
Super Logic Programs

STEFAN BRASS

University of Giessen

JÜRGEN DIX

The University of Manchester

and

TEODOR C. PRZYMUSINSKI

University of California, Riverside

The Autoepistemic Logic of Knowledge and Belief (AELB) is a powerful nonmonotonic formalism

introduced by Teodor Przymusinski in 1994. In this paper, we specialize it to a class of theories

called “super logic programs”. We argue that these programs form a natural generalization of
standard logic programs. In particular, they allow disjunctions and default negation of arbitrary

positive objective formulas.

Our main results are two new and important characterizations of the static semantics of these
programs, one syntactic, and one model-theoretic. The syntactic fixed point characterization

is much simpler than the fixed point construction of the static semantics for arbitrary AELB
theories. The model-theoretic characterization via Kripke models allows one to construct finite

representations of the inherently infinite static expansions.
Both characterizations can be used as the basis of algorithms for query answering under the

static semantics. We describe a query-answering interpreter for super programs which we devel-

oped based on the model-theoretic characterization and which is available on the web.

Categories and Subject Descriptors: F.4.1 [Mathematical Logic and Formal Languages]:
Mathematical Logic—Logic and constraint programming; Modal logic; I.2.3 [Artificial Intelli-
gence]: Deduction and Theorem Proving—Logic Programming; Nonmonotonic reasoning and
belief revision; I.2.4 [Artificial Intelligence]: Knowledge Representation Formalisms and Meth-
ods—Modal logic

General Terms: Theory, Algorithms, Languages

Additional Key Words and Phrases: Non-monotonic reasoning, logics of knowledge and beliefs,

semantics of logic programs and deductive databases, disjunctive logic programming, negation,
static semantics, well-founded semantics, minimal models

1. INTRODUCTION

The relationship between logic programs and non-monotonic knowledge represen-
tation formalisms can be briefly summarized as follows. Any non-monotonic for-
malism for knowledge representation has to contain some form of default negation,
whether it is defined as an explicit negation operator or is implicitly present in

Author’s Address: S. Brass, Inst. f. Informatik, Univ. Giessen, Arndtstr. 2, D-35392 Giessen,

Germany, EMAIL: brass@acm.org.
Permission to make digital/hard copy of all or part of this material without fee for personal

or classroom use provided that the copies are not made or distributed for profit or commercial

advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,
to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.
c© 20TBD ACM 1529-3785/20TBD/0700-0001 $5.00

ACM Transactions on Computational Logic, Vol. TBD, No. TBD, TBD 20TBD, Pages 1–46.

2 · Stefan Brass et al.

the form of beliefs, disbeliefs or defaults. Since the main difference between logic
programs and classical (monotonic) logic is the presence of default negation, logic
programs can be viewed, in this sense, as the simplest non-monotonic extension of
classical monotonic logic.

However, standard logic programs suffer from some important limitations. Most
importantly, they are unable to handle disjunctive information1. Yet, in natural
discourse as well as in various programming applications we often use disjunctive
statements. One particular example of such a situation is reasoning by cases. Other
obvious examples include:

(1) Approximate information: for instance, an age “around 30” can be 28, 29, 30,
31, or 32;

(2) Legal rules: the judge always has some freedom for his decision, otherwise
he/she would not be needed; so laws cannot have unique models;

(3) Diagnosis: only at the end of a fault diagnosis we may know exactly which
part of some machine was faulty; but as long as we are searching, different
possibilities exist;

(4) Biological inheritance: if the parents have blood groups A and 0, the child
must also have one of these two blood groups (example from [Lipski 1979]);

(5) Natural language understanding: here there are many possibilities for ambiguity
and they are represented most naturally by multiple intended models;

(6) Reasoning about concurrent processes: since we do not know the exact sequence
in which certain operations are performed, again multiple models come into
play;

(7) Conflicts in multiple inheritance: if we want to keep as much information as
possible, we should assume the disjunction of the inherited values, see [Brass
and Lipeck 1993].

Disjunctive logic programming was used e.g. in the following projects for real ap-
plications:

(1) In the DisLoP project [Aravindan et al. 1997], a logical description of a system
together with a particular observation is transformed into a disjunctive program
so that an interpreter for disjunctive logic programs can compute the minimal
diagnosis [Baumgartner et al. 1997].

(2) The view update problem in deductive and relational databases can also be
transformed into a problem of computing minimal models of disjunctive pro-
grams [Aravindan and Baumgartner 1997].

(3) Another important application of disjunctive techniques in the database area
is to glue together different heterogeneous databases to provide a single unified
view to the user. With the ever expanding world wide web technology, millions
and millions of data in thousands of different formats are thrown at a user who
clearly needs some tools to put together information of interest to him. In

1The stable model semantics permits multiple models, which is something similar. But it has

to be used with caution, since it can easily become inconsistent. Depending on the application,
disjunctions can often be more natural.

ACM Transactions on Computational Logic, Vol. TBD, No. TBD, TBD 20TBD.

Super Logic Programs · 3

[Schäfer and Neugebauer 1997; Thomas 1998] it is shown how disjunctive logic
programs can be used as mediators and thus as an important tool to create a
powerful query language for accessing the web.

(4) In [Stolzenburg and Thomas 1996; 1998] disjunctive logic programming was
used for analyzing rule sets for calculating banking fees. A credit institution
sells stocks and shares to its customers and charges their accounts. The fee
depends on the value of the transaction, the customer type and various other
parameters. All this is formulated in a set of rules in natural language. The
problem is to translate this rule set into a formal language and then to analyze
its various properties. For example does the rule set allow us to calculate a fee
for each business deal? Is that fee unique? A straightforward translation into
propositional logic and then using a theorem prover did not work. However, it
turned out that using disjunctive logic programs solved the problem [Stolzen-
burg and Thomas 1996; 1998].

Formalisms promoting disjunctive reasoning are more expressive and natural to
use since they permit direct translation of disjunctive statements from natural lan-
guage and from informal specifications. Consequently, considerable interest and re-
search effort2 has been recently given to the problem of finding a suitable extension
of the logic programming paradigm beyond the class of normal logic programs that
would ensure a proper treatment of disjunctive information. However, the problem
of finding a suitable semantics for disjunctive programs and deductive databases
proved to be far more complex than it is in the case of normal, non-disjunctive
programs3.

We believe that in order to demonstrate that a class of programs can be justifiably
called an extension of logic programs one should be able to argue that:

(1) the proposed syntax of such programs resembles the syntax of logic programs
but it applies to a significantly broader class of programs, which includes the
class of disjunctive logic programs as well as the class of logic programs with
strong (or “classical”) negation [Gelfond and Lifschitz 1991; Alferes et al. 1998];

(2) the proposed semantics of such programs constitutes an intuitively natural
extension of one (or more) well-established semantics of normal logic programs;

(3) there exists a reasonably simple procedural mechanism allowing, at least in
principle, to compute the semantics4;

(4) the proposed class of programs and their semantics is a special case of a more
general non-monotonic formalism which would clearly link it to other well-
established non-monotonic formalisms.

2It suffices just to mention several recent workshops on Extensions of Logic Programming specif-

ically devoted to this subject ([Dix et al. 1995; 1997; Dyckhoff et al. 1996; Dix et al. 1998]).
3The book by Minker et. al. [Lobo et al. 1992] provides a detailed account of the extensive

research effort in this area. See also [Dix 1995b; Minker 1993; Przymusinski 1995a; 1995b; Minker
1996].
4Observe that while such a mechanism cannot – even in principle – be efficient, due to the inherent
NP-completeness of the problem of computing answers just to positive disjunctive programs, it
can be efficient when restricted to specific subclasses of programs and queries and it can allow

efficient approximation methods for broader classes of programs.

ACM Transactions on Computational Logic, Vol. TBD, No. TBD, TBD 20TBD.

4 · Stefan Brass et al.

In this paper we propose a specific class of such extended logic programs which
will be (immodestly) called super logic programs or just super programs. We will
argue that the class of super programs satisfies all of the above conditions, and, in
addition, is sufficiently flexible to allow various application-dependent extensions
and modifications. It includes all (monotonic) propositional theories, all disjunctive
logic programs and all extended logic programs with strong negation. We also pro-
vide a description of an implementation of a query-answering interpreter for the
class of super programs which is available on the world wide web5.

The class of super logic programs is closely related to other non-monotonic for-
malisms. In fact, super logic programs constitute a special case of a yet more ex-
pressive non-monotonic formalism called the Autoepistemic Logic of Knowledge and
Beliefs, AELB, introduced earlier in [Przymusinski 1994; 1998]. The logic AELB
isomorphically includes the well-known non-monotonic formalisms of Moore’s Au-
toepistemic Logic and McCarthy’s Circumscription. Through this embedding, the
semantics of super logic programs is clearly linked to other well-established non-
monotonic formalisms.

At the same time, as we demonstrate in this paper, in spite of their increased
expressiveness, super logic programs still admit natural and simple query answering
mechanisms which can be easily implemented and tested. We discuss one such
existing implementation in this paper. Needless to say, the problem of finding
suitable inference mechanisms, capable to model human common-sense reasoning,
is one of the major research and implementation problems in Artificial Intelligence.

The paper is organized as follows. In Section 2 we recall the definition and
basic properties of non-monotonic knowledge bases, and we introduce the class
of super logic programs as a special subclass of them. We also establish basic
properties of super programs. In the following Sections 3 and 4 we describe two
characterizations of the semantics of super programs, one of which is syntactic
and the other model-theoretic. Due to the restricted nature of super programs,
these characterization are significantly simpler than those applicable to arbitrary
non-monotonic knowledge bases. In Section 5 we describe our implementation of
a query-answering interpreter for super programs which is based on the previously
established model-theoretic characterization of their semantics. Section 6 mentions
related work. We conclude with some final remarks in Section 7. For the sake of
clarity, most proofs are contained in the Appendix.

In the theoretical parts of this paper, we restrict our attention to propositional
programs. Since we can always consider a propositional instantiation of the pro-
gram, this does not limit the generality of the obtained results from a semantic
standpoint. Of course, many practical applications need rules with variables. The
current version of our interpreter for super-logic programs is already supporting
variables that satisfy the allowedness/range-restriction condition: Every variable
that occurs in a rule must also appear in at least one positive body literal of the
rule. Then an intelligent grounding mechanism can be applied, see Section 5.

5See http://www.informatik.uni-giessen.de/staff/brass/slp/. If this URL should be un-

available, try http://www.sis.pitt.edu/~sbrass/slp/ and http://purl.oclc.org/NET/slp/. It
is not necessary to download the interpreter and install it locally, one can simply submit a super

logic program and a query via an HTML form. However, a local installation is also possible.

ACM Transactions on Computational Logic, Vol. TBD, No. TBD, TBD 20TBD.

Super Logic Programs · 5

2. SUPER LOGIC PROGRAMS

We first define the notion of a non-monotonic knowledge base. Super logic programs
are special knowledge bases.

The language is based on the Autoepistemic Logic of Knowledge and Beliefs,
AELB, introduced in [Przymusinski 1994; 1998]. However, in this paper we use the
default negation operator not instead of the belief operator B. Actually, not F can
be seen as an abbreviation for B(¬F), so this is only a slight syntactic variant6.
Consequently, all of our results apply to the original AELB as well. First, let us
briefly recall the basic definitions of AELB.

2.1 Syntax

Consider a fixed propositional language L with standard connectives (∨, ∧, ¬, →,
←, ↔) and the propositional letters true and false. We denote the set of its
propositions by AtL. Extend the language L to a propositional modal language
Lnot by augmenting it with a modal operator not , called the default negation
operator. The formulae of the form not F , where F is an arbitrary formula of Lnot ,
are called default negation atoms or just default atoms and are considered to be
atomic formulae in the extended propositional modal language Lnot . The formulae
of the original language L are called objective, and the elements of AtL are called
objective atoms. Any propositional theory in the modal language Lnot will be called
a non-monotonic knowledge base (or “knowledge base” for short):

Definition 2.1 (Non-monotonic Knowledge Bases). By a non-monotonic knowl-
edge base we mean an arbitrary (possibly infinite) theory in the propositional lan-
guage Lnot . By using standard logical equivalences, the theory can be transformed
into a set of clauses of the form:

B1 ∧ . . . ∧Bm ∧ not G1 ∧ . . . ∧ not Gn

→ A1 ∨ . . . ∨Ak ∨ not F1 ∨ . . . ∨ not Fl

where m,n, k, l ≥ 0, Ai’s and Bi’s are objective atoms and Fi’s and Gi’s are arbi-
trary formulae of Lnot .

By an affirmative knowledge base we mean any such theory all of whose clauses
satisfy the condition that k 6= 0.

By a rational knowledge base we mean any such theory all of whose clauses satisfy
the condition that l = 0.

In other words, affirmative knowledge bases are precisely those theories that
satisfy the condition that all of their clauses contain at least one objective atom in
their heads. This means that one cannot derive contradictions, and there is at least
one propositional model. Rational knowledge bases are those theories that do not
contain any default atoms not Fi in heads of their clauses. Intuitively, this means
that default negation is defined only by the static semantics, and not by the clauses
of the program (not is a kind of “built-in predicate”). Observe that arbitrarily
deep level of nested default negations is allowed in the language Lnot .

6not F was introduced as an abbreviation for B(¬F), and not ¬B(F), because otherwise super

logic programs would not be rational knowledge bases (see below). Then important properties
would not hold.

ACM Transactions on Computational Logic, Vol. TBD, No. TBD, TBD 20TBD.

6 · Stefan Brass et al.

Super logic programs are a subclass of non-monotonic knowledge bases. There
are three restrictions:

(1) Only rational knowledge bases are allowed (i.e. no default negation in the head).
(2) Nested default negation is excluded.
(3) Default negation can only be applied to positive formulas, e.g. not (¬p) and

not (p→ q) cannot be used in super logic programs.

Definition 2.2 (Super Logic Programs). A Super Logic Program (or “super pro-
gram”) is a non-monotonic knowledge base consisting of (possibly infinitely many)
super-clauses of the form:

F ← G ∧ not H

where F , G and H are arbitrary positive objective formulae (i.e. formulae that can
be represented as a disjunction of conjunctions of atoms).

In Proposition 2.5, it will be shown that simpler clauses can be equivalently used.
However, one does not need a rule/clause form, but any formula can be permitted
that is equivalent to such clauses. Our current implementation accepts all formulae
that satisfy the following two conditions:

(1) inside not only ∨, ∧, and objective atoms are used, and
(2) not does not appear in positive context:

—An atom A (objective atom or default negation atom) appears in the propo-
sitional formula A in positive context.

—If A appears in F in positive context, it also appears in F ∧G, G∧F , F ∨G,
G ∨ F , F ← G, G→ F , F ↔ G, G↔ F in positive context (where G is any
formula). The same holds for “positive” replaced by “negative”.

—If A appears in F in positive context, it appears in ¬F , F → G, G ← F ,
F ↔ G, G ↔ F in negative context (where G is any formula). The same
holds with “positive” and “negative” exchanged.

Clearly the class of super programs contains all (monotonic) propositional the-
ories and is syntactically significantly broader than the class of normal logic pro-
grams. In fact, it is somewhat broader than the class of programs usually referred
to as disjunctive logic programs because:

(1) It allows constraints, i.e., headless rules. In particular it allows the addition
of strong negation to such programs, as shown in Section 2.6, by assuming
the strong negation axioms ← A ∧ –A , which themselves are program rules
(rather than meta-level constraints).

(2) It allows premises of the form not C, where C is not just an atom but a con-
junction of atoms. This proves useful when reasoning with default assumptions
which themselves are rules, such as not (man ∧ –human), which can be inter-
preted as stating that we can assume by default that every man is a human
(note that –human represents strong negation of human).7

7It might be possible to avoid the negation of structured formulas by introducing new predicates.

ACM Transactions on Computational Logic, Vol. TBD, No. TBD, TBD 20TBD.

Super Logic Programs · 7

2.2 Implication in the Modal Logic

The semantics of super logic programs can be seen as an instance of the semantics of
arbitrary nonmonotonic knowledge bases which we introduce now. AELB assumes
the following two simple axiom schemata and one inference rule describing the
arguably obvious properties of default atoms8:

(CA) Consistency Axiom.

not (false) and ¬not (true) (1)

(DA) Distributive Axiom. For any formulae F and G:

not (F ∨G)↔ not F ∧ not G (2)

(IR) Invariance Inference Rule. For any formulae F and G:

F ↔ G

not F ↔ not G
(3)

The consistency axiom (CA) states that false is assumed to be false by default
but true is not. The second axiom (DA) states that default negation not is dis-
tributive with respect to disjunctions. The invariance inference rule (IR) states
that if two formulae are known to be equivalent then so are their default negations.
In other words, the meaning of not F does not depend on the specific form of the
formula F , e.g., the formula not (F ∧ ¬F) is equivalent to not (false) and thus is
true by (CA).

We do not assume the distributive axiom for conjunction: not (F ∧G)↔ not F ∨
not G. This would conflict with the intended meaning of not (falsity in all minimal
models), see Remark 2.15.

Of course, besides the above axioms and inference rule, also propositional conse-
quences can be used. The simplest way to define this is via propositional models.
A (propositional) interpretation of Lnot is a mapping

I: AtL ∪ {not (F) : F ∈ Lnot} → {true, false},

i.e. we simply treat the formulas not (F) as new propositions. Therefore, the notion
of a model carries over from propositional logic. A formula F ∈ Lnot is a proposi-
tional consequence of T ⊆ Lnot iff for every interpretation I: I |= T =⇒ I |= F .
In the examples, we will represent models by sets of literals showing the truth values
of only those objective and default atoms which are relevant to our considerations.

Definition 2.3 (Derivable Formulae). For any knowledge base T we denote by
Cnnot(T) the smallest set of formulae of the language Lnot which contains T , all
(substitution instances of) the axioms (CA) and (DA) and is closed under both
propositional consequence and the invariance rule (IR).

We say that a formula F is derivable from the knowledge base T if F belongs to
Cnnot(T). We denote this fact by T `not F . A knowledge base T is consistent if
Cnnot(T) is consistent, i.e., if T 6`not false.

8When replacing not (F) in these axioms by B(¬F), one gets the axioms of AELB as stated
in [Brass et al. 1999]. That paper also proves the equivalence to the original axioms of [Przy-

musinski 1994; 1998].

ACM Transactions on Computational Logic, Vol. TBD, No. TBD, TBD 20TBD.

8 · Stefan Brass et al.

The following technical lemma follows by transliteration from a lemma stated
in [Brass et al. 1999] for AELB:

Proposition 2.4. For any knowledge base T and any formula F of Lnot :

(1) T `not (not F → ¬not ¬F)
(2) If T `not F then T `not not ¬F .

Since the operator not obeys the distributive law for disjunction (DA), the default
atom not H in the super logic program rules can be replaced by the conjunction
not C1 ∧ . . . ∧ not Cn of default atoms not Ci, where each of the Ci’s is a conjunction
of objective atoms. Together with standard logical equivalences, this allows us to
establish the following useful fact:

Proposition 2.5. A super logic program P can be equivalently defined as a set
of (possibly infinitely many) clauses of the form:

A1 ∨ . . . ∨Ak ← B1 ∧ . . . ∧Bm ∧ not C1 ∧ . . . ∧ not Cn,

where Ai’s and Bi’s are objective atoms and Ci’s are conjunctions of objective
atoms. If k 6= 0, for all clauses of P , then the program is called affirmative.

2.3 Intended Meaning of Default Negation: Minimal Models

As the name indicates, non-monotonic knowledge bases must be equipped with
a non-monotonic semantics. Intuitively this means that we need to provide a
meaning to the default negation atoms not F . We want the intended meaning of
default atoms not F to be based on the principle of predicate minimization (see
[McCarthy 1980; Minker 1982; Gelfond et al. 1989]):

not F holds if ¬F is minimally entailed
or, equivalently:

not F holds if F is false in all minimal models.

In order to make this intended meaning precise we first have to define what we
mean by a minimal model of a knowledge base.

Definition 2.6 (Minimal Models). A model M is smaller than a model N if it
contains the same default atoms but has fewer objective atoms, i.e.

{p ∈ AtL : M |= p} ⊂ {p ∈ AtL : N |= p},
{F ∈ Lnot : M |= not (F)} = {F ∈ Lnot : N |= not (F)}.

By a minimal model of a knowledge base T we mean a model M of T with the
property that there is no smaller model N of T . If a formula F is true in all minimal
models of T then we write T |=min F and say that F is minimally entailed by T .

In other words, minimal models are obtained by first assigning arbitrary truth
values to the default atoms and then minimizing the objective atoms (see also [You
and Yuan 1993]). For readers familiar with circumscription, this means that we
are considering circumscription CIRC(T ;AtL) of the knowledge base T in which
objective atoms are minimized while the default atoms not F are fixed, i.e., T |=min

F iff CIRC(T ;AtL) |= F.

ACM Transactions on Computational Logic, Vol. TBD, No. TBD, TBD 20TBD.

Super Logic Programs · 9

Example 2.7. Consider the following simple knowledge base T :

→ car .
car ∧ not broken → runs.

Let us prove that T minimally entails ¬broken, i.e., T |=min ¬broken. Indeed, in
order to find minimal models of T we need to assign an arbitrary truth value to the
only default atom not broken, and then minimize the objective atoms broken, car
and runs. We easily see that T has the following two minimal models (truth values
of the remaining belief atoms are irrelevant and are therefore omitted):

M1 = {not broken, car , runs, ¬broken};
M2 = {¬not broken, car , ¬runs, ¬broken}.

Since in both of them car is true, and broken is false, we deduce that T |=min car
and T |=min ¬broken.

2.4 Static Expansions

The semantics of arbitrary knowledge bases is defined by means of static expansions.
The characterizations given in Sections 3 and 4 show that for the subclass of super
logic programs, simpler definitions are possible. However, in order to prove the
equivalence (and to appreciate the simplication), we first need to repeat the original
definition (adepted to use not instead of B).

As in Moore’s Autoepistemic Logic, the intended meaning of default negation
atoms in non-monotonic knowledge bases is enforced by defining suitable expansions
of such knowledge bases.

Definition 2.8 (Static Expansions of Knowledge Bases). A knowledge base T � is
called a static expansion of a knowledge base T if it satisfies the following fixed-point
equation:

T � = Cnnot

(
T ∪ {not F : T � |=min ¬F}

)
,

where F ranges over all formulae of Lnot .

A static expansion T � of T must therefore coincide with the knowledge base
obtained by: (i) adding to T the default negation not F of every formula F that is
false in all minimal models of T �, and, (ii) closing the resulting database under the
consequence operator Cnnot .

As the following proposition shows, the definition of static expansions enforces the
intended meaning of default atoms. The implication “⇐” is a direct consequence
of the definition, the direction “⇒” holds for rational knowledge bases9 and thus
super logic programs. The proposition is proven in [Przymusinski 1994; 1998]:

Proposition 2.9 (Semantics of Default Negation). Let T � be a static
expansion of a rational knowledge base T . For any formula F of Lnot we have:

T � |= not F iff T � |=min ¬F.

9In non-rational knowledge bases, the user can explicitly assert default negation atoms not F ,

even when F is not minimally entailed.

ACM Transactions on Computational Logic, Vol. TBD, No. TBD, TBD 20TBD.

10 · Stefan Brass et al.

It turns out that every knowledge base T has the least (in the sense of set-
theoretic inclusion) static expansion T which has an iterative definition as the least
fixed point of the monotonic10 default closure operator:

ΨT (S) = Cnnot

(
T ∪ {not F : S |=min ¬F}

)
,

where S is an arbitrary knowledge base and the F ’s range over all formulae of
Lnot . The following proposition is a transliteration of a theorem from [Przymusinski
1994; 1998; 1995b]. In Section 3 we will show that it is sufficient to consider only
formulas F of a special from in ΨT (S) when we use it for super logic programs.

Proposition 2.10 (Least Static Expansion). Every knowledge base T has
the least static expansion, namely, the least fixed point T of the monotonic default
closure operator ΨT .

More precisely, the least static expansion T of T can be constructed as follows.
Let T 0 = T and suppose that Tα has already been defined for any ordinal number
α < β. If β= α + 1 is a successor ordinal then define:

Tα+1 = ΨT (Tα) =def Cnnot

(
T ∪ {not F : Tα |=min ¬F}

)
,

where F ranges over all formulae in Lnot . Else, if β is a limit ordinal then define
T β =

⋃
α<β Tα. The sequence {Tα} is monotonically increasing and has a limit

T = Tλ = ΨT (Tλ), for some ordinal λ.

We were able to show in [Brass et al. 1999] that for finite knowledge bases, the
fixed point is in fact already reached after the first iteration of the default closure
operator ΨT . In other words, T = T 1.

Observe that the least static expansion T of T contains those and only those
formulae which are true in all static expansions of T . It constitutes the so called
static completion of a knowledge base T .

Definition 2.11 (Static Completion and Static Semantics). The least static ex-
pansion T of a knowledge database T is called the static completion of T . It
describes the static semantics of a knowledge base T .

It is time now to discuss some examples. For simplicity, unless explicitly needed,
when describing static expansions we ignore nested defaults and list only those
elements of the expansion that are relevant to our discussion, thus, for example,
skipping such members of the expansion as not (F ∧ ¬F), not ¬not (F ∧ ¬F), etc.

Example 2.12. Consider the knowledge base discussed already in Example 2.7:

car .
car ∧ not broken → runs.

We already established that T minimally entails ¬broken. As a result, the static
completion T of T contains not broken. Consequently, as expected, the static com-
pletion T of T derives not broken and runs and thus coincides with the perfect
model semantics [Przymusinski 1995a] of this stratified program [Apt et al. 1988].

10Strictly speaking the operator is only monotone [Przymusinski 1994; 1998] on the lattice of all
theories of the form Cnnot (T ∪N), where N is a set of default atoms. See also Lemma C.1.

ACM Transactions on Computational Logic, Vol. TBD, No. TBD, TBD 20TBD.

Super Logic Programs · 11

Example 2.13. Consider a slightly more complex knowledge base T :

not broken → runs.
not fixed → broken.

In order to iteratively compute its static completion T we let T 0 = T . One easily
checks that T 0 |=min ¬fixed . Since

T 1 = ΨT (T 0) = Cnnot

(
T ∪ {not F : T 0 |=min ¬F}

)
,

it follows that not fixed ∈ T 1 and therefore broken ∈ T 1. Since,

T 2 = ΨT (T 1) = Cnnot

(
T ∪ {not F : T 1 |=min ¬F}

)
,

it follows that not ¬broken ∈ T 2. Proposition 2.4 implies ¬not broken ∈ T 2 and
thus T 2 |=min ¬runs. Accordingly, since:

T 3 = ΨT (T 2) = Cnnot

(
T ∪ {not F : T 2 |=min ¬F}

)
,

we infer that not runs ∈ T 3. As expected, the static completion T of T , which
contains T 3, asserts that the car is considered not to be fixed and therefore broken
and thus is not in a running condition. Again, the resulting semantics coincides
with the perfect model semantics of this stratified program.11

Example 2.14. Consider the following super program P :

visit europe ∨ visit australia ← .

happy ← visit europe ∨ visit australia.

bankrupt ← visit europe ∧ visit australia.

prudent ← not (visit europe ∧ visit australia).
disappointed ← not (visit europe ∨ visit australia).

Obviously, the answer to the query visit europe ∨ visit australia must be positive,
while the answer to the query visit europe ∧ visit australia should be negative.
As a result, we expect a positive answer to the queries happy and prudent and a
negative answer to the queries bankrupt and disappointed . This means that default
negation interprets disjunctions in an exclusive way, as usual in disjunctive logic
programming approaches based on minimal models.

Observe that the query not (visit europe ∧visit australia) intuitively means “can
it be assumed by default that we don’t visit both Europe and Australia?” and thus it
is different from the query not visit europe ∧ not visit australia which says “can it
be assumed by default that we don’t visit Europe and that we don’t visit Australia?”.

It turns out that the static semantics produces precisely the intended meaning
discussed above. Indeed, clearly happy must belong to the static completion of P .
It is easy to check that ¬visit europe ∨ ¬visit australia, i.e.

¬(visit europe ∧ visit australia)

holds in all minimal models of the program P and therefore

not (visit europe ∧ visit australia)

11It follows from our result in [Brass et al. 1999] that not runs is in fact already contained in T 1.
This is shown by concluding that equivalences similar to Clark’s completion are contained in T 1.

ACM Transactions on Computational Logic, Vol. TBD, No. TBD, TBD 20TBD.

12 · Stefan Brass et al.

must be true in the completion. This proves that prudent must hold in the com-
pletion. Moreover, since bankrupt is false in all minimal models not bankrupt must
also belong to the completion. Finally, since visit europe ∨ visit australia is true, we
infer from Proposition 2.4 that not ¬(visit europe ∨ visit australia) and thus also
¬not (visit europe ∨ visit australia) holds. But then ¬disappointed is minimally
entailed, thus not disappointed belongs to the completion.

Remark 2.15. In general, we do not assume the distributive axiom for conjunc-
tion:

not (F ∧G)↔ not F ∨ not G.

It is not difficult to prove that for a rational knowledge base T and for any two
formulae F and G:

T � |= (not F ∨ not G) iff (T � |= not F or T � |= not G).

But together with the axiom in question this would mean

T � |= not (F ∧G) iff (T � |= not F or T � |= not G).

This is too restrictive. For example, given the fact that we can assume by default
that we do not drink and drive (i.e., T � |= not (drink ∧ drive)) at the same time,
we do not necessarily want to conclude that we can either assume by default that
we don’t drink (i.e., T � |= not (drink)) or assume by default that we don’t drive
(i.e., T � |= not (drive)).

In rational knowledge bases, we only assume not (F ∧G) if F ∧G is false in all
minimal models. But it might well be that F is true in some, and G is true in some,
but they are never true together. So the axiom in question conflicts with the in-
tended meaning of default negation. On some evenings we drink, on some we drive,
but we never do both. If this is all the information we have, not (drink ∧ drive)
should be implied, but neither not (drink) nor not (drive) should follow.

Note, however, that the implication in one direction, namely not (F ∧G) ←
not F ∨ not G, easily follows from our axioms. In some specific applications, the
inclusion of the distributive axiom for conjunction may be justified; in such cases
it may simply be added to the above listed axioms.

2.5 Basic Properties of Super Logic Programs

The next theorem summarizes properties of super programs. It is an immediate
consequence of results established in [Przymusinski 1994; 1998]:

Theorem 2.16 (Basic Properties of Super Programs).

(1) Let P be any super logic program and let P be its static completion. For any
formula F , P |= not F iff P |=min ¬F .

(2) Let P be any super logic program and let P be its static completion. For any
two formulae F and G holds:

P |= (not F ∨ not G) iff (P |= not F or P |= not G).

(3) Every affirmative super program has a consistent static completion. In partic-
ular, this applies to all disjunctive logic programs.

ACM Transactions on Computational Logic, Vol. TBD, No. TBD, TBD 20TBD.

Super Logic Programs · 13

(4) For normal logic programs, static semantics coincides with the well-founded
semantics [Van Gelder et al. 1991]. More precisely, there is a one-to-one cor-
respondence between consistent static expansions of a normal program and its
partial stable models [Przymusinski 1990]. Under this correspondence, (total)
stable models [Gelfond and Lifschitz 1988] (also called answer sets) correspond
to those consistent static expansions which satisfy the axiom not A ∨ not ¬A,
for every objective atom A.

(5) For positive disjunctive logic programs, static semantics coincides with the min-
imal model semantics.

2.6 Adding Strong Negation to Knowledge Bases

As pointed out in [Gelfond and Lifschitz 1991; Alferes et al. 1998] in addition to
default negation, not F , non-monotonic reasoning requires another type of negation
–F which is similar to classical negation ¬F but does not satisfy the law of the
excluded middle (see [Alferes et al. 1998] for more information).

Strong negation –F can be easily added to super logic programs by: (1) Extend-
ing the original objective language L by adding to it new objective propositional
symbols –A, called strong negation atoms, for all A ∈ AtL. (2) Adding to the super
logic program the following strong negation clause, for any strong negation atom
–A that appears in it: A ∧ –A → false, which says that A and –A cannot be both
true. Since the addition of strong negation clauses simply results in a new super
logic program, our the results apply as well to programs with strong negation.

3. FIXED POINT CHARACTERIZATION OF STATIC COMPLETIONS

Due to Proposition 2.5, we can consider the language of super logic programs to
be restricted to the subset L∗not ⊆ Lnot , which is the propositional logic over the
following set of atoms:

AtL ∪ {not E : E is a conjunction of objective atoms from AtL}.

In particular, the language L∗not does not allow any nesting of default negations:
Default negation can be only applied to conjunctions of objective atoms. As a
special case, we allow also the “empty conjunction”, so not (true) is contained
in L∗not . The conjunction E can be treated as a set — because of the invariance
inference rule not E1 and not E2 must have the same truth value if E1 and E2 differ
only in the sequence or multiplicity of the atoms in the conjunction. In this way, if
AtL is finite, only a finite number of default negation atoms must be considered.

In order to answer queries about a super program P , we only need to know which
formulae of the restricted language L∗not belong to the static completion of P . In
other words, we only need to compute the restriction P |L∗not of the static completion
P to the language L∗not . It would be nice and computationally a lot more feasible
to be able to compute this restriction without having to first compute the full
completion, which involves arbitrarily deeply nested default negations and thus is
inherently infinite even for finite programs. The following result provides a positive
solution to this problem in the form of a much simplified syntactic fixed point
characterization of static completions. In the next section we provide yet another
solution in the form of a model-theoretic characterization of static completions.

ACM Transactions on Computational Logic, Vol. TBD, No. TBD, TBD 20TBD.

14 · Stefan Brass et al.

Theorem 3.1 (Syntactic Fixed-Point Characterization). The restric-
tion of the static completion P of a finite super program P to the language L∗not

can be constructed as follows. Let P 0 = P and suppose that Pn has already been
defined for some natural number n. Define Pn+1 as follows:

Cn
(

P ∪ {not E1 ∧ . . . ∧ not Em → not E0 :
Pn |=min ¬E1 ∧ . . . ∧ ¬Em → ¬E0}

)
,

where Ei’s range over all conjunctions of objective atoms and Cn denotes the stan-
dard propositional consequence operator. We allow the special case that E0 is the
empty conjunction (i.e., true) and identify not true with false.

The sequence {Pn} is monotonically increasing and has a limit Pn0 = Pn0+1,
for some natural number n0. Moreover, Pn0 = P |L∗not , i.e., Pn0 is the restriction
of the static completion of P to the language L∗not .

Proof. Contained in the Appendix C.

The above theorem represents a considerable simplification over the original char-
acterization of static completions given in Proposition 2.10. First of all, instead of
using the modal consequence operator Cnnot , only the standard propositional con-
sequence operator Cn is used. Moreover, instead of ranging over the set of all (ar-
bitrarily deeply nested) formulae of the language Lnot it involves only conjunctions
of objective atoms. These two simplifications greatly enhance the implementability
of static semantics of finite programs. On the other hand, due to the restriction to
the language L∗not , we cannot expect the fixed point to be reached in just one step,
as would be the case with the more powerful operator ΨT (S) [Brass et al. 1999].

4. MODEL-THEORETIC CHARACTERIZATION OF STATIC COMPLETIONS

In this section, we complement Theorem 3.1 by providing a model-theoretic char-
acterization of static completions of finite super programs. More precisely, we
characterize models of static completions restricted to the narrower language L∗not .
The resulting characterization was directly used in a prototype implementation of
a query answering interpreter for static semantics described in the next section.

Definition 4.1 (Reduced Interpretations).

(1) Let OBJ be the set of all propositional valuations of the objective atoms AtL.
(2) Let NOT be the set of all propositional valuations of the default negation

atoms {not (p1 ∧ · · · ∧ pn) : pi ∈ AtL} that interpret not (true) as false12.
(3) We call an interpretation I of the language L∗not , i.e., a valuation of AtL ∪
{not (p1 ∧ · · · ∧ pn) : pi ∈ AtL}, a reduced interpretation and write it as
as I = Iobj ∪ Inot with Iobj ∈ OBJ and Inot ∈ NOT .

(4) In order to emphasize the difference, we sometimes call an interpretation I of
the complete language Lnot , i.e., a valuation for AtL ∪ {not (F) : F ∈ Lnot },
a full interpretation.

(5) Given a full interpretation I, we call its restriction I = Iobj ∪ Inot to the
language L∗not the reduct of I.

12Throughout this section, whenever we mention a sequence p1, . . . , pn, we allow n to be 0 as

well. The empty conjunction is true.

ACM Transactions on Computational Logic, Vol. TBD, No. TBD, TBD 20TBD.

Super Logic Programs · 15

Since a reduced interpretation I = Iobj ∪ Inot assigns truth values to all atoms
occurring in a super program, the “is model of” relation between such interpreta-
tions and super programs is well defined. We call I = Iobj ∪ Inot a minimal model
of a super program P if there is no interpretation Iobj ∈ OBJ with

{p ∈ AtL : I ′obj |= p} ⊂ {p ∈ AtL : Iobj |= p}

such that I ′ = I ′obj ∪ Inot is also a model of P . This is completely compatible with
the corresponding notion for full interpretations.

Our goal is to characterize the reducts of the full models of the static completion P
of a finite super program P . In fact, once we have the possible interpretations of the
default atoms, finding the objective parts of the reducts is easy. The idea how to
compute such possible interpretations is closely related to Kripke structures (which
is not surprising for a modal logic, for more details see Appendix A). The worlds in
such a Kripke structure are marked with interpretations of the objective atoms AtL,
and the formula not (p1∧· · ·∧pn) is true in a world w iff ¬(p1∧· · ·∧pn) is true in all
worlds w′ which can be “seen” from w. Due to the consistency axiom, every world w
must see at least one world w′. The static semantics ensures that every world w
sees only worlds marked with minimal models. So given a set O of (objective parts
of) minimal models, an interpretation Inot of the default atoms is possible iff there
is some subset O′ ⊆ O (namely the interpretations in the worlds w′) such that
Inot |= not (p1 ∧ · · · ∧ pn) iff Iobj |= ¬(p1 ∧ · · · ∧ pn) for all Iobj ∈ O′. Conversely, O
depends on the possible interpretations of the default atoms (since a minimal model
contains an objective part and a default part). So when we restrict the possible
interpretations for the default negation atoms, we also get less minimal models.
This results in a fixed-point computation, formalized by the following operators:

Definition 4.2 (Possible Interpretations of Default Atoms). Let P be a super
program.

(1) The operator ΩP : 2NOT → 2OBJ yields objective parts of minimal models given
possible interpretations of the default atoms. For every N ⊆ NOT , let

ΩP (N) :=
{
Iobj ∈ OBJ : there is Inot ∈ N such that

I = Iobj ∪ Inot is minimal model of P
}
.

(2) Let O ⊆ OBJ and Inot ∈ NOT . We call Inot given by O iff for every
p1, . . . , pn ∈ AtL:

Inot |= not (p1 ∧ · · · ∧ pn)
⇐⇒ for every Iobj ∈ O: Iobj |= ¬(p1 ∧ · · · ∧ pn).

(3) The operator ΠP : 2OBJ → 2NOT yields possible interpretations of the default
atoms, given objective parts of minimal models. For every O ⊆ OBJ , let

ΠP (O) :=
{
Inot ∈ NOT : there is a non-empty O′ ⊆ O

such that Inot is given by O′
and there is Iobj such that

I = Iobj ∪ Inot is a model of P .
}
.

(4) The operator ΘP : 2NOT → 2NOT is the composition ΘP := ΠP ◦ ΩP of ΩP

and ΠP .
ACM Transactions on Computational Logic, Vol. TBD, No. TBD, TBD 20TBD.

16 · Stefan Brass et al.

Note that the additional constraint in the definition of ΠP (that it must be
possible to extend Inot to a model of P) is trivially satisfied for affirmative programs,
i.e. programs having at least one head literal in every rule.

Now we are ready to state the main result of this section.

Theorem 4.3 (Model-Theoretic Characterization). Let P be a finite
super program:

(1) The operator ΘP is monotone (in the lattice of subsets of NOT with the order
⊇) and thus its iteration beginning from the set NOT (all interpretations of
the default atoms, the bottom element of this lattice) has a fixed point N �.

(2) N � consists exactly of all Inot ∈ NOT that are default parts of a full model I
of P .

(3) A reduced interpretation Iobj ∪ Inot is a reduct of a full model I of P iff Inot ∈
N � and Iobj ∪ Inot |= P .

Proof. Contained in the Appendix B.

Example 4.4. Let us consider the following logic program P :

p ∨ q ← not r.
q ← not q.
r ← q.

Until the last step of the iteration, it suffices to consider only those default atoms
which occur in P and thus have influence on the objective atoms. But for the sake of
demonstration, we start with the set NOT containing all eight possible valuations
of the three default atoms not p, not q, and not r (however, we do not consider
conjunctive default atoms here). These default interpretations can be extended
to the minimal reduced models listed in the following table. Note that models
numbered 6 to 10 are equal to models numbered 1 to 5, except that not p is true
in them (this shows that not p is really superfluous at this stage).

No. not p not q not r p q r

1. false false false false false false
2. false false true true false false
3. false false true false true true
4. false true false false true true
5. false true true false true true
6. true false false false false false
7. true false true true false false
8. true false true false true true
9. true true false false true true

10. true true true false true true

For instance, when not q and not r are both interpreted as false, p, q and r are
false in a minimal model. If not q is interpreted as true, q and r are true and p is
false by minimality. If not q is false and not r is true, there are two possibilities for
a minimal model: either p can be true, or q and r together. So there are only three
ACM Transactions on Computational Logic, Vol. TBD, No. TBD, TBD 20TBD.

Super Logic Programs · 17

possible valuations for the objective parts of minimal models, i.e. ΩP (NOT) is:

p q r

false false false
true false false
false true true

Note that although there is a minimal model in which p, q, and r are all false,
there can be other minimal models based on different interpretations of the default
atoms. Now the above three interpretations are the input for the next application
of ΠP . Of course, from every minimal objective interpretation we immediately get
a possible default interpretation if we translate the truth of p to the falsity of not p
and so on. But we can also combine minimal objective parts conjunctively and let
not p be true only if ¬p is true in all elements of some set of minimal models. Thus,
ΠP

(
ΩP (NOT)

)
is:

not p not q not r

true true true
false true true
true false false
false false false

This means that only the models numbered 1, 5, 6, 10 remain possible given the
current knowledge about the defaults. Their objective parts are:

p q r

false false false
false true true

Finally, p is false in all of these models, so not p must be assumed, and only the
following two valuations of the default atoms are possible in the fixed point N �:

not p not q not r

true true true
true false false

The reduced models of the least static expansion P consist therefore of all reduced
interpretations that include one of these two default parts and are models of P
itself.

Obviously, computing the reduct of a full interpretation is easy. Conversely,
in the Appendix, Definition B.1, we define a Kripke structure which allows us to
extend the reduced interpretations to full interpretations, which are models of the
static completion. However, let us observe that not all full models of the least
static expansion can be reconstructed in this way. Instead, we obtain only one
representative from every equivalence class with the same reduct. For example, one
can easily verify that the program P := {p ← not p} has infinitely many different
full models (see Example A.6 in the Appendix).

ACM Transactions on Computational Logic, Vol. TBD, No. TBD, TBD 20TBD.

18 · Stefan Brass et al.

5. IMPLEMENTATION OF THE MODEL-THEORETIC CHARACTERIZATION

We implemented a query-answering interpreter for super logic programs under the
static semantics which based on the above model-theoretic characterization13. The
interpreter has a web interface, so it is not necessary to install it locally in order to
try it.

5.1 Parsing and Clause Transformation

As mentioned before, the interpreter does not require clause form. One can use the
following logical operators:

Name Notation Alt. Priority Associativity
Classical Negation (¬) ~ 1 right assiciative
Default Negation (not) not 1 cannot be nested
Conjunction (and, ∧) & , 2 right associative
Disjunction (or, ∨) | ; v 3 right associative
Implication (then, →) -> 4 not associative
Implication (if, ←) <- :- 4 not associative
Equivalence (if and only if, ↔) <-> 4 not associative

Default negation can only be used in negative context, and inside default negation,
only disjunction and conjunction are permitted. As in Prolog, atoms are sequences
of letters, digits, and underscores that start with a lowercase letter. Alternatively,
one can use any sequence of characters enclosed in single quotes. Every formula
must end in a full stop “.”. For instance, the last line of Example 2.14 would be
entered as:

disappointed <- not(visit_europe | visit_australia).

The first task of the program is to read the input, check it for syntactical correctness,
and translate it into clauses as shown in Proposition 2.5. This is done with standard
techniques. For instance, the above input formula is internally represented as

disappointed <- not(visit_europe), not(visit_australia).

5.2 Intelligent Grounding

As mentioned above, the current implementation permits rules with variables,
but every variable must appear in a positive body literal (“allowedness”, “range-
restriction”). For instance, the rule

p(X,a) | p(X,b) :- q(1,X), not r(X).

is syntactically valid, since X appears in q(1,X). This check is done after the clause
transformation, so “positive body literal” is not literally required in the input. As
in Prolog, variables start with an uppercase letter, and the anonymous variable
“_” is also understood. Predicate arguments can be atoms, integers, or variables.

13See http://www.informatik.uni-giessen.de/staff/brass/slp/. Actually, there are two im-

plementations: A prototype written in Prolog (1325 lines, 608 lines of code), and a version with
web user interface and better performance written in C++ (21809 lines, 10201 lines of code). The
source code of both versions is freely available. The C++ version is still being further developed.

ACM Transactions on Computational Logic, Vol. TBD, No. TBD, TBD 20TBD.

Super Logic Programs · 19

Function symbols (term/list constructors) are not permitted in order to ensure that
the ground instantiation is finite.

However, our implementation does not compute the complete ground instantia-
tion of the input program, since this will often be prohibitively large. Instead, the
set of derivable conditional facts is computed:

Definition 5.1 (Conditional Fact). Conditional facts are formulae of the form

A1 ∨ . . . ∨Ak ← not C1 ∧ . . . ∧ not Cn,

where the Ai are objective atoms (positive ground literals) the Ci are conjunctions
of objective atoms (positive ground literals), k ≥ 0, and n ≥ 0. In the following,
we treat head and body of conditional facts as sets of literals, and write them as
A ← C with A = {A1, . . . , Ak} and C = {not C1, . . . ,not Cn}.

So conditional facts are rules without positive body literals, and because of the
allowedness condition, they also cannot contain variables. Conditional facts were
introduced in [Bry 1989; 1990; Dung and Kanchanasut 1989].

The derivation is done with the hyperresolution operator, which is a general-
ization of the standard TP -operator. In the non-disjunctive case, the TP -operator
applies a rule A← B1 ∧ . . .∧Bm by finding facts B′

1, . . . , B
′
m that match the body

literals, i.e. Biσ = B′
i for a ground substitution σ, and then deriving the corre-

sponding instance Aσ of the head literal. This is applied e.g. for the bottom-up
evaluation in deductive databases. The generalization for conditional facts is as
follows:

Definition 5.2 (Hyperresolution Operator). Let P be a set of super logic program
rules as in Proposition 2.5 and F be a set of conditional facts. Then HP (F) is the
set of conditional facts

{A1σ, . . . , Akσ} ∪ (A1 \ {B1σ}) ∪ . . . ∪ (Am \ {Bmσ}) ←
{not C1σ, . . . ,not Cnσ} ∪ C1 ∪ . . . ∪ Cm

such that there is a rule

A1 ∨ . . . ∨Ak ← B1 ∧ . . . ∧Bm ∧ not C1 ∧ . . . ∧ not Cn

in P , conditional facts Ai ← Ci, i = 1, . . . ,m in F , and a subsitution σ with
Biσ ∈ Ai.

In other words, the positive body literals are matched with any literal in the
head14 of a conditional fact, and then the remaining head literals are added to
the corresponding instance of the rule head, as the conditions are added to the
corresponding instance of the negative body literals. For example, if the rule

p1(X) ∨ p2(Y)← q1(a,X) ∧ q2(X, Y) ∧ not r(Y)

is matched with q1(a, a)∨s(b) and t(a)∨q2(a, b)← not u(c), the derived conditional
fact is

p1(a) ∨ p2(b) ∨ s(b) ∨ t(a)← not r(b) ∧ not u(c).

14Actually, one can make the resolvable literal unique, see [Brass 1996]. However, this is not yet
done in the current implementation.

ACM Transactions on Computational Logic, Vol. TBD, No. TBD, TBD 20TBD.

20 · Stefan Brass et al.

Again, head and body of conditional facts are treated as sets of literals, so du-
plicate literals are removed. Also for the hyperresolution step itself, the rule is
instantiated only as far as there are matching conditional facts.

The hyperresolution operator is applied iteratively until no new conditional facts
can be derived. Since there are only finitely many possible ground literals15 and
no duplicates are permitted in head or body, the process is guranteed to terminate.
The importance of the hyperresolution fixpoint is that it has the same minimal
models as the original program:

Theorem 5.3. Let P be a super logic program, F0 := ∅, and Fi+1 := HP (Fi),
and n be a natural number such that Fn+1 = Fn. Then the following holds for all
Herbrand interpretations I: I is a minimal model of the ground instantiation P ∗

of P if and only if I is a minimal model of Fn.

Proof. See Appendix D.

Of course, for the termination it is important that the implementation discovers if
the same conditional fact was derived again. However, also non-minimal conditional
facts can be eliminated: A conditional fact A ← C is non-minimal if there is another
conditional fact A′ ← C′ with A′ ⊆ A and C′ ⊆ C, where at least one inclusion
is proper. Since in this case the non-minimal conditional fact A ← C is logically
implied by the stronger conditional fact A′ ← C′, the set of models is not changed
if A ← C is deleted.

5.3 Algorithm for Detection for Duplicate and Non-Minimal Conditional Facts

Since this redundancy test is needed often, it is essential that it is implemented
efficiently. E.g. [Seipel 1994] noted that the elimination of duplicate and subsumed
conditional facts took more than half of the total running time of query evaluation.

The subsumption check used in our implementation when a newly derived con-
ditional fact A ← C is inserted into the set F runs in the time

O(number of occurrences of literals from A ← C in F).

We use the algorithm from [Brass and Dix 1995] that is shown in Figure 1.
The basic idea is as follows: We store for each existing conditional fact an overlap

counter. When a new conditional fact A ← C is produced, we access for each literal
in A and C all conditional facts A′ ← C′ that contain the same literal and increment
the overlap counter of these conditional facts. If the overlap counter (i.e. the number
of common literals) reaches the length (number of literals) of A′ ← C′, then A ← C
is redundant. Otherwise, if it is equal to the length of A ← C, then A′ ← C′ is
redundant.

It would be inefficient if we had to set the overlap counters of all existing con-
ditional facts back to 0 before each redundancy test. Therefore, we do a “lazy
initialization”: Each test is assigned a unique number, and we store for each con-
ditional fact the value of the counter at the last time the conditional fact was
accessed.

15As mentioned before, no function symbols are permitted. Also, the conjunctions inside default
negation are treated as sets of objective atoms: The implementation discovers e.g. that not (p∧ q)

and not (q ∧ p ∧ q) are really the same.

ACM Transactions on Computational Logic, Vol. TBD, No. TBD, TBD 20TBD.

Super Logic Programs · 21

testno := 0;

F := ∅;

procedure insert(A ← C)
begin

if A = ∅ and C = ∅ then
report inconsistency and exit;

testno = testno + 1;

for each A ∈ A do

for each A′ ← C′ ∈ F with A ∈ A′ do
if inc_overlap(A′ ← C′, |A| + |C|) then

return; /* A ← C is non-minimal */

for each C ∈ C do

for each A′ ← C′ ∈ F with C ∈ C′ do
if inc_overlap(A′ ← C′, |A| + |C|) then

return; /* A ← C is non-minimal */

/* A ← C is minimal, insert it: */

F := F ∪ {A ← C};
length[A ← C] := |A| + |C|;
lastset[A ← C] := 0;

end;

function inc_overlap(A′ ← C′, l): bool
begin

/* Increment or initialize the overlap counter: */

if lastset[A′ ← C′] = testno then

overlap[A′ ← C′] := overlap[A′ ← C′] + 1;

else
overlap[A′ ← C′] := 1;

lastset[A′ ← C′] := testno;

/* Check for subsumption: */

if overlap[A′ ← C′] = length[A′ ← C′] then

return true; /* A ← C is non-minimal */

if overlap[A′ ← C′] = l then
F := F \ {A′ ← C′}; /* A′ ← C′ is non-minimal */

return false;
end;

Fig. 1. Algorithm for Detecting Duplicate and Non-Minimal Conditional Facts

In order to reduce duplicates, our implementation also does a seminaive evalua-
tion by requiring that at least one body literal is matched with a conditional fact
that was newly derived in the last hyperresolution round. Although it is still pos-
sible that the same conditional fact is derived more than once, it is at least never
produced twice in the same way.

5.4 Residual Program

In the end, when we apply the model-theoretic characterization for a program
that contains n different default negation literals, we need to consider 2n possible
interpretations of these literals and compute minimal models for them. That is
obviously very expensive and is only possible for relatively small n.

Therefore, our implementation evaluates the simple cases directly before it starts
the expensive algorithm on the remaining difficult cases. This is done by means

ACM Transactions on Computational Logic, Vol. TBD, No. TBD, TBD 20TBD.

22 · Stefan Brass et al.

of reduction operators defined and analyzed in [Brass and Dix 1999]). Positive
reduction means that not p can be evaluated to true if p does not occur in any head
of a conditional fact:

Definition 5.4 (Positive Reduction). A set F1 of conditional facts is transformed
by positive reduction into a set F2 of conditional facts if there is an atom p and a
conditional fact A ← C ∈ F such that p does not occur in any head in F and

F2 =
(
F1 \ {A ← C}

)
∪ {A ← C′},

where C′ = C \ {not p}.

Negative reduction means that not p1 ∧ . . . ∧ not pk can be evaluated to false if
there is an unconditional fact p1 ∨ . . . ∨ pk ← true:

Definition 5.5 (Negative Reduction). A set F1 of conditional facts is transformed
by negative reduction into a set F2 of conditional facts if there is p1∨. . .∨pk ← true
in F1 and F2 = F1 \ {A ← C} where {not p1, . . . ,not pk} ⊆ C.

For instance, in Example 2.14 there is an unconditional fact

visit europe ∨ visit australia.

As mentioned above, the last rule in that example is internally represented as

disappointed ← not (visit europe) ∧ not (visit australia).

It can be deleted, because its condition can never be true. In the example, this
also eliminates two default negation atoms, which means that fewer interpretations
must be considered in the next step of the algorithm.

The current version of our implementation does not evaluate default negation
literals that contain conjunctions of atoms. Since the reduction step is only an
optimization, this is possible: negations of conjunctions remain for the general al-
gorithm. But we of course plan to strengthen these optimizations in future versions.
The more default negations can be eliminated with relatively cheap transformations,
the less important it becomes that the algorithm for the general case is expensive.

Applying negative reduction can make positive reduction applicable, and vice
versa. The two transformations are applied as long as possible, and the result
is called the residual program. It is uniquely determined, the exact sequence of
applications of the two transformations is not important. The reduction in the size
of the program and the number of distinct default negations can be significant.
For instance, no default negations remain if the input program is stratified and
non-disjunctive.

Negative reduction can be implemented with a method that is very similar to the
overlap counting shown above for the elimination of nonminimal clauses. Positive
reduction is implemented by managing for each objective atom a counter for the
number of occurrences in conditional fact heads, as well as a list of atoms for which
this counter is 0.

Note that positive and negative reduction do change the set of minimal models,
since even if there is the fact p, the interpretation of not p in a minimal model is
arbitrary. Only the static semantics ensures that not p is false in this case. The
ACM Transactions on Computational Logic, Vol. TBD, No. TBD, TBD 20TBD.

Super Logic Programs · 23

following simple cumulation theorem ensures that positive and negative reduction
as well as other such optimizations do not change the static semantics:

Theorem 5.6 (Invariance of Static Semantics).

(1) Let T be a knowledge base with T |=min ¬F . Then T and T ∪{not F} have the
same static expansions.

(2) Let T1 and T2 be knowledge bases with Cnnot(T1) = Cnnot(T2). Then T1 and
T2 have the same static expansions.

For instance, consider the program {p ← not q}. Since q is false in all minimal
models, we can add not q by (1) without changing the static semantics. Both
formulas together are logically equivalent to {p,not q}. By (2), this does not change
the static semantics. Finally, since also {p} alone implies minimally ¬q, by (1) we
get that {p} has the same static semantics as {p,not q}. This proves that the given
program can indeed be reduced to {p} (an example of positive reduction).

For an example of negative reduction, consider the program T1:

p ∨ q.
s← not p ∧ not q ∧ not r.

Negative reduction transforms this program into T2 = {p∨q}. In order to show that
this does not change the static semantics, we apply part (2) of the theorem. We must
show that T2 is Cnnot -equivalent to T1: Proposition 2.4 tells us that not (¬(p∨ q))
is contained in Cnnot(T2), and then we also get that ¬not (p∨ q) ∈ Cnnot(T2) (by
Proposition 2.4, the invariance inference rule (IR) and propositional consequences).
By applying the distributive axiom (DA) ¬(not p ∧ not q) follows. But now the
rule s ← not p ∧ not q ∧ not r is a propositional consequence, and therefore also
contained in Cnnot(T2).

Corollary 5.7. Positive and negative reduction do not change the static se-
mantics of a program.

5.5 Application of the Model-Theoretic Characterization

We apply the definition of the operators ΩP and ΠP from Section 4 quite literally.
Of course, we use not the input program P , but the residual program F .

As mentioned before, it suffices to consider only those default negation atoms
that occur explicitly in the residual program. We call these the “critical” default
negation atoms. Other default atoms have no influence on the minimal models and
we can always extend a valuation of the critical default atoms consistently to a
valuation of all default atoms. The objective atoms that occur inside the default
negations in the residual program are called the critical objective atoms.

The algorithm shown in Figure 2 computes the static interpretations for the
critical default negation atoms, i.e. the fixed point N � of ΘF (reduced to critical
default negation atoms). The fixpoint computation starts with the set of all possible
interpretations for the critical default negation atoms. This is the most expensive
part of the algorithm, so real improvements must attack this problem. In order to
keep at least the memory complexity in reasonable limits the set N is materialized
only after the first filtering step (application of ΘF). Without this optimization,

ACM Transactions on Computational Logic, Vol. TBD, No. TBD, TBD 20TBD.

24 · Stefan Brass et al.

Let CritNeg be the set of all default negation atoms that appear in F;
O := ∅; /* Objective parts of minimal models, filled by procedure modgen */

function static(F): Set of static interpretations for CritNeg

begin

for each interpretation Inot of CritNeg do

D := {A : A ← C ∈ F , Inot |= C};
modgen(D); /* Inserts minimal models of D into O */

N := ∅;
for each interpretation Inot of CritNeg do

if possible(Inot, O) then

if there is no false ← C ∈ F with Inot |= C then

N := N ∪ {Inot};
Changed := true;

while Changed do

Changed := false;
O := ∅;
for each Inot ∈ N do
D := {A : A ← C ∈ F , Inot |= C};
modgen(D);

for each Inot ∈ N do
if not possible(Inot, O) then
N := N \ {Inot};
Changed := true;

return N;

end;

function possible(Inot, O): bool
begin

I∩ := CritNeg; /* Empty intersection: All default negations are true */

NotEmpty := false;
for each Iobj ∈ O do

/* Interpretations are identified with the set of true default atoms */

I′not := {not (p1 ∧ . . . ∧ pn) ∈ CritNeg : Iobj |= ¬(p1 ∧ . . . ∧ pn)};
if Inot ⊆ I′not then

I∩ := I∩ ∩ I′not;

NotEmpty := true;
return Inot = I∩ and NotEmpty;

end;

Fig. 2. Application of the Model-Theoretic Characterization

the first half of the procedure static(F) could simply be replaced by assigning N
all possible interpretations.

Now the fixpoint computation starts (the while-loop in Figure 2). In each step,
first the set O = ΩF (N) of minimal models, reduced to the objective atoms is
computed. The default negation part of each such minimal model must be an
element of N .

Our implementation computes O = ΩF (N) as follows: For each default nega-
tion interpretation in N , we evaluate the conditions of the conditional facts in the
residual program and get a set D of positive disjunctions. For this, any minimal
model generator can be used. We use the algorithm explained in the next subsec-
tion. A nice feature of it is that it computes not interpretations for all objective
atoms, but only for the critical ones, i.e. those objective atoms that appear inside
ACM Transactions on Computational Logic, Vol. TBD, No. TBD, TBD 20TBD.

Super Logic Programs · 25

default negations in the residual program. Minimal model generators proposed in
the literature are, e.g., [Bry and Yahya 1996; Niemelä and Simons 1996; Niemelä
1996].

Once we have computed O, interpretations are eliminated from N that do not
satisfy the condition of ΠF (O). However, it would be very inefficient to consider
all subsets O′ ⊆ O, as required in Definition 4.2. However, in order to check
whether a given interpretation Inot of the default atoms is selected by ΘF , only the
maximal O′ is of interest. It is the set of all Iobj ∈ O that satisfy, for every default
atom, the condition:

if Inot |= not (p1 ∧ · · · ∧ pn), then Iobj |= ¬(p1 ∧ · · · ∧ pn).

Obviously, the inclusion of other Iobj into O′ would immediately destroy the re-
quired property, namely that Inot is the “intersection” of all models in O′:

Inot |= not (p1 ∧ · · · ∧ pn) ⇐⇒ for all Iobj ∈ O: Iobj |= ¬(p1 ∧ · · · ∧ pn).

Of course, it must also be tested that the set O′ is non-empty. In the procedure
possible shown in Figure 2, the set O′ is not explicitly constructed, but instead
the interpretation I∩ is constructed as the intersection of all elements of O′.

5.6 Computation of Minimal Models

In order to compute ΩF (N), we must compute the objective parts of minimal
models, of which the default negation part is one of the interpretations in N . As
explained above, we do this by looping over the interpretations Inot ∈ N , evaluating
the conditions C of the formulas A ← C ∈ F in Inot , and computing minimal
models of the resulting positive disjunctions of objective atoms16. The algorithm
that is used to compute minimal models of these disjunctions is shown in Figure 3.
We only compute the truth values of critical objective atoms, i.e. objective atoms
that appear inside default negations in F17. Of course, it is important that this
partial interpretation can be extended to a total minimal model.

So let p be a critical objective atom that is not yet assigned a truth value. The
two simple cases are: (1) p does not appear in any disjunction in D: Then p must
be false in every minimal model. (2) p appears as a (non-disjunctive) fact in D:
Then p must be true in all minimal models.

The difficult case is when p appears in one or more proper disjunctions. Then it
can be true or false, and we backtrack over the different possibilities (the backtrack-
ing is simulated with local variables and “call by value” parameters in Figure 3,
in the actual implementation, several stacks are used). The model construction is
based on the following theorem:

Theorem 5.8. Let D be a set of disjunctions of objective atoms, which does not
contain the empty disjunction false, and which does not contain two disjunctions A

16One “last minute” idea was to compute directly minimal models of F , which could be done
with an algorithm similar to the one shown in Figure 3. This might relieve us from the need to
consider exponentially many interpretations, but depending on the given rules, it might backtrack

over even more different cases. Improvements in this direction are subject of future research.
17The procedure modgen shown in Figure 3 can assign “false” to additional (non-critical) objective
atoms, if this is required as a reason for a critical atom being true.

ACM Transactions on Computational Logic, Vol. TBD, No. TBD, TBD 20TBD.

26 · Stefan Brass et al.

procedure modgen(D)
begin

I := ∅; /* Completely undefined interpretation */

modgen_rec(D, I);

end;

procedure modgen_rec(D, I)

begin
if all critical objective atoms have a truth value in I then

O := O ∪ {I};
else

select a critical objective atom p that is still undefined in I;

eliminate non-minimal disjunctions from D;
if p does not appear in a disjunction in D then

/* p is surely false */

modgen_rec(D, I ∪ {¬p});
else if p appears as a non-disjunctive fact in D then

/* p is surely true */

modgen_rec(D, I ∪ {p});
else

/* p can be false or true */

D′ :=
{
A \ {p} : A ∈ D

}
; /* Remove p from all disjunctions */

modgen_rec(D′, I ∪ {¬p});
for each disjunction p1 ∨ . . . ∨ pi−1 ∨ p ∨ pi+1 ∨ . . . ∨ pn ∈ D do

I′ := I ∪ {p,¬p1, . . . ,¬pi−1,¬pi+1, . . . ,¬pn};
D′ :=

{
A \ {p1, . . . , pi−1, pi+1, . . . , pn} : A ∈ D

}
∪ {p};

modgen_rec(D′, I′);
end;

Fig. 3. Minimal Model Generator

and A′, such that A ⊂ A′ (i.e. A′ is non-minimal). Let I be a partial interpretation
such that atoms interpreted as false do not appear in D and atoms interpreted as
true appear as facts in D. Let p be an atom that appears in the proper disjunction

p1 ∨ · · · ∨ pi−1 ∨ p ∨ pi+1 ∨ · · · ∨ pn

(and possibly more such disjunctions). Then

(1) There is a minimal model of D that extends I and interprets p as false.
(2) There is a minimal model of D that extends I and interprets p as true and

p1, . . . , pi−1, pi+1, . . . , pn as false.

Proof. See Appendix D.

First, p can be false. In order to ensure that the theorem is again applicable for
the next atom, we eliminate p from all disjunctions in D (which also might eliminate
further disjunctions that now become non-minimal). Alternatively, p can be true.
However, p can only be true in a minimal model if for one of the disjunctions in
which p appears, all the remaining atoms are false. This ensures that there is
a reason why p must be true. Again, the assigned truth values are reflected by
changing the set of disjunctions: p is added as a fact and p1, . . . , pi−1, pi+1, . . . , pn

are removed from all disjunctions. This might make disjunctions in D non-minimal,
they are removed with the same overlap counting technique as shown in Figure 1.
ACM Transactions on Computational Logic, Vol. TBD, No. TBD, TBD 20TBD.

Super Logic Programs · 27

In this way, assumed truth values are immediately propagated in the disjunctions,
which often makes truth values of further critical atoms unique.

The algorithm can also be understood as applying a generalization of Clark’s
completion to disjunctions: One treats the disjunction p1 ∨ · · · ∨ pn like the n rules

pi ← ¬p1 ∧ · · · ∧ ¬pi−1 ∧ ¬pi+1 ∧ · · · ∧ ¬pn

and then applies the standard completion (which basically translates ← to ↔).
Whereas in general, Clark’s completion does not correspond to minimal models,
in this particular case, the completion enforces exactly the minimal models [Brass
et al. 1999]. For instance, suppose that p appears in the disjunctions p ∨ q and
p ∨ r ∨ s. Then the completion contains the formula

p↔ ¬q ∨ (¬r ∧ ¬s).

The above model generation algorithm distinguishes now three cases:

(1) p is false. Then it is removed from the disjunctions, so q and r∨s are assumed.
(2) p is true and q is false.
(3) p is true and r and s are both false.

In summary, nice features of the algorithm are:

(1) It never runs into dead ends: All assumed truth values are indeed possible.
(2) No additional minimality test for the generated models is needed.
(3) It can generate partial minimal models, i.e. truth value assignments for any

subset of the atoms that can be extended to minimal models.
(4) The space complexity is polynomial in the size of the input disjunctions.

On the negative side, the algorithm may generate the same model several times.

5.7 Query Evaluation

Queries are written in the form

? p(X), q(X,b), not r(X).

They are internally handled by adding a rule with the special predicate $answer in
the head:

$answer(X) <- p(X), q(X,b), not r(X).

It is also possible to specify the answer variables explicitly, e.g.

? X: q(X,Y).

Then only values for X will be printed:

$answer(X) <- q(X,Y).

With these additional rules, the hyperresolution fixpoint is computed as usual.
When positive reduction is applied, and when minimal models are generated, con-
ditional facts that contain $answer in the head are ignored. Conditional facts in
the residual program with only $answer literals in the head correspond to possi-
ble answers. Their conditions are evaluated in each of the models in N �. If the
condition is true in all Inot ∈ N �, the corresponding answer is printed.

ACM Transactions on Computational Logic, Vol. TBD, No. TBD, TBD 20TBD.

28 · Stefan Brass et al.

Note that disjunctive answers are possible. E.g. consider the program

p(a) | p(b).

Then the answer for the query ? p(X) will be X=a | X=b. This means that the
disjunction of the corresponding instances of the query follows from the static se-
mantics of the program.

The implementation can also print the fixed point N � of ΘF , i.e. all static inter-
pretations of the default negation literals. Normally, only the truth values of the
critical negations are shown, but one can add further default negation literals if one
wants to see their truth values. This is done by adding a command of the form

! not p(a).

6. RELATED WORK

6.1 Extended Logic Programs by Lloyd and Topor

The first attempt to generalize the syntax of logic programs is due to Lloyd and
Topor [Lloyd and Topor 1984; 1985; 1986]. They allow arbitrary formulae in bodies
of clauses, which is especially important in order to map database queries and view
definitions into logic programming rules. However, the head of a rule must still
be a single atom. Furthermore, their semantics differentiates between an atom
occurring in the head and its negation occurring in the body, whereas our semantics
is invariant under logical equivalences.

Lloyd and Topor use Clark’s completion for defining the meaning of default nega-
tion, whereas the static semantics extends the well-founded semantics. We have not
yet treated quantifiers in the formulae of knowledge bases, but all other normal-
ization transformations of Lloyd and Topor work as well for our semantics. This
means that if Lloyd and Topor had used the WFS instead of Clark’s completion,
they could have come up with a special case of the static semantics (restricted to
formulae of the form A←W).

6.2 Disjunctive Stable Semantics

The disjunctive stable semantics (answer sets) is the most popular semantics pro-
posed earlier for disjunctive programs [Przymusinski 1990; Gelfond and Lifschitz
1991]. Its main problem is that it is inconsistent for some very intuitive programs,
such as:

work ← not tired.

sleep ← not work.

tired ← not sleep.

angry ← not paid, work.

paid ← .

Here we should at least be able to conclude paid and not angry, and the static
semantics gives us just that. In general, the static semantics is always consistent
for disjunctive logic programs.

In addition to the fact that stable semantics is contradictory for some very simple
and natural programs, it also suffers from a number of structural problems. In
ACM Transactions on Computational Logic, Vol. TBD, No. TBD, TBD 20TBD.

Super Logic Programs · 29

particular, the stable semantics is not relevant, i.e., answering a query does not
depend only on the call graph below that query ([Brass and Dix 1997; Dix 1995a]),
and it is not compositional (or modular), a highly desirable property for software
engineering and KR [Bry 1996; Bugliesi et al. 1994; Teusink and Etalle 1996]. The
static semantics has both of these nice structural properties. Thus methods for
query optimization based on the dependency graph can be applied and may reduce
the overall computation.

Needless to say, we do not claim that the static semantics should replace the
disjunctive stable semantics. Like it is the case with normal logic programs, there
are some application domains for which the disjunctive stable semantics seems to
be better suited to represent their intended meaning [Cholewiński et al. 1995].
However, we do claim that the static semantics is a very natural and well-behaved
extension of the well-founded semantics to disjunctive programs and beyond. Be-
cause of the importance of the well-founded semantics for normal programs, it is of
great importance to find the its proper extension(s) to more general theories.

6.3 Well-Founded Circumscriptive Semantics

Our work is also related to the approach presented in [You and Yuan 1993] where
the authors defined the well-founded circumscriptive semantics for disjunctive pro-
grams. They introduced the concept of minimal model entailment with fixed in-
terpretation of the default atoms and defined the semantics of T as the minimal
models of T which satisfy the limit of the following sequence: W 0 = ∅ and

Wn+1 := Wn ∪ {¬not p : T ∪Wn |= p} ∪ {not p : T ∪Wn |=min ¬p}

(this is a translation into our own notation). In the definition of the static fixpoint
operator ΨT (see Proposition 2.10), negations of default negations are not directly
assumed. But in contrast to the well-founded circumscriptive semantics which
only assumes the default negation of propositions, the static semantics assumes
the default negation of arbitrary propositions. With Proposition 2.4 it follows
that if T ∪ {not F : Tn |=min ¬F} implies F , then also ¬not F is contained
in Tn+1 = ΨT (Tn). With this, it is easy to see that Wn ⊆ Tn. So the default
negation part of the well-founded circumscriptive semantics is weaker than that of
the static semantics. The reason is that the static semantics assumes negations
of arbitrary formulae, not only of atoms. E.g. in Theorem 3.1 it is really needed
that also implications between default negation atoms are assumed. For instance,
in Example 4.4, the static semantics first derives not q ↔ not r and then not p
follows. However, in the well-founded circumscriptive semantics the limit of the
sequence Wn is the empty set: Nothing becomes known about the default negation
literals.

Another difference between the two approaches is that the well-founded circum-
scriptive semantics permits only minimal models of the objective atoms. The static
semantics considers minimal models when deciding which default negations to as-
sume, but if one does not use default negation, one gets standard propositional
logic. For instance, let P = {p}. If also q belongs the language, the well-founded
circumscriptive semantics implies ¬q and not q, whereas the static semantics implies
not q, but not ¬q. Of course, both semantics imply p and ¬not p.

ACM Transactions on Computational Logic, Vol. TBD, No. TBD, TBD 20TBD.

30 · Stefan Brass et al.

6.4 Disjunctive Logic Programming Systems

In addition to the DisLoP project in Koblenz, there is a similar project on dis-
junctive logic programming at the Theoretical University of Vienna called dlv (see
[Eiter et al. 1997; 1998]). While DisLoP concentrated on a disjunctive extension
of the well-founded semantics (D-WFS), dlv computes stable models (answer sets)
both for the disjuctive and the non-disjunctive case. It is a knowledge representa-
tion system, which offers front-ends to several advanced KR formalisms. The kernel
language, which extends disjunctive logic programming by true negation and in-
tegrity constraints, allows for representing complex knowledge base problems in a
highly declarative fashion [Eiter et al. 1998]. The project also incorporates modu-
lar evaluation techniques along with linguistic extensions to deal with quantitative
information [Buccafurri et al. 1997].

6.5 Nested Rules

Recently, Lifschitz et. al. introduced nested expressions in the heads and bodies of
rules ([Lifschitz et al. 1998]). Also nested negation as failure is supported, which
is excluded in super logic programs. Their semantics is based on answer sets (also
called stable models), whereas in our framework, we build upon the well-founded
semantics.

In [Greco et al. 1998] nested rules are also allowed in rule heads. The authors
show that, in terms of expressive power, they can capture the full second level of
the polynomial hierarchy (which is also true for other approaches).

6.6 Other Logics

There are also successful approaches to generalize logic programming languages
by using intuitionistic, linear, or higher order logics (e.g. [Hodas and Miller 1994;
Nadathur and Miller 1990]). These extensions seem somewhat orthogonal to our
treatment of negation in the context of arbitrary propositional formulas.

7. CONCLUSION

We introduced the class of super programs as a subclass of the class of all non-
monotonic knowledge bases. We showed that this class of programs properly ex-
tends the classes of disjunctive logic programs, logic programs with strong (or “clas-
sical”) negation and arbitrary propositional theories. We demonstrated that the
semantics of super programs constitutes an intuitively natural extension of the se-
mantics of normal logic programs. When restricted to normal logic programs, it
coincides with the well-founded semantics, and, more generally, it naturally corre-
sponds to the class of all partial stable models of a normal program.

Subsequently, we established two characterizations of the static semantics of finite
super programs, one of which is syntactic and the other model-theoretic, which
turned out to lead to procedural mechanisms allowing its computation. Due to
the restricted nature of super programs, these characterizations are significantly
simpler than those applicable to arbitrary non-monotonic knowledge bases.

We used one of these characterizations as a basis for the implementation of a
query-answering interpreter for super programs which is available on the WWW.
We noted that while no such computational mechanism can be efficient, due to the
ACM Transactions on Computational Logic, Vol. TBD, No. TBD, TBD 20TBD.

Super Logic Programs · 31

inherent NP-hardness of the problem of computing answers to just positive dis-
junctive programs, they can become efficient when restricted to specific subclasses
of programs and queries. Moreover, further research may produce more efficient
approximation methods.

The class of non-monotonic knowledge bases, and, in particular, the class of su-
per programs, constitutes a special case of a much more expressive non-monotonic
formalism called the Autoepistemic Logic of Knowledge and Beliefs, AELB, intro-
duced earlier in [Przymusinski 1994; 1998]. AELB isomorphically includes the well-
known non-monotonic formalisms of Moore’s Autoepistemic Logic and McCarthy’s
Circumscription. Via this embedding, the semantics of super programs is clearly
linked to other well-established non-monotonic formalisms.

The proposed semantic framework for super programs is sufficiently flexible to
allow various application-dependent extensions and modifications. We have already
seen in Theorem 2.16 that by assuming an additional axiom we can produce the
stable semantics instead of the well-founded semantics. By adding the distribu-
tive axiom for conjunction we can obtain a semantics that extends the disjunctive
stationary semantics of logic programs introduced in [Przymusinski 1995a]. Many
other modifications and extensions are possible including variations of the notion
of a minimal model resulting in inclusive, instead of exclusive, interpretation of
disjunctions [Przymusinski 1995b].

APPENDIX

A. KRIPKE MODELS OF STATIC EXPANSIONS

Before we prove the model-theoretic characterization (Theorem 4.3), we prove here
a Theorem which easily allows us to construct models of the least static expansion
from Kripke structures. It is used as a lemma in the proof to Theorem 4.3, but
it is of its own interest. Although we later need only super programs and reduced
models, we allow in this section arbitrary belief theories and consider full models.

In order to be precise and self-contained, let us briefly repeat the definition of
Kripke structures [Marek and Truszczyński 1993]. Since our axioms entail the
normality axiom, it suffices to consider normal Kripke structures:

Definition A.1 (Kripke Structure). A (normal) Kripke structure is a triple K =
(W,R, V) consisting of

(1) a non-empty set W , the elements w ∈W are called worlds,
(2) a relation R ⊆W×W , the “visibility relation” (if R(w,w′) we say that world w

sees world w′), and
(3) a mapping V :W → OBJ , which assigns to every world w a valuation Iobj =

V (w) of the objective atoms AtL.

Definition A.2 (Truth of Formulas in Worlds). The validity of a formula F in a
world w given Kripke structure K = (W,R, V) is defined by

(1) If F is an objective atom (proposition) p ∈ AtL, then (K, w) |= F :⇐⇒
V (w) |= p.

(2) If F is a negation ¬G, then (K, w) |= F :⇐⇒ (K, w) 6|= G.
ACM Transactions on Computational Logic, Vol. TBD, No. TBD, TBD 20TBD.

32 · Stefan Brass et al.

(3) If F is a disjunction G1 ∨G2, then

(K, w) |= F :⇐⇒ (K, w) |= G1 or (K, w) |= G2

(and further propositional connectives as usual).
(4) If F is a default negation atom not (G), then

(K, w) |= F :⇐⇒ for all w′ ∈W with R(w,w′): (K, w′) 6|= G.

Now given such a Kripke structure K, we get from every world w a propositional
interpretation I = K(w) of Lnot , i.e. a valuation of AtL ∪

{
not (F) : F ∈ Lnot

}
:

We simply make an objective or belief atom A true in I iff (K, w) |= A. Since
the propositional connectives are defined in a Kripke structure like in standard
propositional logic, we obviously have I |= F ⇐⇒ (K, w) |= F for all F ∈ Lnot .

Theorem A.3 (Kripke Structures Yield Static Expansions). Let T be
an arbitrary belief theory and K = (W,R, V) be a Kripke structure satisfying

(1) For every w ∈W , there is a w′ ∈W with R(w,w′) (consistency).
(2) For every w ∈ W , (K, w) |= T , i.e. the interpretation I = K(w) is a model

of T .
(3) For every w,w′ ∈W with R(w,w′), the interpretation I = K(w′) is a minimal

model of T (“only minimal models are seen”).

Then T � := {F ∈ Lnot : for every w ∈W : (K, w) |= F} is a static expansion of T .

Proof. We have to show that T � = Cnnot

(
T ∪ {not F : T � |=min ¬F}

)
. The

fact that T ⊂ T � follows immediately from the second assumption. First we prove
that T � is closed under Cnnot :

(1) Consistency Axioms: Let any w ∈ W be given. The first part (K, w) |=
not (false) is trivial, because for any w′ ∈ W we have (K, w′) 6|= false. Second,
we have to show (K, w) |= ¬not (true). By the first requirement of the theorem,
there is w′ ∈ W with R(w,w′). Now (K, w′) |= true, therefore (K, w) 6|=
not (true), i.e. (K, w) |= ¬not (true).

(2) Distributive Axiom: We have to show that for all formulas F,G ∈ Lnot and
all w ∈ W that the distributive axiom holds in w: (K, w) |= not (F ∨ G) ↔
Not(F)∧ not (G). This follows simply from applying the definitions: (K, w) |=
not (F ∨G) ⇐⇒ for all w′ ∈ W with R(w,w′): (K, w′) 6|= F ∨G ⇐⇒ for all
w′ ∈ W with R(w,w′): (K, w′) 6|= F and (K, w′) 6|= G ⇐⇒ (K, w) |= not (F)
and (K, w) |= not (G), ⇐⇒ (K, w) |= not (F) ∧ not (G).

(3) Invariance Inference Rule: Let F ↔ G ∈ T �, i.e. for every w ∈ W we have
(K, w) |= F ⇐⇒ (K, w) |= G. But then also (K, w) |= not (F ↔ G) holds for
every w ∈ W since (K, w′) 6|= F ⇐⇒ (K, w′) 6|= G holds for every w′ ∈ W
with R(w,w′).

(4) Closure under propositional consequences: Let F ∈ Lnot a formula which is
a propositional consequence of F1, . . . , Fn ∈ T �. Now Fi ∈ T � means that
(K, w) |= Fi for every w ∈ W . But the formulas valid in one world are closed
under propositional consequences, since the meaning of the propositional con-
nectives is defined as in the standard case. So we get (K, w) |= F , and thus
F ∈ T �.

ACM Transactions on Computational Logic, Vol. TBD, No. TBD, TBD 20TBD.

Super Logic Programs · 33

Now suppose that T � |=min ¬F , i.e. F is false in all minimal models of T �. We have
to show that not (F) ∈ T �, i.e. (K, w) |= not (F) for every w ∈ W . So we have to
show (K, w′) 6|= F for every w′ ∈W with R(w,w′).

Let such a w′ be given, and let I = K(w′). By the last condition of the theorem,
we know that I is a minimal model of T . By construction, it is also a model of T �,
and since T ⊆ T �, there can be no smaller model. Thus, I is a minimal model
of T � and therefore satisfies ¬F , i.e. (K, w′) 6|= F .

Thus we have shown that Cnnot

(
T ∪{not F : T � |=min ¬F}

)
⊆ T �. The converse

follows from assumption (3) and (4) of the preceding definition.

This theorem gives us a simple way to construct models of the least static ex-
pansion T : Obviously, for every w ∈ W , the interpretation I = K(w) is a model
of T �. But the least static expansion is a subset of every other static expansion,
i.e. T ⊆ T �, and therefore we have I |= T .

Corollary A.4. If a Kripke structure K = (W,R, V) satisfies the conditions
of Theorem A.3, then for every w ∈W , the interpretation I = K(w) is a model of
the least static expansion T .

Example A.5. Let us consider the knowledge base of Example 2.13:

not broken → runs.
not fixed → broken.

Here, we can construct a Kripke model K with only one world w with the val-
uation Iobj = {¬fixed , broken, ¬runs}. We let this world “see” itself, i.e. R :={
(w,w)

}
. Then not fixed and not runs are true in (K, w), but not broken is false.

It is, however, also possible to add a world w′ with a non-minimal valuation I ′obj =
{fixed , broken, runs}. Both worlds can only see w, i.e. R :=

{
(w,w), (w′, w)

}
,

because all seen worlds must be minimal models. This example shows that the
static semantics does not imply ¬fixed , but it of course implies not fixed . So the
non-monotonic negation is cleanly separated from the classical negation.

Example A.6. Let us consider the theory P := {p← not (p)} corresponding to a
well-known logic program. We claimed in Section 4 that the least static expansion P
of this program has infinitely many different models. But let us first look a Kripke
structure which generates only two models:

1m
¬p

2m
p

-�

I.e. the set of worlds W is {1, 2}, the visibility relation R is
{
(1, 2), (2, 1)

}
(each

world can see the other one, but not itself), and p is false in world 1 and true in
world 2. In world 1, not (p) is false, and in world 2, it is true.

But there are also quite different Kripke models. The construction in Section 4
will yield:

ACM Transactions on Computational Logic, Vol. TBD, No. TBD, TBD 20TBD.

34 · Stefan Brass et al.

1m
¬p

-

��

@@R
2m
p

�

3m�
��
p

�
�

�	

@
@
@R

Note that in world 3, the default atom not (p) is false, so the interpretation of this
world is non-minimal (there is no need to make p true). Thus, there can be no
incoming edges.

Let us now finally present the Kripke structure which yields infinitely many
models:

1m
¬p

? ?

2m
p

� 3m
¬p

� 4m
p

� 5m
¬p

� � . . .

Now we of course have to explain that different worlds really yield different in-
terpretations. The trick is that world 1 is the only world in which neither not (p)
nor not (¬p) are true. Now other worlds can be identified with the number of nested
beliefs necessary to get to world 1. So the formula

Bn−1
(
¬not (p) ∧ ¬not (¬p)

)
∧ Bn−2

(
not (p) ∨ not (¬p)

)
is true in world n ≥ 2, but in no other world. Each world gives rise to one full model
(as explained in Theorem A.3 and Corollary A.4), so the theory {p← not (p)} really
has infinitely many full models.

B. PROOF OF THE MODEL-THEORETIC CHARACTERIZATION (THEOREM 4.3)

We will first prove that a reduced model I = Iobj ∪ Inot with I |= P and Inot ∈ N �

can be extended to a full model I of the least static expansion P . Of course, this
proof is based on the Kripke structure already mentioned in Section 4:

Definition B.1 (Standard Kripke Model). Let P ⊆ L∗not be a super program.
We call the Kripke structure K = (W,R, V) defined as follows the “standard Kripke
model” of P . Let N � be the greatest fixpoint of ΘP . Then:

(1) The set of worlds W are the reduced interpretations I = Iobj ∪ Inot we are
interested in, i.e. satisfying I |= P and Inot ∈ N �.

(2) R(I, I ′), i.e. I sees I ′ iff I ′ is a minimal model of P and for all p1, . . . , pn ∈ AtL:

I |= not (p1 ∧ · · · ∧ pn) =⇒ I ′ |= ¬p1 ∨ · · · ∨ ¬pn.

(3) The valuation V (I) of a reduced interpretation I = Iobj ∪ Inot is the objective
part Iobj .

ACM Transactions on Computational Logic, Vol. TBD, No. TBD, TBD 20TBD.

Super Logic Programs · 35

As before, we denote by K(I) the full interpretation satisfying the default atoms
true in world I, i.e.

K(I) |= not (F) ⇐⇒ for all I ′ ∈W with R(I, I ′): (K, I ′) |= ¬F.

Now the reduced interpretation I = Iobj ∪ Inot assigns a truth value to the atoms
not (p1 ∧ · · · ∧ pn) and the Kripke structure also assigns a truth value to them. But
the construction guarantees that the truth values always agree:

Lemma B.2. For I = (Iobj ∪ Inot) ∈W and all p1, . . . , pn ∈ AtL:

K(I) |= not (p1 ∧ · · · ∧ pn) ⇐⇒ Inot |= not (p1 ∧ · · · ∧ pn).

Proof. First we show the direction ⇐= : Let Inot |= not (p1∧ · · ·∧pn). By the
construction, I ′ |= ¬p1 ∨ · · · ∨ ¬pn holds for all worlds I ′ seen by I, i.e. satisfying
R(I, I ′). Thus, K(I) |= not (p1 ∧ · · · ∧ pn).

Now we prove =⇒ by contraposition: Let Inot 6|= not (p1 ∧ · · · ∧ pn). Since
N � is a fixpoint of ΘP , we have N � = ΠP

(
ΩP (N �)

)
. By the definition of ΠP ,

there is a non-empty O′ ⊆ ΩP (N �) such that the default atoms true in Inot are the
intersection of the corresponding true negations in O′. Thus, there is I ′obj ∈ O′ with
I ′obj |= p1 ∧ · · · ∧ pn. Furthermore, for all q1, . . . , qm with Inot |= not (q1 ∧ · · · ∧ qm),
we have I ′obj |= ¬q1 ∨ · · · ∨ ¬qm. Now by the definition of ΩP , there is a I ′not ∈ N �

such that I ′ = I ′obj ∪ I ′not is a minimal model of P . It follows that R(I, I ′) holds,
i.e. I sees a world with valuation I ′obj , in which ¬p1 ∨ · · · ∨ ¬pn is false. Thus
K(I) 6|= not (p1 ∧ · · · ∧ pn).

Lemma B.3. For all reduced interpretations I ∈ W , the full interpretation I =
K(I) is a model of the least static expansion P .

Proof. We show that the conditions of Theorem A.3 are satisfied:

(1) We first have to show that every world I = Iobj ∪Inot sees at least one world I ′.
This follows from Inot ∈ N �, i.e. Inot ∈ ΠP

(
ΩP (N �)

)
. By the definition of ΠP

there is a non-empty subset O ⊆ ΩP (N �) such that every I ′obj ∈ O satisfies for
all p1, . . . , pn ∈ AtL:

Inot |= not (p1 ∧ · · · ∧ pn) =⇒ I ′obj |= ¬p1 ∨ · · · ∨ ¬pn.

Now by the definition of ΩP , there is a I ′not ∈ N � such that I ′ = I ′obj ∪ I ′not is
a minimal model of P . But then R(I, I ′) holds.

(2) The reduced interpretations I ∈ W satisfy the program P . By Lemma B.2, I
and I = K(I) agree on the atoms occurring in P . Thus, also I is a model of P .

(3) For every (I, I ′) ∈ R, the reduced interpretation I ′ is a minimal model of P .
If the full interpretation I ′ = K(I ′) were not a minimal model of P , i.e. there
were a smaller model Î ′ of P , then its reduct Î ′ would be a smaller model
than I ′ (using again Lemma B.2 in order to conclude that I ′ and I ′, and thus
I ′ and Î ′ agree on the default atoms).

Now Theorem A.3 allows us to conclude that the formulas true in all worlds of W
are a static expansion of P . Of course, every I = K(I) is a model of this static
expansion. But the least static expansion P is a subset, so I is also a model of P .

Lemma B.4. not (¬F1∧· · ·∧¬Fm∧G) `not not (F1)∧· · ·∧not (Fm)→ not (G).
ACM Transactions on Computational Logic, Vol. TBD, No. TBD, TBD 20TBD.

36 · Stefan Brass et al.

Proof. This is a simple exercise in applying the axioms of Lnot : First, we get

not
(
F1 ∨ · · · ∨ Fm ∨ (¬F1 ∧ · · · ∧ ¬Fm ∧G)

)
↔ not (F1 ∨ · · · ∨ Fm ∨G)

by the invariance inference rule. Then we apply on both sides the distributive
axiom:

not (F1) ∧ · · · ∧ not (Fm) ∧ not (¬F1 ∧ · · · ∧ ¬Fm ∧G)
↔ not (F1) ∧ · · · ∧ not (Fm) ∧ not (G).

This implies propositionally:

not (F1) ∧ · · · ∧ not (Fm) ∧ not (¬F1 ∧ · · · ∧ ¬Fm ∧G)→ not (G).

Now we insert our precondition and get the required formula.

Lemma B.5. Let P be finite, I be a full model of the least static expansion P ,
and let I = Iobj ∪ Inot be its reduct. Then Inot ∈ N �.

Proof. We show by induction on k that the default part Inot of a model I of
the least static expansion P is contained in Θk

P (NOT). For k = 0 this is trivial,
since NOT is the complete set of default interpretations.

Let us assume that Inot ∈ Θk
P (NOT). We have to show that Inot is not “filtered

out” by one further application of ΘP . Let N := Θk
P (NOT), O := ΩP (N), and

O′ :=
{
Iobj ∈ O : for every default atom not (p1 ∧ · · · ∧ pn):

if Inot |= not (p1 ∧ · · · ∧ pn),
then Iobj |= ¬p1 ∨ · · · ∨ ¬pn

}
.

We will now show that O′ has the properties required in the definition of ΠP ,
namely we will show

Inot |= not (p1 ∧ · · · ∧ pn) ⇐⇒ for all I ′obj ∈ O′: I ′obj |= ¬p1 ∨ · · · ∨ ¬pn.

This implies that O′ is non-empty because for n = 0 the empty conjunction is
logically true. Because of the consistency axiom, Inot 6|= not (true). But then there
must be at least one I ′obj ∈ O′, because otherwise the “for all” on the right hand
side would be trivially true. Also the direction =⇒ follows trivially from the
construction.

Now we have to show that for every default atom not (p1∧· · ·∧pn) which is false
in Inot , there is I ′obj ∈ O′ with I ′obj 6|= ¬p1 ∨ · · · ∨ ¬pn. Let not (qi,1 ∧ · · · ∧ qi,ni

),
i = 1, . . . ,m, be all default atoms true in Inot (containing only the finitely many
objective propositions occurring in P). Since I |= P , the formula(m∧

i=1

not (qi,1 ∧ · · · ∧ qi,ni)
)
→ not (p1 ∧ · · · ∧ pn)

cannot be contained in P (it is violated by Inot and thus by I). But Lemma B.4
shows that the above formula would follow from

not
((m∧

i=1

(¬qi,1 ∨ · · · ∨ ¬qi,ni
)
)
∧ (p1 ∧ · · · ∧ pn)

)
.

Thus, this formula is also not contained in P . But the static semantics requires
that not (F) ∈ P if P |=min ¬F . So if not (F) 6∈ P , there must be a minimal
ACM Transactions on Computational Logic, Vol. TBD, No. TBD, TBD 20TBD.

Super Logic Programs · 37

model of P violating ¬F , i.e. satisfying F . In our case this means that there
is a minimal model I ′ of P with I ′ |= ¬qi,1 ∨ · · · ∨ ¬qi,ni

for i = 1, . . . ,m and
I ′ |= (p1 ∧ · · · ∧ pn), i.e. I ′ 6|= ¬p1 ∨ · · · ∨¬pn. But by our inductive hypothesis, the
default part I ′not of I ′ is contained in N , and thus the objective part I ′obj is in O.
Since I ′obj |= ¬qi,1 ∨ · · · ∨ ¬qi,ni , it is contained in O′. Thus, I ′obj is the required
element.

Now Theorem 4.3 follows directly from Lemma B.3 and Lemma B.5:

Theorem 4.3 (Model-Theoretic Characterization). Let P be a finite
super program:

(1) The operator ΘP is monotone (in the lattice of subsets of NOT with the order
⊇) and thus its iteration beginning from the set NOT (all interpretations of
the default atoms, the bottom element of this lattice) has a fixed point N �.

(2) N � consists exactly of all Inot ∈ NOT that are default parts of a full model I
of P .

(3) A reduced interpretation Iobj ∪ Inot is a reduct of a full model I of P iff Inot ∈
N � and Iobj ∪ Inot |= P .

Proof. The monotonicity of ΘP is obvious: Let N1 ⊇ N2 (since we are working
with inverse set inclusion, this means that N1 is below N2 in the lattice). Then we
get ΩP (N1) ⊇ ΩP (N2): any Iobj ∈ ΩP (N2) is based on a interpretation Inot ∈ N2,
and since N2 ⊆ N1, we also have Iobj ∈ ΩP (N1). Now let O1 := ΩP (N1) and
O2 := ΩP (N2). From O1 ⊇ O2 it also follows that ΘP (N1) = ΠP (O1) ⊇ ΠP (O2) =
ΘP (N2), since any O′ ⊆ O2 used to construct Inot ∈ ΠP (O2) is also a subset of O1.

Part 2 means that for every Inot ∈ NOT :

There is a full model I of P with belief part Inot ⇐⇒ Inot ∈ N �.

The direction =⇒ is Lemma B.5, and the direction ⇐= follows from Lemma B.3
and the fact that any default interpretation Inot can be extended to a reduced
model I = Iobj ∪ Inot of P (by making all objective atoms AtL true in Iobj). But
then I ∈W .

Part 3 requires that for every reduced interpretation I = Iobj ∪ Inot :

There is a full model I of P with reduct I
⇐⇒ Inot ∈ N � and Iobj ∪ Inot |= P .

Here the direction ⇐= is Lemma B.3 and the direction =⇒ follows trivially from
Lemma B.5 and P ⊆ P .

Remark B.6. Note that we have used the finiteness of P only in the proof to
Lemma B.5. So even in the infinite case, our model-theoretic construction yields
models of the least static expansion, but it does not necessarily yield all reduced
models. One example, where a difference might occur, is P = {qi ∨ ri : i ∈
IN}∪{ri∨p : i ∈ IN}. Our model-theoretic construction excludes an interpretation
which makes all not (qi) true and not (p) false. It seems plausible that P allows
such models, because it would need an “infinite implication” to exclude them. But
this question needs further research.

ACM Transactions on Computational Logic, Vol. TBD, No. TBD, TBD 20TBD.

38 · Stefan Brass et al.

C. PROOF OF FIXPOINT CHARACTERIZATION (THEOREM 3.1)

We prove Theorem 3.1 by using the model-theoretic characterization. More specif-
ically, we show that formulas not (E1) ∧ · · · ∧ not (Em) → not (E0) contained
in Pn characterize exactly the default interpretations remaining after n applica-
tions of ΘP .

First we prove the following lemma which characterizes minimal models of special
knowledge bases.

Lemma C.1. Let T be any knowledge base and Tnot be a set of formulae which
contain only default atoms. Minimal models of T ∪Tnot are precisely those minimal
models of T which satisfy Tnot .

Proof. Let I be a minimal model of T ∪Tnot . Of course, I is a model of T and
of Tnot . Now suppose that there is a smaller model I ′ of T . Since I and I ′ do not
differ in the interpretation of default atoms, I ′ is also a model of Tnot , and thus a
model of T ∪ Tnot . But this contradicts the assumed minimality of I.

Let now I be a minimal model of T which also satisfies Tnot . Clearly, I is a
model of T ∪Tnot . Since I ′ is also a model of T , the existence of a smaller model I ′
would contradict the minimality of I.

Next, we need the monotonicity of the sequence Pn:

Lemma C.2. For every n ∈ IN: Pn ⊆ Pn+1.

Proof. The propositional consequence operator Cn is monotonic and has no
influence on the minimal models, so it suffices to show that the sequence P̂0 := P ,

P̂n+1 := P ∪ {not E1 ∧ · · · ∧ not Em → not E0 :
P̂n |=min ¬E1 ∧ · · · ∧ ¬Em → ¬E0}

increases monotonically.
The proof is by induction on n. The case n = 0 is trivial. For larger n, the

inductive hypothesis gives us P̂n ⊇ P̂n−1 and all formulas in P̂n\P̂n−1 contain only
default atoms. So Lemma C.1 yields that the minimal models of P̂n are a subset
of the minimal models of P̂n−1, and therefore P̂n−1 |=min ¬E1 ∧ · · · ∧ ¬Em → E0

implies P̂n |=min ¬E1 ∧ · · · ∧ ¬Em → E0, i.e. P̂n+1 ⊇ P̂n.

Next, we have the small problem that we must in principle look at infinitely many
default negation atoms, although we have required our program to be finite. For
instance, not (p), not (p∧ p), and so on are different default atoms, and in general,
default interpretations could assign different truth values to them. However, already
P 1 excludes this:

Definition C.3 (Regular Model). Let a super program P be given. A default
interpretation Inot is called regular wrt P iff

(1) If Inot |= not (p1 ∧ · · · ∧ pn) and {p1, . . . , pn} ⊆ {q1, . . . , qm}, then Inot |=
not (q1 ∧ · · · ∧ qm).

(2) Inot |= not (p1 ∧ · · · ∧ pn) if some pi ∈ AtL does not occur in P .

Lemma C.4. All Inot ∈ Ni, i ≥ 1 are regular.

ACM Transactions on Computational Logic, Vol. TBD, No. TBD, TBD 20TBD.

Super Logic Programs · 39

Proof. (1) Every interpretation I satisfies ¬(p1 ∧ · · · ∧ pn)→ ¬(q1 ∧ · · · ∧ qm),
if {p1, . . . , pn} ⊆ {q1, . . . , qm}. So not (p1 ∧ · · · ∧ pn) → not (q1 ∧ · · · ∧ qm) is
contained in all P i, i ≥ 1.

(2) Every minimal model I of P satisfies ¬(p1 ∧ · · · ∧ pn) if some pi does not occur
in P (because I |= ¬pi). But then not (p1 ∧ · · · ∧ pn) ∈ P 1, and by Lemma C.2
it is contained also in every Pn, n ≥ 1.

Lemma C.5. Let Pn
not be the set of formulas of the form

not (E1) ∧ · · · ∧ not (Em)→ not (E0)

contained in Pn. Furthermore, let N0 := NOT and Nn+1 := ΘP (Nn). Then for
every I = Iobj ∪ Inot with I |= P : Inot |= Pn

not ⇐⇒ Inot ∈ Nn.

Proof. The proof is by induction on n. The case n = 0 is trivial, since N0 =
NOT and P 0 = P and we anyway consider only models of P .

(1) “ ⇐= ”: Let Inot ∈ Nn+1 = ΘP (Nn). We have to show that Inot |= Pn+1
not .

Suppose that this were not the case, i.e. Inot violates a formula not E1 ∧ · · · ∧
not Em → not E0 contained in Pn+1

not . This means that Inot |= not Ei for i =
1, . . . ,m, but Inot 6|= not E0. By the definition of ΘP , there must be an objective
model I ′obj ∈ ΩP (Nn) (contained in the non-empty O′) such that I ′obj |= ¬Ei

for i = 1, . . . ,m and I ′obj 6|= ¬E0. By the definition of ΩP , there must be a
default interpretation I ′not ∈ Nn such that I ′ = I ′obj ∪ I ′not is a minimal model
of P . Then the inductive hypothesis gives us I ′not |= Pn

not , and Lemma C.1
allows us to conclude that I ′ is a minimal model of P ∪ Pn

not and thus of Pn.
But this means that Pn 6|=min not E1 ∧ · · · ∧ not Em → not E0. Since I ′ is a
model of P , the critical formula cannot be contained in P (if E0 is the empty
conjunction and P is not affirmative, this would be syntactically possible). And
finally, it cannot be introduced by the Cn-operator, since I ′ is a model of its
preconditions. Thus, it is impossible that not E1 ∧ · · · ∧ not Em → not E0 is
contained in Pn+1

not .
(2) “ =⇒ ”: Let Inot |= Pn+1

not . By Lemma C.2 we have Pn
not ⊆ Pn+1

not , so Inot |=
Pn

not , and the inductive hypothesis gives us Inot ∈ Nn. We have to show that
Inot is not “filtered out” by one further application of the ΘP -operator. Let

O′ :=
{
I ′obj ∈ ΩP (Nn) : I ′obj |= ¬E for all E with Inot |= not E

}
.

We have to show that for every E0 with Inot 6|= not E0 there is an I ′obj ∈ O′
with I ′obj 6|= ¬E0. This especially implies that O′ is non-empty, since Inot 6|=
not (true), which is obviously contained in Pn+1

not .
Now suppose that this were not the case, i.e. there were an E0 such that there
is no I ′obj ∈ O′ with I ′obj 6|= ¬E0.
Let not (Ei), i = 1, . . . ,m, be all belief atoms which are true in Inot and
satisfy the following conditions (in order to make the set finite): First, the
conjunctions Ei contain only propositions p ∈ AtL occurring in P (which was
required to be finite), and second, each Ei contains each proposition at most
once.

ACM Transactions on Computational Logic, Vol. TBD, No. TBD, TBD 20TBD.

40 · Stefan Brass et al.

We now prove that not E1 ∧ · · · ∧ not Em → not E0 is contained in Pn+1
not ,

which contradicts Inot |= Pn+1
not . Let I ′ = I ′obj ∪ I ′not be any minimal model

of Pn. We have to show that it satisfies ¬E1 ∧ · · · ∧ ¬Em → ¬E0. The
induction hypothesis gives us I ′not ∈ Nn, and thus I ′obj ∈ ΩP (Nn). Suppose that
I ′obj 6|= ¬Ei for i = 1, . . . ,m, since otherwise the formula is trivially satisfied.
Since I ′ is a minimal model and Inot is regular, this means that I ′obj ∈ O′ (the
validity of ¬E1, . . . ,¬Em implies the validity of all other ¬E considered in the
construction of O′). But we have assumed that no element of O′ violates ¬E0,
thus I ′obj |= ¬E0.

Lemma C.6. Pn0 ⊆ P |L∗not .

Proof. We show Pn
not ⊆ P by induction on n (this implies the above statement

since P is closed under consequences and Pn0 ⊆ L∗not).
For n = 0 this is trivial since P ⊆ P . Now suppose that Pn |=min ¬E1 ∧ · · · ∧
¬Em → ¬E0. By Theorem 3.8 in [Brass et al. 1999] and the definition of Cnnot ,
P differs from P only by the addition of formulas containing only default atoms
plus propositional consequences. By the inductive hypothesis, Pn

not ⊆ P . Now
Lemma C.1 gives us that all minimal models of P are also minimal models of Pn,
and therefore P |=min ¬E1 ∧ · · · ∧ ¬Em → ¬E0, i.e. P |=min ¬E1 ∧ · · · ∧ ¬Em ∧E0.
This means that not (¬E1 ∧ · · · ∧ ¬Em ∧ E0) ∈ P , and by Lemma B.4 we get that
not E1 ∧ · · · ∧ not Em → not E0 is contained in P .

Now we can complete the proof of Theorem 3.1. First, a fixpoint is reached
after a finite number of iterations, because by Lemma C.4 we know that there are
only a finite number of “really different” default negation atoms, so after the first
iteration (which ensures the regularity) it suffices to consider a finite number of
implications not E1 ∧ · · · ∧ not Em → not E0, and the sets Pn are monotonically
increasing (Lemma C.2).

So we have Pn0
not = Pn0+1

not and thus Nn0 = Nn0+1 = N �. Now for any reduced
interpretation I = Iobj ∪ Inot : if I |= Pn0 , then I |= P and I |= Pn0

not , and by
Lemma C.5 we get Inot ∈ N �. Now the already proven Theorem 4.3 implies that I is
a reduct of a full model of the least static expansion P . But this implies I |= P |L∗not .
The other direction I |= P |L∗not =⇒ I |= Pn0 follows from Lemma C.6.

From the equivalence of Pn0 and P |L∗not we get Pn0 = P |L∗not , since both sets
are closed under propositional consequences: For instance, let F ∈ Pn0 and suppose
that F 6∈ P |L∗not . Since P |L∗not is closed under propositional consequences, there
must be a reduced interpretation I with I |= P |L∗not , but I 6|= F . This is impossible
since we already know that every model of P |L∗not is also a model of Pn0 .

Remark C.7. The finiteness of P was used in the proof for Inot |= Pn
not =⇒

Inot ∈ Nn. This was to be expected, since we strongly conjecture that for infinite
programs, the model-theoretic construction does not yield all models of the static
completion. However, this does not give us any hint whether Theorem 3.1 might
hold for infinite programs. This question is topic of our future research.

ACM Transactions on Computational Logic, Vol. TBD, No. TBD, TBD 20TBD.

Super Logic Programs · 41

D. PROOFS OF PROPERTIES USED IN THE IMPLEMENTATION

Theorem 5.3. Let P be a super logic program, F0 := ∅, and Fi+1 := HP (Fi),
and n be a natural number such that Fn+1 = Fn. Then the following holds for all
Herbrand interpretations I: I is a minimal model of the ground instantiation P ∗

of P if and only if I is a minimal model of Fn.

Proof. First we show that a (minimal) model of one of P ∗ and Fn is also a
model of the other:

(1) The conditional facts in HP (Fi) are logical consequences of P ∗∪Fi. By induc-
tion on i, it follows that Fi is implied by P ∗. Therefore, every model of P ∗ is
also a model of Fn.

(2) Next, we prove that every minimal model of Fn is also a model of P ∗: Suppose
that this would not be the case, i.e. I is a minimal model of Fn, but it violates
a rule

A1 ∨ . . . ∨Ak ← B1 ∧ . . . ∧Bm ∧ not C1 ∧ . . . ∧ not Cl

in P ∗. This means that B1, . . . , Bm are true in I. Since I is a minimal model
of Fl, Fl contains for i = 1, . . . ,m a conditional fact Ai ← Ci that is violated
in the interpretation I \ {Bi} (i.e. the interpretation that agrees with I except
that Bi is false in it). It follows that Bi ∈ Ai, that Ai \ {Bi} is false in I,
and that Ci is true in I (since the default negation literals are treated like
new propositions, making Bi false does not change any of the default negation
literals). Now consider the conditional fact that is derived from the rule instance
and the Ai ← Ci:

{A1σ, . . . , Akσ} ∪ (A1 \ {B1σ}) ∪ . . . ∪ (Am \ {Bmσ}) ←
{not C1σ, . . . ,not Clσ} ∪ C1 ∪ . . . ∪ Cm

Since Fn is a fixpoint of HP , this fact is also contained in Fn. But this is a
contradiction, since it is violated in I.

Now let I be a minimal model of P ∗. (1) shows that it is a model of Fn. If it
were not minimal, there would be a smaller model I1 of Fn. Then also a minimal
model I0 of Fn must exist that is still smaller than (or equal to) I1. But by (2)
above, I0 is also a model of P ∗ which contradicts the assumed minimality of I.

Let conversely I be a minimal model of Fn. By (2), it is a model of P ∗. If it
were not minimal, there would be a smaller model I0 of P ∗, which is by (1) also a
model of Fn, which again contradicts the assumed minimality of I.

Lemma D.1. Let T1 be a nonmonotonic knowledge base with T1 |=min F . Let T2

be a set of default negation atoms, i.e. formulas of the form not G with an arbitrary
formula G. Then Cnnot(T1 ∪ T2) |=min F .

Proof. If this were not the case, there were a minimal model I of Cnnot(T1∪T2)
which does not satisfy ¬F . Because of T1 |=min ¬F and T1 ⊆ Cnnot(T1∪T2), there
must be a model I0 of T1 that is smaller than I, but not a model of Cnnot(T1∪T2).
Since I0 is smaller than I, it assignes the same truth values to the default negation
literals. But then it satisfies T2, i.e. it is a model of T1 ∪ T2. Thus, a violated
formula must be one that is added by Cnnot . Take the first such formula. It

ACM Transactions on Computational Logic, Vol. TBD, No. TBD, TBD 20TBD.

42 · Stefan Brass et al.

cannot be a propositional consequence, because propositional consequences are by
definition satisfied in all models that satisfy the preconditions (and until this first
formula, it satisfied all preconditions). But it can also not be added by (CA),
(DA), or (IR), because all these formulas consist only of default negation literals,
which are interpreted the same in both models. Therefore, we can conclude I0 |=
Cnnot(T1, . . . , T2). But that contradicts the assumed minimality of I.

Theorem 5.6. (1) Let T be a knowledge base with T |=min ¬F . Then T and
T ∪ {not F} have the same static expansions.

(2) Let T1 and T2 be knowledge bases with Cnnot(T1) = Cnnot(T2). Then T1 and
T2 have the same static expansions.

Proof. (1) Let T � be a static expansion of T . By the lemma above, T � |=min

¬F . But then it easily follows that T � is also a static expansion of T ∪{not F}:
It has to satisfy

T � = Cnnot

(
T ∪ {not F} ∪ {not G : T � |=min ¬G}

)
.

Since T � |=min ¬F , the formula not F is anyway contained in the preconditions
of Cnnot , so the union with {not F} changes nothing.
Assume conversely that T � is a static expansion of T ∪ {not F}, i.e.

T � = Cnnot

(
T ∪ {not F} ∪ {not G : T � |=min ¬G}

)
.

Again by the lemma above we get T � |=min ¬F . But this means that the
preconditions are not changed when we do not add {not F} explicitly to the
preconditions:

T � = Cnnot

(
T ∪ {not G : T � |=min ¬G}

)
.

(2) This follows with the following sequence of equations:

T � = Cnnot

(
T1 ∪ {not F : T � |=min ¬F}

)
= Cnnot

(
Cnnot(T1) ∪ {not F : T � |=min ¬F}

)
= Cnnot

(
Cnnot(T2) ∪ {not F : T � |=min ¬F}

)
= Cnnot

(
T2 ∪ {not F : T � |=min ¬F}

)
.

Theorem 5.8. Let D be a set of disjunctions of objective atoms, which does not
contain the empty disjunction false, and which does not contain two disjunctions A
and A′, such that A ⊂ A′ (i.e. A′ is non-minimal). Let I be a partial interpretation
such that atoms interpreted as false do not appear in D and atoms interpreted as
true appear as facts in D. Let p be an atom that appears in the proper disjunction

p1 ∨ · · · ∨ pi−1 ∨ p ∨ pi+1 ∨ · · · ∨ pn

(and possibly more such disjunctions). Then

(1) There is a minimal model of D that extends I and interprets p as false.
(2) There is a minimal model of D that extends I and interprets p as true and

p1, . . . , pi−1, pi+1, . . . , pn as false.

ACM Transactions on Computational Logic, Vol. TBD, No. TBD, TBD 20TBD.

Super Logic Programs · 43

Proof. (1) Consider the interpretation I ′ that extends I by interpreting p as
false and all remaining atoms as true. Suppose that it were not a model of D,
i.e. it would violate some disjunction in D. Since all atoms that I interprets as
false do not appear in D, and all the remaining atoms except p are interpreted
as true, the violated disjunction can only be p. But this is a contradiction,
since then the proper disjunction p1 ∨ · · · ∨ pi−1 ∨ p∨ pi+1 ∨ · · · ∨ pn would not
be minimal. Thus, I ′ is a model of D. Then there is also a minimal model I0

of D that is less than or equal to I ′. The atoms interpreted as false in I as well
as p must be false in I0, since it is less or equal to I ′. The atoms interpreted
as true in I appear as facts in D, so they must be true in I0.

(2) Consider the interpretation I ′ that extends I by interpreting p as true, the
remaining atoms of the disjunction (p1, . . . , pi−1, pi+1, . . . , pn) as false, and all
other atoms as true. Suppose that it were not a model of D, i.e. it would
violate some disjunction in D. Since all atoms that I interprets as false do not
appear in D, and all the remaining atoms except p1, . . . , pi−1, pi+1, . . . , pn are
interpreted as true, the atoms in the violated disjunction can only be a subset
of {p1, . . . , pi−1, pi+1, . . . , pn}. But this contradicts the assumed minimality of
the disjunction p1∨· · ·∨pi−1∨p∨pi+1∨· · ·∨pn. Thus, I ′ is a model of D. Then
there is also a minimal model I0 of D that is less than or equal to I ′. This means
that the atoms interpreted as false in I as well as p1, . . . , pi−1, pi+1, . . . , pn must
be false in I0. All atoms interpreted as true in I must be true in I0, since they
appear as facts in D. Finally, also p must be true in I0, since otherwise it would
violate the disjunction p1 ∨ · · · ∨ pi−1 ∨ p ∨ pi+1 ∨ · · · ∨ pn.

ACKNOWLEDGMENTS

The authors would like to express their deep appreciation to Luis Moniz Pereira
and Jose Alferes for their helpful comments. The authors are also greatly indebted
to the anonymous reviewers for their detailed and very insightful comments which
have lead to a significant improvement of this article.

REFERENCES

Alferes, J., Pereira, L. M., and Przymusinski, T. C. 1998. ”Classical” negation in non-
monotonic reasoning and logic programming. Journal of Automated Reasoning 20, 107–142.

Apt, K. R., Blair, H. A., and Walker, A. 1988. Towards a theory of declarative knowledge.
In Foundations of Deductive Databases, J. Minker, Ed. Morgan Kaufmann, Chapter 2, 89–148.

Aravindan, C. and Baumgartner, P. 1997. A Rational and Efficient Algorithm for View Dele-
tion in Databases. In Logic Programming: Proceedings of the 1997 International Symposium,

J. Maluszynski, Ed. MIT Press, 165–180.

Aravindan, C., Dix, J., and Niemelä, I. 1997. Dislop: A research project on disjunctive logic

programming. AI Communications 10, 151–165.

Baumgartner, P., Fröhlich, P., Furbach, U., and Nejdl, W. 1997. Semantically Guided The-
orem Proving for Diagnosis Applications. In 15th International Joint Conference on Artificial
Intelligence (IJCAI 97), M. Pollack, Ed. Morgan Kaufmann, Nagoya, 460–465.

Brass, S. 1996. Bottom-up query evaluation in extended deductive databases. Habilitation Thesis,
University of Hannover. http://www-db.informatik.uni-hannover.de/~sb/habil.html.

ACM Transactions on Computational Logic, Vol. TBD, No. TBD, TBD 20TBD.

44 · Stefan Brass et al.

Brass, S. and Dix, J. 1995. A general approach to bottom-up computation of disjunctive se-

mantics. In Nonmonotonic Extensions of Logic Programming, J. Dix, L. M. Pereira, and T. C.
Przymusinski, Eds. Number 927 in LNAI. Springer, 127–155.

Brass, S. and Dix, J. 1997. Characterizations of the Disjunctive Stable Semantics by Partial

Evaluation. Journal of Logic Programming 32(3), 207–228. (Extended abstract appeared in:

Characterizations of the Stable Semantics by Partial Evaluation LPNMR, Proceedings of the
Third International Conference, Kentucky, pages 85–98, 1995. LNCS 928, Springer.).

Brass, S. and Dix, J. 1999. Semantics of (Disjunctive) Logic Programs Based on Partial Eval-
uation. Journal of Logic Programming 38, 3, 167–213. (Extended abstract appeared in: Dis-
junctive Semantics Based upon Partial and Bottom-Up Evaluation, Proceedings of the 12-th

International Logic Programming Conference, Tokyo, pages 199–213, 1995. MIT Press.).

Brass, S., Dix, J., and Przymusinski, T. C. 1999. Computation of the semantics of autoepistemic
belief theories. Artificial Intelligence 112, 1-2, 233–250.

Brass, S. and Lipeck, U. W. 1993. Bottom-up query evaluation with partially ordered defaults.
In Deductive and Object-Oriented Databases, Third Int. Conf., (DOOD’93), S. Ceri, K. Tanaka,
and S. Tsur, Eds. Number 760 in LNCS. Springer, Berlin, 253–266.

Bry, F. 1989. Logic programming as constructivism: A formalization and its application to

databases. In Proceedings of the Symposium on Principles of Database Systems. ACM SIGACT-
SIGMOD, 34–50.

Bry, F. 1990. Negation in logic programming: A formalization in constructive logic. In Infor-

mation Systems and Artificial Intelligence: Integration Aspects, D. Karagiannis, Ed. Springer,
Berlin, 30–46.

Bry, F. 1996. A compositional semantics for logic programs and deductive databases. In Proceed-

ings of the Joint International Conference and Symposium on Logic Programming, M. Maher,

Ed. The MIT Press, Bonn, Germany, 453–467.

Bry, F. and Yahya, A. 1996. Minimal model generation with positive unit hyper-resolution

tableaux. In Proceedings of the Fifth Workshop on Theorem Proving with Analytic Tableaux

and Related Methods. Springer-Verlag, Terrasini, Italy, 143–159.

Buccafurri, F., Leone, N., and Rullo, P. 1997. Strong and Weak Constraints in Disjunctive

Datalog. In Proceedings of the 4th International Conference on Logic Programming and Non-

Monotonic Reasoning (LPNMR ’97). Dagstuhl, Germany, 2–17.

Bugliesi, M., Lamma, E., and Mello, P. 1994. Modularity in logic programming. Journal of

Logic Programming 20, 443–502.

Cholewiński, P., Marek, V., Mikitiuk, A., and Truszczyński, M. 1995. Experimenting with

nonmonotonic reasoning. In Proceedings of the 12th International Conference on Logic Pro-
gramming. Tokyo, 267–281.

Dix, J. 1995a. A Classification-Theory of Semantics of Normal Logic Programs: II. Weak Prop-
erties. Fundamenta Informaticae XXII(3), 257–288.

Dix, J. 1995b. Semantics of Logic Programs: Their Intuitions and Formal Properties. An

Overview. In Logic, Action and Information – Essays on Logic in Philosophy and Artificial

Intelligence, A. Fuhrmann and H. Rott, Eds. DeGruyter, 241–327.

Dix, J., Pereira, L., and Przymusinski, T., Eds. 1998. Logic Programming and Knowledge

Representation. LNAI. Springer, Berlin.

Dix, J., Pereira, L. M., and Przymusinski, T. C., Eds. 1995. Non-Monotonic Extensions

of Logic Programming. LNAI 927. Springer Verlag, Berlin. Proceedings of the Workshop at
the Eleventh International Logic Programming Conference, ICLP’94, Santa Margherita Ligure,

Italy, June 1994.

Dix, J., Pereira, L. M., and Przymusinski, T. C., Eds. 1997. Non-Monotonic Extensions of
Logic Programming. LNAI 1216. Springer Verlag, Berlin. Proceedings of the Workshop at the

International Logic Programming Conference, JICSLP’96, Bonn, Germany, September 1996.

Dung, P. M. and Kanchanasut, K. 1989. A Fixpoint Approach to Declarative Semantics of
Logic Programs. In Proceedings of the North American Conference on Logic Programming,

E. L. Lusk and R. A. Overbeek, Eds. MIT Press, Cambridge, Mass.

ACM Transactions on Computational Logic, Vol. TBD, No. TBD, TBD 20TBD.

Super Logic Programs · 45

Dyckhoff, R., Herre, H., and Schroeder-Heister, P., Eds. 1996. Extensions of Logic Pro-

gramming. LNAI 1050. Springer, Berlin.

Eiter, T., Leone, N., Mateis, C., Pfeifer, G., and Scarcello, F. 1997. A Deductive System
for Nonmonotonic Reasoning. In Proceedings of the 4th International Conference on Logic

Programming and Nonmonotonic Reasoning (LPNMR ’97), J. Dix, U. Furbach, and A. Nerode,

Eds. Number 1265 in Lecture Notes in AI (LNAI). Springer, Berlin.

Eiter, T., Leone, N., Mateis, C., Pfeifer, G., and Scarcello, F. 1998. The KR System dlv:

Progress Report, Comparisons and Benchmarks. In Proceedings Sixth International Conference
on Principles of Knowledge Representation and Reasoning (KR’98). Forthcoming.

Gelfond, M. and Lifschitz, V. 1988. The Stable Model Semantics for Logic Programming. In

5th Conference on Logic Programming, R. Kowalski and K. Bowen, Eds. MIT Press, 1070–

1080.

Gelfond, M. and Lifschitz, V. 1991. Classical Negation in Logic Programs and Disjunctive

Databases. New Generation Computing 9, 365–387. (Extended abstract appeared in: Logic

Programs with Classical Negation. Proceedings of the 7-th International Logic Programming
Conference, Jerusalem, pages 579-597, 1990. MIT Press.).

Gelfond, M., Przymusinska, H., and Przymusinski, T. 1989. On the Relationship between
Circumscription and Negation as Failure. Artificial Intelligence 38, 75–94.

Greco, S., Leone, N., and Scarcello, F. 1998. Disjunctive datalog with nested rules. In Logic
Programming and Knowledge Representation, J. Dix, L. Pereira, and T. Przymusinski, Eds.

LNAI. Springer, Berlin.

Hodas, J. S. and Miller, D. 1994. Logic programming in a fragment of intuitionistic linear
logic. Journal of Information and Computation 110, 2, 327–365.

Lifschitz, V., Tang, L., and Turner, H. 1998. Nested expressions in Logic Programs. In

Proceedings of the LP-Track of the NMR-WS, preceding KR ’98, Trento, Italy, J. Dix and
J. Lobo, Eds. University of Koblenz, TR 3/98, 10–20.

Lipski, Jr., W. 1979. On semantic issues connected with incomplete information databases. ACM

Transactions on Database Systems 4, 262–296.

Lloyd, J. W. and Topor, R. W. 1984. Making Prolog more expressive. The Journal of Logic
Programming 1, 225–240.

Lloyd, J. W. and Topor, R. W. 1985. A basis for deductive database systems. The Journal of

Logic Programming 2, 93–109.

Lloyd, J. W. and Topor, R. W. 1986. A basis for deductive database systems II. The Journal

of Logic Programming 3, 55–67.

Lobo, J., Minker, J., and Rajasekar, A. 1992. Foundations of Disjunctive Logic Programming.
MIT-Press.

Marek, W. and Truszczyński, M. 1993. Nonmonotonic Logics; Context-Dependent Reasoning,

1st ed. Springer, Berlin.

McCarthy, J. 1980. Circumscription: A Form of Nonmonotonic Reasoning. Artificial Intelli-
gence 13, 27–39.

Minker, J. 1982. On indefinite databases and the closed world assumption. In Proceedings of

the 6th Conference on Automated Deduction, New York. Springer, Berlin, 292–308.

Minker, J. 1993. An Overview of Nonmonotonic Reasoning and Logic Programming. Journal of
Logic Programming, Special Issue 17, 2/3/4, 95–126.

Minker, J. 1996. Logic and databases: A 20 year retrospective. In Proceedings of the Interna-

tional Workshop on Logic in Databases (LID), D. Pedreschi and C. Zaniolo, Eds. LNCS 1154.
Springer, Berlin, 3–58.

Nadathur, G. and Miller, D. 1990. Higher-order horn clauses. Journal of the Association for

Computing Machinery (JACM) 37, 4, 777–814.

Niemelä, I. 1996. A tableau calculus for minimal model reasoning. In Proceedings of the

Fifth Workshop on Theorem Proving with Analytic Tableaux and Related Methods, P. Miglioli,

U. Moscato, D. Mundici, and M. Ornaghi, Eds. LNAI 1071, Springer-Verlag, Terrasini, Italy,
278–294.

ACM Transactions on Computational Logic, Vol. TBD, No. TBD, TBD 20TBD.

46 · Stefan Brass et al.

Niemelä, I. and Simons, P. 1996. Efficient Implementation of the Well-founded and Stable

Model Semantics. In Proceedings of the Joint International Conference and Symposium on
Logic Programming, M. Maher, Ed. The MIT Press, Bonn, Germany, 289–303.

Przymusinski, T. 1995a. Semantics of normal and disjunctive logic programs: A unifying frame-

work. In Proceedings of the Workshop on Non-Monotonic Extensions of Logic Programming at

the Eleventh International Logic Programming Conference, ICLP’94, Santa Margherita Ligure,
Italy, June 1994, J. Dix, L. Pereira, and T. Przymusinski, Eds. Springer, 43–67.

Przymusinski, T. C. 1990. The well-founded semantics coincides with the three-valued stable

semantics. Fundamenta Informaticae 13, 4, 445–464.

Przymusinski, T. C. 1994. A knowledge representation framework based on autoepistemic logic
of minimal beliefs. In Proceedings of the Twelfth National Conference on Artificial Intelligence,

AAAI-94, Seattle, Washington, August 1994. Proceedings of the Conference of the American
Association of Artificial Intelligence, Morgan Kaufmann, Los Altos, CA, 952–959.

Przymusinski, T. C. 1995b. Static semantics for normal and disjunctive logic programs. Annals
of Mathematics and Artificial Intelligence 14, 323–357. Special Issue on Disjunctive Programs.

Przymusinski, T. C. 1998. Autoepistemic logic of knowledge and beliefs. Artificial Intelli-

gence 95, 115–154.

Schäfer, D. and Neugebauer, G. 1997. Opening the world to theorem provers. In Logic Pro-
gramming and Non-Monotonic Reasoning, Proceedings of the Fourth International Conference,
J. Dix, U. Furbach, and A. Nerode, Eds. LNAI 1265. Springer, Berlin, 410–419.

Seipel, D. 1994. An efficient computation of the extended generalized closed-world assumption
by support-for-negation sets. In Proceedings of the International Conference on Logic Pro-

gramming and Automated Reasoning (LPAR’94). LNAI 822. Springer, 245–259.

Stolzenburg, F. and Thomas, B. 1996. Analysing rule sets for the calculation of banking fees

by a theorem prover with constraints. In Proceedings of the 2nd International Conference
on Practical Application of Constraint Technology. Practical Application Company, London,

269–282.

Stolzenburg, F. and Thomas, B. 1998. Analysing Rule Sets for the Calculation of Banking

Fees by a Theorem Prover. In Automated Deduction — A Basis for Applications, Volume III,
W. Bibel and P. H. Schmitt, Eds. Kluwer Academic Publishers, 243–264.

Teusink, F. and Etalle, S. 1996. A compositional semantics for normal open logic programs.

In Proceedings of the Joint International Conference and Symposium on Logic Programming,
M. Maher, Ed. The MIT Press, Bonn, Germany, 468–482.

Thomas, B. 1998. Intelligent web querying with logic programming. In Proceedings of the

Workshop on Inference Systems in Knowledge-based Systems, preceding the national german

AI conference KI ’98, Bremen, Germany, J. Dix and S. Hölldobler, Eds. University of Koblenz,
TR 10/98.

Van Gelder, A., Ross, K. A., and Schlipf, J. S. 1991. The well-founded semantics for general

logic programs. Journal of the ACM 38, 620–650.

You, J.-H. and Yuan, L.-Y. 1993. Autoepistemic Circumscription and Logic Programming.
Journal of Automated Reasoning 10, 143–160.

Received October 2000; revised March 2002; accepted May 2002

ACM Transactions on Computational Logic, Vol. TBD, No. TBD, TBD 20TBD.

