count for
every job how many employees there are with this job. Of course, when
duplicates are unlikely or at least very few, one would consider a query
without “DISTINCT” acceptable:



14 Stefan Brass, Christian Goldberg, and Alexander Hinneburg

SELECT ENAME
FROM EMP
WHERE DEPTNO = 20

Since ENAME is not a key, duplicate answers are possible, but unlikely. For-
mally, one can use “soft constraints”, i.e. conditions that are in general true,
but can have exceptions. For the purpose of detecting duplicates one does
the above test, but assumes that all columns with no or only few duplicates
form a key. The reason is that “ENAME” is used in real life to identify “EMP”
objects, although we know that it might be not always unique. Detecting
queries that can generate duplicate answers is also useful because this is
often a consequence of another error, such as a missing join condition.

3. Constant Result Columns: A query result can also be “too wide”. E.g. if
the condition contains A = c, it makes little sense to put A into the SELECT
list. Yet, beginners often make this mistake.

4. Identical Result Columns: Sometimes a query has two result columns
that must always contain the same value. This is not useful.

Techniques developed in query optimization for estimating the result size can
also be used: If the estimated size is extremely large, one should warn the user
before the query is really executed.

6 Possible Runtime Errors

In C programs, it sometimes happens that a NIL-pointer is dereferenced, and
the program crashes. Actually, such runtime errors are also possible in SQL, and
one should try to verify that they cannot occur. Since these problems depend
on the database state, they are not easily found during testing.

1. If one uses a condition of the form A = (SELECT ...), it is important that
the subquery returns only a single value. If this condition should ever be
violated, the DBMS will generate a run-time error. This can be tested with
a method very similar to the test for an unnecessary DISTINCT shown above,
one only replaces the SELECT-list by “SELECT ’yes’.

2. The same problem happens if SQL is embedded in a programming language,
and one uses the SELECT ... INTO ... syntax.

3. In Embedded SQL, it is necessary to specify an indicator variable if a result
column can be null. If no indicator variable is specified, a runtime error
results. Note that this can happen also with aggregation functions that get
an empty input.

4. Also, the very permissive type system of at least Oracle SQL can pose a
problem: Sometimes strings are implicitly convered to numbers, which can
generate runtime errors. In general, if one knows domains for the attributes,
one could warn the user for comparisons between attributes of different do-
mains. If there is no domain information, one could analyze an example
database state for columns that are nearly disjoint.

5. In addition, datatype operators have the usual problems (e.g. division by
zero).



Detecting Semantic Errors in SQL Queries 15

7 Conclusions

There is a large class of SQL queries that are syntactically correct, but never-
theless certainly not intended, no matter what the task of the query might be.
One could expect that a good DBMS prints a warning for such queries, but, as
far as we know, no DBMS does this yet.

In this paper we have shown various kinds of semantic errors that can be
detected without knowing the task of the query. We have tried to be complete,
the authors would be thankful for reports about other such errors. All errors did
actually occur in exam or homework exercises. We have algorithms for detecting
all these error types, however some algorithms still need improvements. In future
work, we aim at a rule-based system that permits to define new types of errors
easily (or a proof that we really detect all such errors).

A prototype of the consistency test is available from

http://www.informatik.uni-halle.de/~brass/sqllint/.

Extended versions will be made available under the same address.

Acknowledgements

Of course, without the students in my database courses, this work would have
been impossible. We would also like to thank Jan Van den Bussche for suggest-
ing relevant literature and Joachim Biskup for contributing the idea that query
size estimation techniques could be used. We would like to thank Sergei Haller
and Ravishankar Balike for telling us about the type of error illustrated in the
example in the Introduction. Elvis Samson developed the prototype of the con-
sistency test, and made several suggestions for improving the paper, which is
both gratefully acknowledged.

References

1. Serge Abiteboul, Richard Hull, and Victor Vianu. Foundations of Databases.
Addison-Wesley, 1994.

2. François Bry, Rainer Manthey: Checking Consistency of Database Constraints: a
Logical Basis. In Proceedings of the 12th International Conference on Very Large
Data Bases, 13–20, 1986.

3. François Bry, Hendrik Decker, Rainer Manthey: A Uniform Approach to Constraint
Satisfaction and Constraint Satisfiability in Deductive Databases. In Proceedings of
the International Conference on Extending Database Technology, 488–505, 1988.

4. Upen S. Chakravarthy, John Grant, and Jack Minker. Logic-based approach to
semantic query optimization. ACM Transactions on Database Systems, 15:162–207,
1990.

5. Qi Cheng et al.: Implementation of Two Semantic Query Optimization Techniques
in DB2 Universal Database. Proceedings of the 25th VLDB Conference, 687–698,
1999.



16 Stefan Brass, Christian Goldberg, and Alexander Hinneburg

6. Chin-Liang Chang and Richard Char-Tung Lee. Symbolic Logic and Mechanical
Theorem Proving. Academic Press, 1973.

7. Sha Guo, Wei Sun, and Mark A. Weiss. Solving satisfiability and implication prob-
lems in database systems. ACM Transactions on Database Systems, 21:270–293,
1996.

8. A. Y. Halevy, I. S. Mumick, Y. Sagiv, and O. Shmueli. Static analysis in Datalog
extensions. Journal of the ACM, 48:971–1012, 2001.

9. Chun-Nan Hsu and Craig A. Knoblock. Using inductive learning to generate rules
for semantic query optimization. In Advances in Knowledge Discovery and Data
Mining, pages 425–445. AAAI/MIT Press, 1996.

10. Anthony Klug. On conjunctive queries containing inequalities. Journal of the
ACM, 35:146–160, 1988.

11. A. Mitrovic. A knowledge-based teaching system for SQL. In ED-MEDIA 98,
pages 1027–1032, 1998.

12. Antonija Mitrovic, Brent Martin, and Michael Mayo. Using evaluation to shape its
design: Results and experiences with SQL-Tutor. User Modeling and User-Adapted
Interaction, 12:243–279, 2002.


