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Abstract

We investigate classes of SQL queries which are syntactically correct, but certainly
not intended, no matter for which task the query was written. For instance, queries
that are contradictory, i.e. always return the empty set, are obviously not intended.
However, current database management systems execute such queries without any
warning. In this paper, we give an extensive list of conditions that are strong indi-
cations of semantic errors. Of course, questions like the satisfiability are in general
undecidable, but a significant subset of SQL queries can actually be checked. We
believe that future database management systems will perform such checks and that
the generated warnings will help to develop application programs with fewer bugs
in less time.
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1 Introduction

SQL is today the standard language for relational and object-relational data-
bases. Application programs typically contain a relatively large number of
SQL queries and updates, which are sent to the DBMS (database management
system) for execution. As any program code, SQL queries can contain errors
(Updates are not considered in this paper, but they are usually much simpler
than queries.).

Errors in SQL queries can be classified into syntactic errors and semantic
errors. A syntactic error means that the entered character string is not a valid
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SQL query. In this case, any DBMS will print an error message because it
cannot execute the query. Thus, the error is certainly detected and usually
easy to correct.

A semantic error means that a legal SQL query was entered, but the query
does not or not always produce the intended results, and is therefore incorrect
for the given task. Semantic errors can be further classified into cases where
the task must be known in order to detect that the query is incorrect, and
cases where there is sufficient evidence that the query is incorrect no matter
what the task is. Our focus in this paper is on this latter class, since there
is often no independent specification of the goal of the query. For instance,
consider this query:

SELECT *

FROM EMP

WHERE JOB = ’CLERK’ AND JOB = ’MANAGER’

This is a legal SQL query, and it is executed e.g. in Oracle9i and DB2 V8.1
without any warning. However, the condition is actually inconsistent, so the
query result will be always empty. Since nobody would use a database in order
to get an always empty result, we can state that this query is incorrect without
actually knowing what the task of the query was. Such cases do happen, e.g. in
one exam exercise that we analyzed, 10 out of 70 students wrote an inconsistent
condition.

It is well known that the consistency of formulas is undecidable, and that
this applies also to database queries. However, although the task is in general
undecidable, many cases that occur in practice can be detected with relatively
simple algorithms.

Our work is also inspired by the program lint, which is or was a semantic
checker for the “C” programming language. Today C compilers do most of
the checks that lint was developed for, but in earlier times, C compilers
checked just enough so that they could generate machine code. We are still at
this development stage with SQL today. Printing warnings for strange SQL
queries is very uncommon in current database management systems.

We currently develop a similar tool for SQL queries (called sqllint). We
believe that such a tool would be useful not only in teaching, but also in
application software development. At least, a good error message could speed
up the debugging process. Furthermore, runtime errors are possible in SQL,
e.g., in some contexts, SQL queries or subqueries must return not more than
one row. The occurrence of this error depends on the database state (the data),
therefore it is no necessarily found during testing. Certainly it would be good
to prove that all queries in a program can never violate this condition. Our tool
does not depend on the data, it only takes the schema information (including
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constraints) and an SQL query as input. Therefore, it is not necessary to
check the queries in each execution. Furthermore, we do not need test data:
All input to our tool is (part of) the program code that is anyway written
during software development. The only exception is the specification of “soft
keys” (see Section 5) which would be useful for some of our checks.

The main contribution of this paper is a list of semantic errors that represents
years of experience while correcting hundreds of exams that contained SQL
queries. However, we have also tried to explain the general principles from
which these errors can be derived (as far as possible). Therefore, it is not
simply by chance whether an error appears on our list, but the list has a
certain degree of completeness (except possibly in Section 4).

While our experience so far has only been with errors made by students, not
professional programmers, most of the students will become programmers,
and they will not immediately make fewer errors. In the exam solutions that
we analyzed, 24% contained a syntax error, 18% contained a semantic error
of the type we consider in this paper (detectable without knowledge of the
task), 11% contained both, and 10% contained a semantic error that was only
detectable if the task was known (for more details, see Section 9). Thus, with
the techniques described in this paper, in 18% of the cases one could have got
a sensible error message, while a standard DBMS simply executes the query
(with possibly a wrong result, which might or might not be detected).

The paper is structured by reasons why SQL queries can be considered sus-
picious: Unnecessary complications (Section 2), inefficient formulations (Sec-
tion 3), violations of standard patterns (Section 4), many duplicates (Sec-
tion 5), and the possibility of runtime errors (Section 6). Furthermore we
suggest some style checks in Section 7. While we do not have space to give
algorithms for all errors (and many are quite obvious), we show how to de-
tect two representative errors in Section 8. Section 9 contains some statistics
how often each type of error appeared in exams. Related work is discussed in
Section 10.

In the examples, we use a database schema for storing information about
employees and departments:

EMP(EMPNO, ENAME, JOB, SAL, COMM, MGR→EMP, DEPTNO→DEPT)

DEPT(DEPTNO, DNAME, LOC)

This is a slightly modified version of an example schema that comes with the
Oracle DBMS. The column MGR can be null.
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2 Unnecessary Complications

Queries can be considered as “probably not intended” when they are un-
necessarily complicated. Suppose the user wrote a query Q, and there is an
equivalent query Q′ that is significantly simpler, and can be derived from Q
by deleting certain parts. There might be the following reasons why the user
did not write Q′:

• The user knew that Q′ is not a correct formulation of the task at hand. In
this case, Q is of course also not correct, but the error might be hidden in
the more complicated query, so that the user did not realize this. A warning
would certainly be helpful in this case.

• The user did not know that Q′ is equivalent. Since Q′ is not a completely
different query, but results from Q by deleting certain parts, this shows
that the user does not yet master SQL. Again, a warning would be helpful.
Often, the simpler query will actually run faster (e.g. the Oracle 9i query
optimizer does not seem to remove unnecessary joins).

• The user knew that Q′ is equivalent, but he or she believed that Q would
run faster. Since SQL is a declarative language this should only be the last
resort. With modern optimizers, this should not happen often in practice.
If it is necessary, there probably should be some comment, and this could
also be used to shut off the warning. Although we know at least one case
where a more complicated query actually does run faster on Oracle 9i, SQL
does not make any guarantees about how a query is evaluated. Thus, in the
next Oracle version or when one uses a different DBMS, it might be that
the relative speed of Q and Q′ dramatically changes.

Note that in this point SQL differs from usual programming languages:
Of course, a C program of 100 lines might be better than a program of 10
lines for the same task, because the longer program runs significantly faster.
But as just explained, for SQL the relative speed is not forseeable, and any
such code optimizations are at least fragile.

• The user knew that Q′ is equivalent, but thought that Q would be clearer
for the human reader and easier to maintain. One must be careful to define
the possible transformations from Q to Q′ such that this does not happen.
For instance, it might be clearer to use explicit tuple variables in attribute
references, even if the attribute name is unique. Removing the tuple variable
in this case cannot be considered as producing a different, shorter query. Ob-
viously, we would also not require that meaningful names for tuple variables
are shortened or that comments are removed. Furthermore, using certain op-
tional keywords (e.g. “AS”) is a matter of taste. Unfortunately, this means
that every possible “shortening transformation” of SQL queries must be
considered separately (as done below).
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Actually, “equivalence” in the sense of requiring exactly the same query result
in all database states would make the condition still too strict.

(1) First, we not only want to minimize the query, but also the query result.
The following query which is typical for beginning SQL programmers:

SELECT EMPNO, ENAME, JOB

FROM EMP

WHERE JOB = ’MANAGER’
The last column in the query result is superfluous, we know that it must
always be “MANAGER”. Therefore, no information is lost when this column
is removed. Of course, trying to minimize the query result without loss
of information does not mean that we apply compression algorithms or
difficult encodings. The important requirement is that from the shorter
query result, the user can reconstruct the original query result with “very
little intellectual effort” — less than what would be required for reading
the long version. This statement is a bit fuzzy, but it can be made precise
by listing the operations that are permitted for reconstructing the original
query result. In this paper, we only need constant relations (in the case
of inconsistent conditions) and projections. In the example, we would use

OLD_RESULT = πEMPNO, ENAME, JOB←’MANAGER’(NEW_RESULT).
(2) Furthermore, it is better to exclude certain unusual states when we re-

quire that the result of both queries (Q and Q′) is the same. For example,
it happens sometimes that students declare a tuple variable, and then do
not use it and forget to delete it:

SELECT DISTINCT DNAME

FROM DEPT, EMP
The “DISTINCT” is also a typical example where the wrong patch was
applied to a problem noticed by the student (many duplicates). The above
query returns always the same result as the following one, except when
EMP is empty:

SELECT DISTINCT DNAME

FROM DEPT
Therefore, we will require the equivalence only for states in which all
relations are non-empty. It might even be possible to assume that all
columns contain at least two different values.

(3) Some types of errors produce many duplicates. More powerful query sim-
plifications can be used if these duplicates are not considered as important
for the equivalence (at least if the simpler query Q′ produces less dupli-
cates than the more difficult query Q). E.g. in the above example, we
would want to delete the unused tuple variable even if DISTINCT were
not specified. Duplicates are further considered in Section 5.

Now we give a list of all cases in which a query can be obviously simplified
under this slightly weakened notion of equivalence. In each of these cases, a
warning should be given to the user.
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2.1 Entire Query Unnecessary

Error 1: Inconsistent conditions.
Nobody would pose a query if he or she knew beforehand that the query
result is empty, no matter what the database state is. An example was given
in the introduction.

Note that it is also possible that the WHERE-clause itself is consistent, but
it contradicts a constraint in the database schema. For instance, since SQL
has no enumeration types, one typcially restricts columns of type “CHAR”
with constraints like

CHECK(SEX = ’M’ OR SEX = ’F’)

Now the condition SEX = ’W’ as part of a large conjunction in the WHERE-
clause would immediately make the query inconsistent. Yet, no DBMS we
are aware of would give a warning.

As mentioned before, the problem is in general undecidable [1]. But e.g. for
SQL queries that contain only one level of subqueries and no aggregations,
it is decidable (see, e.g., [3]). In general, one could apply heuristic assump-
tions (e.g., that a certain number of tuples per relation suffices) to generate
warnings that are not always accurate, but still useful. There is a large
body of literature about satisfiability tests and model construction, also in
the context of databases [4,5,20,24,16,28,21].

In general, one could also construct other queries that have a constant result
for all database states (under the assumption that relations are not empty).
But this is at least very uncommon (it did not occur in the analyzed exams).

2.2 SELECT Clause

Error 2: Unnecessary DISTINCT.
One should use an explicit duplicate elimination only if necessary. It some-
times can be proven that a query cannot return duplicates, e.g.

SELECT DISTINCT EMPNO, ENAME, JOB

FROM EMP

Because EMPNO is a key of EMP, the query could not return duplicates, even
without DISTINCT. Then DISTINCT should not be used, because the query
then will run slower (many optimizers of current DBMS do not remove the
unnecessary duplicate elimination).

Theoretitions sometimes recommend to write always “DISTINCT”, but
that shadows possible errors: When a query does produce duplicates, it is
often helpful to understand why.

Algorithms for this error are discussed in Section 8.
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Error 3: Constant output column.
An output column is unnecessary if it contains a single value that is con-
stant and can be derived from the query without any knowledge about the
database state. This was already illustrated at the beginning of this section.

Of course, if a constant (datatype literal) is written as a term in the
SELECT-list, this is obviously intended, and no warning should be given.
Also SELECT * might yield a constant column, yet is shorter than listing
the remaining columns explicitly, and again, no warning should be printed.

However, at least the following typical case should be caught: The con-
junctive normal form of the WHERE-clause contains A = c with an attribute A
and a constant c as one part of the conjunction, and A also appears as a
term in the SELECT-list. Of course, if A = B appears in addition to A = c,
also the value of B is obvious, and using B in the SELECT-list should generate
a warning. And so on.

With a higher warning level, one should run a model generator, and for
each output column A run the model generator again with the additional
condition A <> c, where c is the value of A in the first model. This would
ensure that every output column can generate at least two different values
(in possibly different database states).

Error 4: Duplicate output column.
An output column is also unnecessary if it is always identical to another
output column.

2.3 FROM Clause: Unnecessary Tuple Vars

The next three errors are cases where tuple variables are declared under FROM
that are not really necessary.

Error 5: Unused tuple variables.
It is a simple syntax check to ensure that all tuple variables declared under
FROM are really accessed somewhere in the query. If this condition is violated,
one would typically also get Error 26 (Missing Join Conditions), but since
“forgetting” a declared tuple variable happens quite often (it is Number 5
on our Top 10 list), a more specific error message might be preferable. (See
also the discussion about equivalence at the beginning of this section.)

Error 6: Unnecessary joins.
If only the key attributes of a tuple variable X are accessed, and this key is
equated with the foreign key of another tuple variable Y, X is not needed.

Since joins are an expensive operation, there is a large body of literature
about join elimination in query optimization see, e.g., [2,25]. However, at
least one widely used commercial system does not seem to do a join elim-
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ination. Furthermore, one could argue that this is not the purpose of the
query optimizer, at least if the join explicitly appears in the query (and not
as part of a view definition that is used in the query). An optimizer might
well work with the principle “garbage in, garbage out”: It is not the purpose
of the query optimizer to correct user errors.

But even when the query optimizer solves the performance problem, the
query will look simpler with one fewer tuple variable, therefore that formu-
lation is preferable. This error is number 4 on our top ten list.

Error 7: Tuple variables that are always identical.
If the key attributes of two tuple variables X and Y over the same relation
are equated, the two tuple variables must always point to the same tuple.
Then the two tuple variables can be merged. In a higher warning level, one
could use a model generator to check for every pair of distinct tuple variables
over the same relation that there are solutions with different values for the
primary key.

Of course, this is formally a special case of Error 6 (Unnecessary Joins),
and it leads often to Error 1 (Inconsistent Condition). However, since it still
appears quite often, it deserves a more specific warning.

2.4 WHERE Clause

Error 8: Implied, tautological, or inconsistent subconditions.
The WHERE-condition is unnecessarily complicated if a subcondition (some
node in the operator tree) can be replaced by TRUE or FALSE and the condi-
tion is still equivalent. E.g. it happens sometimes that a condition is tested
under WHERE that is actually a constraint on the relation.

This condition becomes even more strict if it is applied not to the given
formula, but to the DNF of the formula. Then the check for unncessary log-
ical complications can be easily reduced to a series of consistency tests. Let
the DNF of the WHERE condition be C1∨· · ·∨Cm, where Ci = (Ai,1∧· · ·∧Ai,ni

).
Then no part of the condition is unnecessary iff the following formulas are
all consistent:
(1) ¬(C1∨· · ·∨Cm), the negation of the entire formula (otherwise the entire

formula could be replaced by “true”),
(2) Ci ∧¬(C1 ∨ · · · ∨Ci−1 ∨Ci+1 ∨ · · · ∨Cm), for i = 1, . . . ,m (otherwise Ci

could be replaced by “false”),
(3) Ai,1∧· · ·∧Ai,j−1∧¬Ai,j∧Ai,j+1∧· · ·∧Ai,ni

∧¬(C1∨· · ·∨Ci−1∨Ci+1∨· · ·∨Cm)
for i = 1, . . . ,m, j = 1, . . . , ni (or Ai,j could be replaced by “true”).

Error 9: Comparison with NULL.
At least in Oracle, it is syntactically valid to write A = NULL, but this con-
dition has a constant truth value (null/unknown). In other systems, this
would be a syntax error.
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Error 10: NULL values in IN/ANY/ALL subqueries
IN conditions and quantified comparisons with subqueries ANY, ALL can
have a possibly surprising behaviour if the subquery returns a null value
(among other values). An IN and ANY condition is then null/unknown, when
it otherwise would be false, and an ALL condition is null/unknown, when it
otherwise would be true (ALL is treated like a large conjunction, and IN/ANY
like a large disjunction). For instance, the result of the following query is
always empty as there exists one employee who is not a subordinate (MGR
IS NULL for the president of the company):

SELECT X.EMPNO, X.ENAME, X.JOB

FROM EMP X

WHERE EMPNO NOT IN (SELECT Y.MGR

FROM EMP Y)

This is a trap that many SQL programmers are not aware of. Indeed, it is
quite common to assume that the above query is equivalent to

SELECT X.EMPNO, X.ENAME, X.JOB

FROM EMP X

WHERE NOT EXISTS (SELECT *

FROM EMP Y

WHERE Y.MGR = X.EMPNO)

This equivalence does not hold: The NOT EXISTS-query would work as in-
tended. This problem is also mentioned in [7].

We could heuristically assume that if a column is not declared as NOT NULL,
then every typical database state contains at least one row in which it is
null. Now a query would be strange if it returns an empty result for all typ-
ical database states. (Of course, it might be that the programmer searches
for untypical states, but then he/she could use a comment to switch off the
warning).

Error 11: Unnecessarily general comparison operator.
Consider the query:

SELECT ENAME, SAL

FROM EMP

WHERE SAL >= (SELECT MAX(SAL)

FROM EMP)

We suggest to give a warning, whenever <= or >= in a condition can be
replaced by =, and the resulting query is equivalent to the original query.
In the example, the case > can never happen. If one views A >= B as an
abbreviation of A > B OR A = B, this would be an instance of Error 8 (in-
consistent subconditions). In the same way, it would make sense to replace
e.g. >= by > if this does not change the semantics of the query. However,
here the improvement in readability is not so big.

Another variant of an unnecessary general operator is to use IN here
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instead of =. Remember that IN is the same as = ANY. When a subquery
returns exactly one result in all database states, quantified comparisons
(ANY/ALL) should be replaced by the corresponding simple comparison.

Error 12: LIKE without wildcards.
If LIKE is used without wildcards “%” and “_”, it can and should be replaced
by “= (there is a small semantic difference with blank-padded vs. non blank-
padded comparison semantics in some systems). This could be seen as a
special case of Error 11, but it is so common that it should be treated
separately.

Error 13: Unnecessarily complicated SELECT in EXISTS-subqueries.
In EXISTS-subqueries, the SELECT list is not important. Therefore, it should
be something simple (e.g. “*” or “1” or a single attribute).

Error 14: IN/EXITS condition can be replaced by comparison.
Consider the following query:

SELECT ENAME

FROM EMP X

WHERE X.EMPNO NOT IN

(SELECT Y.EMPNO

FROM EMP Y

WHERE Y.JOB = ’MANAGER’)

The WHERE-condition can be equivalently replaced by X.JOB <> ’MANAGER’.
The point here is that the two tuple variables over the same relation are
matched on their key. This is very similar to Error 7 above, but here a
subquery is involved.

2.5 Aggregation Functions

Error 15: Unnecessary aggregation function.
An aggregation function is unnecessary, if it has only a single distinct input
value (and is not sensitive to duplicates or duplicates do not occur or are
explicitly eliminated). An example is:

SELECT MAX(SAL)

FROM EMP

GROUP BY SAL

This query is equivalent to

SELECT DISTINCT SAL

FROM EMP

(See also Error 21.) However, in seldom cases, the aggregation function
might be needed because of syntactic restrictions of SQL (in aggregation
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queries, only GROUP BY-attributes can be used in the SELECT-list outside of
aggregation functions). But then, it would be clearer to add the attribute to
the GROUP BY clause (this would not change the groups since the attribute
has a unique value within each group). At least, there should be a comment
for such unusual situations, which can also switch off the warning.

Error 16: Unnecessary DISTINCT in aggregations.
MIN and MAX never need DISTINCT. When DISTINCT is used in other ag-
gregation functions, it might not be necessary because of keys. See also
Error 32.

Error 17: Unnecessary argument of COUNT.
There are two versions of the aggregation function COUNT: One with an
argument, and one without an argument (written as COUNT(*)). We would
prefer the version without argument whenever this is equivalent, i.e. when
there is no DISTINCT and when the argument cannot be null. That might
be a matter of taste, but at least when counting duplicates is important,
the meaning of the query is obscured by a COUNT argument, e.g.

SELECT COUNT(JOB)

FROM EMP

WHERE JOB = ’MANAGER’

In this example, only duplicates are counted.

2.6 GROUP BY Clause

Error 18: GROUP BY with singleton groups.
If it can be proven that each group consists only of a single row, the entire
aggregation is unnecessary.

Error 19: GROUP BY with only a single group.
If it can be proven that there is always only a single group, the GROUP BY

clause is unnecessary, except when the GROUP BY attribute should be printed
under SELECT.

Error 20: Unnecessary GROUP BY attributes.
If a grouping attribute is functionally determined by other such attributes
and if it does not appear under SELECT or HAVING outside of aggregations,
it can be removed from the GROUP BY clause.

Error 21: GROUP BY can be replaced by DISTINCT.
If exactly the SELECT-attributes are listed under GROUP BY, and no aggre-
gation functions are used, the GROUP BY clause can be replaced by SELECT

DISTINCT (which is shorter and clearer).
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2.7 HAVING Clause

In the HAVING-clause, the same errors as in the WHERE-clause are possible. See
also Error 24 below.

2.8 UNION/UNION ALL

Error 22: UNION can be replaced by OR.
If the two SELECT-expressions use the same FROM-list the same SELECT-list,
and mutually exclusive WHERE-conditions, UNION ALL can be replaced by a
single query with the WHERE-conditions connect by OR. There are similar
conditions for UNION.

2.9 ORDER BY Clause

Error 23: Unnecessary ORDER BY terms.
Suppose that the order by clause is ORDER BY t1, . . . , tn. Then ti is unneces-
sary if it is functionally determined by t1, . . . , ti−1. This especially includes
the case that ti has only one possible value.

3 Inefficient Formulations

Although SQL is a declarative language, the programmer should help the
system to execute the query efficiently. Most of the unnecessary complications
above also lead to a longer runtime, if the optimizer does not discover them
(e.g., errors 2, 5, 6, 7, 8, 12, 14, 16, 18, 19, 22). In the following two cases the
query does not get shorter by choosing the more efficient formulation.

Error 24: Inefficient HAVING.
If a condition uses only GROUP BY attributes and no aggregation function,
it can be written under WHERE or under HAVING. It is much cheaper to check
it already under WHERE. An example is (all our examples actually appeared
in exams or homeworks, maybe with a different database schema):

SELECT D.DEPTNO, D.DNAME, COUNT(*)

FROM EMP E, DEPT D

GROUP BY D.DEPTNO, D.DNAME, E.DEPTNO

HAVING E.DEPTNO = D.DEPTNO

Error 25: Inefficient UNION.
UNION should be replaced by UNION ALL if one can prove that the results of
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the two queries are always disjoint, and that none of the two queries returns
duplicates.

4 Violations of Standard Patterns

Another indicator for possible errors is the violation of standard patterns for
queries.

Error 26: Missing join conditions.
Missing join conditions are a type of semantic error that is mentioned in
most text books. However, it is seldom made precise how such a test should
be formally done. The following is a strict version: First, the conditions is
converted to DNF, and the test is done for each conjunction separately.
One creates a graph with the tuple variables X as nodes. Edges are drawn
between tuple variables for which a foreign key is equated to a key, except
in the case of self-joins, where any equation suffices. The graph then should
be connected, with the possible exception of nodes X such that there is a
condition X.A = c with a key attribute A and a constant c.

It might seem very strict to count only key-foreign key equations, but one
of our programs (that was actually used for managing homework points)
contained an error because a tuple variable had a composed key and only
one of the attributes was joined. This error would have been detected by
the above test.

Note that in some cases, joins can also be done via subqueries. Thus,
tuple variables in subqueries should be added to the graph.

Error 27: Uncorrelated EXISTS-subqueries.
If an EXISTS-subquery makes no reference to a tuple variable from the
outer query, is is either globally true or globally false. This is a very unusual
behaviour. Actually, uncorrelated EXISTS-subqueries are simply missing join
conditions (possibly for anti-joins).

Error 28: SELECT-Clause of subquery uses no subquery tuple variable.
E.g. something like the following puzzled a team of software engineers for
quite some time, they even thought that their DBMS contained a bug, be-
cause it did not give any error:

SELECT ENAME

FROM EMP

WHERE DEPTNO IN

(SELECT EMPNO

FROM DEPT

WHERE LOC = ’BOSTON’)
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The underlined attribute is a typing error, correct would be DEPTNO. How-
ever, this is correct SQL, EMPNO simply references the tuple variable from the
outer query. In this particular example, also missing join condition should
have been detected, but that is not always the case.

Error 29: Conditions in the subquery that can be moved up.
A condition in the subquery that accesses only tuple variables from the
main query is strange.

Error 30: Comparison between different domains.
If domain information is available, a comparison between attributes of dif-
ferent domains is suspicious. This is another reason why in the design phase,
domains should be defined, even if they are not directly supported in the
DBMS. If there is no domain information, one could analyze an example
database state for columns that are nearly disjoint. If that is not possible,
at least comparisons between strings and numbers of different size (e.g., a
VARCHAR(10) column and a VARCHAR(20) column) is suspicious.

Error 31: Strange HAVING.
Using HAVING without a GROUP BY clause is strange: Such a query can have
only one result or none at all.

Error 32: DISTINCT in SUM and AVG.
For the aggregation functions SUM and AVG, duplicates are most likely sig-
nificant.

Error 33: Wildcards without LIKE.
When “=” is used with a comparison string that contains “%”, probably
“LIKE” was meant. For the other wildcard, “_”, it is not that clear, because
it might more often appear in normal strings.

5 Duplicates

Error 34: Many duplicates.
Query results that contain many duplicates are difficult to read. It is unlikely
that such a query is really intended. Furthermore, duplicates are often an
indication for another error, e.g. missing join conditions. (Of course, if we
could give a more specific warning, that would be preferable.)

Consider the following example:

SELECT JOB

FROM EMP

This query will produce many duplicates without any order. It is quite clear
that it would have been better to chose one of the following formulations:
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• If the number of duplicates is not important:

SELECT DISTINCT JOB

FROM EMP

• If it is important:
SELECT JOB, COUNT(*)

FROM EMP

GROUP BY JOB

However, duplicates are not always bad. Consider, e.g.:

SELECT ENAME

FROM EMP

WHERE DEPTNO = 20

Although it might be possible that there are two employees with a common
name, this is not very likely. And when it happens, the duplicate might be
important. The reason is that although the name is not a strict key, it is used
in practice for identifying employees. We call such attributes or attribute
combinations “soft keys” (they are used in the real world to identify objects,
although in exceptional situations, they might be not unique).

The specification of soft keys would be helpful for discovering errors.
(More generally, it would be good to know what are “normal”/“typical”
database states. E.g. “violations” of soft keys are possible, but unusual.)

We suggest to print a warning about duplicates whenever the query can
produce duplicate answers in a database state that does not contain dupli-
cates in soft keys (i.e. a database state that satisfies them like real keys,
i.e. a database state that is not exceptional).

If there is no information about soft keys, one could run the query on
an example database state. If it produces a lot of duplicates, we could give
a warning. Techniques developed in query optimization for estimating the
result size can also be used.

Error 35: DISTINCT that might remove important duplicates.
Conversely, applying DISTINCT or GROUP BY sometimes removes important
duplicates. Consider the following query:

SELECT DISTINCT M.ENAME

FROM EMP M, EMP E

WHERE E.MGR = M.EMPNO AND E.JOB = ’ANALYST’

The purpose of this query seems to find employees who have an analyst
in their team. If it should ever happen that two different employees with
the same name satisfy this condition, only one name is printed. Since the
intention is to find employee objects, this result is at least misleading.

We suggest to give a warning whenever a soft key of a tuple variable
appears under SELECT DISTINCT or GROUP BY, but not the corresponding
real key. This could also be seen as a violation of a standard pattern.
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6 Possible Runtime Errors

Runtime errors are detected by the DBMS while it executes the query. Often
they occur only in some database states, while the same query runs well for
other data. A query should be considered as problematic if there is at least
one state in which the error occurs.

Error 36: Subqueries terms that might return more than one tuple.
If one uses a subquery as a term, e.g. in a condition of the form

A = (SELECT ...),
it is important that the subquery returns only a single value. If this condition
should ever be violated, the DBMS will generate a run-time error.

As usual for runtime errors, the occurrence of the error depends on the
evaluation sequence. For instance, consider the following query:

SELECT DISTINCT E1.ENAME

FROM EMP E1, EMP E2

WHERE ’NEW YORK’ = (SELECT LOC FROM DEPT D

WHERE D.DEPTNO = E1.DEPTNO

OR D.DEPTNO = E2.DEPTNO)

AND E1.EMPNO = E2.EMPNO

If the underlined condition is evaluated before the subquery, there is no
problem. Otherwise the runtime error occurs. The SQL-92 standard does not
clarify this point. In Oracle9i, the example does not generate a runtime error:
It seems that the condition in the outer query is evaluated first or pushed
down into the subquery (independent of the sequence of the two conditions).
However, one can construct an example with two subqueries, where Oracle
generates a runtime error for ϕ1 AND ϕ2, but not for ϕ2 AND ϕ1.

Therefore, it seems safest to require that the subquery returns only a
single tuple for each assignment of the tuple variables in the outer query, no
matter whether that assignment satisfies the conditions of the outer query
or not. We will show how to check this in Section 8.

Error 37: SELECT INTO that might return more than one tuple.
If SELECT ... INTO ... in embedded SQL should ever return more than
one tuple, a runtime error occurs. For instance, the following query will
work until it happens that there are two employees with the same name :N.

SELECT JOB, SAL

INTO :X, :Y

FROM EMP

WHERE ENAME = :N

Since the critical situation is so unusual, it might be overlooked during
testing. The above query is only safe if ENAME is declared as key of EMP.
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Error 38: No indicator variable for arguments that might be null.
In Embedded SQL, it is necessary to specify an indicator variable if a result
column can be null. If no indicator variable is specified, a runtime error
results. Note that this can happen also with aggregation functions that get
an empty input.

Error 39: Difficult type conversions.
Also, the very permissive type system of at least Oracle SQL can pose a
problem: Sometimes strings are implicitly converted to numbers, which can
generate runtime errors.

Error 40: Runtime errors in datatype functions.
Datatype operators have the usual problems (e.g. division by zero). It is
difficult for the SQL programmer to really avoid this, e.g. this is still unsafe:

SELECT ENAME

FROM EMP

WHERE COMM <> 0 AND SAL/COMM > 2

SQL does not guarantee any specific evaluation sequence. A declarative so-
lution would be to extend SQL’s three-valued logic by a truth value “error”,
and to evaluate e.g. “error and false” to false. We do not know whether this
is done in any DBMS. Thus, our test should print a warning whenever in
a term A/B appearing under WHERE, B can be zero, no matter what other
conditions there are. However, if the term appears under SELECT, one can
assume that the WHERE-condition is satisfied.

Updates could also cause runtime errors, e.g. inserting a null value into a
NOT NULL column. In general, the program logic around an update should
avoid constraint violations. But this is beyond the scope of the present paper.

7 Style Checks

In all of the above situations, there are quite strong indications that the query
will not (always) behave as intended, or is at least more complex than it needs
to be. The following situations are a matter of taste.

(1) A tuple variable in the main query should not be “shadowed” by a tuple
variable of the same name in a subquery.

(2) A tuple variable from an outer query should not be accessed without its
name in a subquery (i.e. only “A” instead of “X.A”).

(3) Some style guides even recommend to use a tuple variable in every at-
tribute reference (when more than one tuple variable is declared), even if
the attribute name alone would uniquely determine the tuple variable.
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(4) An IN-subquery that is correlated, i.e. accesses tuple variables from the
outer query, should probably be replaced by an EXISTS-subquery.

(5) It might be a matter of taste, but a large number of unnecessary paren-
theses is also not helpful for reading the query.

(6) Of course, SQL queries should be portable between different DBMS. How-
ever, there is a tradeoff between portability on the one hand, and con-
ciseness and efficiency on the other hand.

8 Algorithms for Selected Semantic Errors

In the error descriptions above, we have already sketched algorithms for those
errors that can be discovered with simple syntactic checks, and given references
to the literature where algorithms for some errors can be found.

However, there is a number of errors that need a check for duplicate solutions
in one way or another. In this section, we want to look at two representative
cases: Error 2 (Unnecessary DISTINCT) and Error 36 (Subquery Term has
Several Solutions).

Suppose the following query is given, and we want to check whether DISTINCT
is indeed necessary:

SELECT DISTINCT t1, . . ., tm
FROM R1 X1, . . ., Rn Xn

WHERE ϕ

In this section, we exclude aggregation functions (for this particular error,
there would be no duplicates if the ti are aggregation terms). Furthermore, we
assume that all attribute references include a tuple variable (this can easily
be reached).

Now the question whether DISTINCT is necessary in the above query can be
reduced to a consistency check by duplicating the tuple variables in order to
find two different variable assignments that both satisfy the WHERE-condition,
and yield the same values for the SELECT-terms:

SELECT *

FROM R1 X1, ..., Rn Xn, R1 X
′
1, ..., Rn X

′
n

WHERE ϕ AND ϕ′

AND (t1 = t′1 OR (t1 IS NULL AND t′1 IS NULL))

· · · · · ·
AND (tm = t′m OR (tm IS NULL AND t′m IS NULL))

AND (X1 6= X ′1 OR · · · OR Xn 6= X ′n)
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Here ϕ′ results from ϕ by replacing every occurence of Xi by X ′i. The same
for the tj. We use Xi 6= X ′i as an abbreviation for requiring that the primary
key values of the two tuple variables are different (we assume that primary
keys are always NOT NULL). If one of the relations Ri has no declared key, it
is always possible that there are duplicates (if the condition ϕ is consistent).

The DISTINCT is necessary in the original query if and only if this modified
query is consistent (i.e. has a nonempty result in at least one database state
that respects all constraints). The consistency is not decidable in general, but
the reduction is possible in both directions, so nothing is lost. But one can
utilize now the rich literature on consistency tests, e.g., [4,5,20,24,16,28,21,3]
(and of course all literature on automated theorem proving, e.g. [11]).

Such a simple reduction to a consistency test is prossible for nearly all non-
syntactic errors above. E.g., Errors 18, 19, 34, 36, 37 can obviously be solved
with very similar techniques, and the method for Error 8 was already given
in its description above. This means that all advances in consistency checking
would immediately extend the applicability of our other tests. The consis-
tency of SQL queries is decidable at least for all queries without aggregations
and without datatype functions (such as +), and that have only a single level
of subqueries. This corresponds to the quantifier prefix ∃∗∀∗, for which it is
well known that the consistency of first order logic with equality is decidable
(it was proven 1928 by Bernays and Schönfinkel). In [3] we proposed a sim-
ple algorithm that can also handle null values and often much deeper nested
subqueries.

Let us consider a variation of the idea to show its general applicability. Suppose
the following subquery is used as a term, so we must make sure that Error 36
cannot occur, i.e. that it always returns only one tuple:

SELECT t
FROM R1 X1, . . ., Rn Xn

WHERE ϕ

The interesting point is that ϕ might access tuple variables S1 Y1, . . . , Sm Ym

from the outer query. However, we explained above that in order to be really
sure that the runtime error does not occur, nothing can be assumed about
their values. Thus, we must check the following query for consistency:

SELECT *

FROM R1 X1, ..., Rn Xn, R1 X
′
1, ..., Rn X

′
n, S1 Y1, . . ., Sm Ym

WHERE ϕ AND ϕ′

AND (X1 6= X ′1 OR · · · OR Xn 6= X ′n)

Error 36 can occur if and only if this query is consistent.
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Of course, doing a lot of consistency tests during the semantic check of a
single query might be considered as too expensive. One can also easily develop
efficient algorithms that are only sufficient or only necessary. As an example,
let us consider again the question whether a query might produce duplicates
(Error 2).

Sufficient Test for Error 2: Unnecessary DISTINCT.
Let the given query be:

SELECT DISTINCT t1, . . ., tm
FROM R1 X1, . . ., Rn Xn

WHERE ϕ
(1) Let ψ1 ∧ · · · ∧ ψk be the conjunctive normal form of ϕ.
(2) Let K be the set of those ti that are an attribute reference (not a

composed term or a constant). I.e. K is initialized with the attributes
that appear as output column under SELECT.

(3) Add to K all attributes A such that A = c or c = A with a constant c
appears among the ψi.

(4) While K differs from the last step do:
• Add to K attributes A such that A = B or B = A appears among

the ψi and B ∈ K.
• If K contains a key of a tuple variable Xi, add all other attributes

of Xi to K.
(5) If K contains a key of every tuple variable Xi, DISTINCT is superfluous.

(If the query contains GROUP BY, one checks instead whether all GROUP
BY columns are contained in K.)

9 Some Statistics about Error Occurrence

The above list of error types is based on our experience from grading a large
number of exams and homeworks. After this error taxonomy was finished,
we analyzed the solutions of the SQL exercises in four exams of the course
“Databases I” at the University of Halle (One exam in winter term 2002/03,
a “second chance” exam in summer term 2003 for students who wanted to
improve their grade, and midterm and final exam in winter term 2003/2004.
The course was taught by two different professors.) The results are shown in
Figure 1. The exercises are numbered with letters, e.g. the first exam contained
four exercises (A, B, C, D). Course material and exam exercises are available
from the project web page (see Conclusions).

We did sometimes count several unrelated semantic errors in the same exercise,
but that did not occur often. The number of exams that contained at least
one semantic error is the sum of the entries “Only Semantics” and “Both”.
Of course we counted only semantic errors from our above list, i.e. that are
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2002/03 2003 Mid 03/04 Fin 03/04
67 participants 18 part. 153 part. 148 part.

Error A B C D E F G H I J K L M
∑

1 - - 2 1 8 - - 3 4 14 1 14 2 49
2 4 - - - - - 1 2 - 5 2 2 - 16
3 8 - - 4 - 1 - - - - - 1 - 14
4 - - - - - - - - - 2 - - - 2
5 1 - - - - - - - - 2 11 9 1 24
6 - - - - - 2 - - - 25 2 5 2 36
7 - - - - - - - 5 - 8 - - 1 14
8 - 1 3 - 3 - - 2 2 6 4 1 1 23
9 - - - - 1 - - - 6 - - - - 7

11 - - 1 - - - - - - - 1 - 3 5
12 - - - - 1 - - 2 3 2 - - - 8
14 - - - - - - - - - - 2 2 1 5
18 - - - - - - - - - - 1 2 16 19
19 - - - - - - - - - - 1 - - 1
20 - 1 1 - - - - - - - 1 1 1 5
21 1 - 1 - - - - - - - - 1 - 3
15 - - 2 2 - - - - - - - - - 4
22 - - - - - - - 1 - - - - - 1
24 - - 1 1 - - - - - - 3 - 1 6
26 14 17 14 6 4 1 2 1 3 29 2 5 - 91
27 - - - 5 1 - - - - - - 6 - 12
29 1 - - 2 - - - - - - 1 3 - 7
30 - - - 1 - - - - 5 1 - - - 7
33 - - - - - - - 11 - - - - - 11
34 - - - - - - - - 46 - - - - 46
36 6 2 3 1 - - - - - - - - - 12

Correct 22 2 10 - - 6 5 104 37 30 18 45 54 27%
Syntax 16 20 18 20 5 6 6 7 17 9 86 30 57 24%

Semantics 19 5 7 6 4 3 1 20 50 50 8 31 18 18%
Both 9 14 14 12 9 1 2 6 11 23 17 15 7 11%

Wrong Task 1 7 3 15 - 1 2 12 30 9 6 23 8 10%
Not Counted - 19 15 14 - 1 2 4 8 32 13 4 4 10%

Figure 1. Error Statistics for four Exams

detectable without knowing the task of the query. “Wrong task” lists the
number of exams that can only be detected as incorrect if the goal of the
query is known. As can be seen in the syntactically relatively simple exercises
of the midterm exam in winter term 2003/04, there are many more exams
with detectable semantic errors than with syntax errors. This demonstrates
that the tool we are developing will be useful. “Not Counted” lists exams that
did not try the particular exercise, or that contained so severe syntax errors
that looking at semantic errors in detail was not possible. In the exams that
were analyzed with this error taxonomy, the ten most often occurring semantic
errors are (percentages are relative to all detected semantic errors):
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1. 21,3 % Error 26: Missing Join Conditions
2. 11,4 % Error 1: Inconsistent Conditions
3. 10,8 % Error 34: Many Duplicates
4. 8,4 % Error 6: Unnecessary Joins
5. 5,6 % Error 5: Unused Tuple Variables
6. 5,4 % Error 8: Implied, Tautological or Inconsistent Subconditions
7. 4,4 % Error 18: Singleton Groups
8. 3.7 % Error 2: Unnecessary DISTINCT
9. 3.2 % Error 3: Constant Output Column
9. 3.2 % Error 7: Tuple Variables that are Always Identical

10 Related Work

It seems that the general question of detecting semantic errors in SQL queries
(as defined above) is new. However, it is strongly related to the two fields of
semantic query optimization and cooperative answering.

Semantic query optimization (see e.g. [9,18,8]), also tries to find unnecessary
complications in the query, but otherwise the goals are different. As far as
we know, no system prints a warning if the optimizations are “too good to
be true”. Also the effort for query optimization must be amortized when the
query is executed, whereas for error detection, we would be willing to spend
more time. Finally, soft constraints (that can have exceptions) can be used for
generating warnings about possible errors, but not for query optimization.

Our work is also related to the field of cooperative query answering (see,
e.g., [15,12,14]). However, there the emphasis is more on the dialogue between
DBMS and user. As far as we know, a question like the possibility of runtime
errors in the query is not asked. Also, there usually is a database state given,
whereas we do not assume any particular state. For instance, the CoBase sys-
tem would try to weaken the query condition if the query returns no answers.
It would not notice that the condition is inconsistent and thus would not give a
clear error message. However, the results obtained there might help to suggest
corrections for a query that contains this type of semantic error.

The SQL Tutor system described in [22,23] discovers semantic errors, too, but
it has knowledge about the task that has to be solved (in form of a correct
query). In contrast, our approach assumes no such knowledge, which makes it
applicable also for software development, not only for teaching.

Software testing techniques for database queries are developed e.g. in [6,28].
Further studies about errors in database queries, especially psychological as-
pects, are [27,26,19,13,10].
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11 Conclusions

There is a large class of SQL queries that are syntactically correct, but nev-
ertheless certainly not intended, no matter what the task of the query might
be. One could expect that a good DBMS prints a warning for such queries,
but, as far as we know, no DBMS does this yet.

We are currently developing a tool “sqllint” for finding semantic errors in
SQL queries. The list of error types contained in this paper can serve as a
specification for this tool. The current state of the project is reported at:

http://dbs.informatik.uni-halle.de/sqllint/.

The current version of the prototype and the evaluated exams are posted on
this page.

In future work, we especially want to investigate patterns for SQL queries
in greater detail (by analyzing a large collection of SQL queries from real
projects).

Furthermore it is an interesting idea that for view definitions, the programmer
might be willing to specify additional information like keys and foreign keys.
Our tool could then try to verify that these constraints on the query result are
indeed implied by the query and the constraints on the base table. In contrast,
the present paper has assumed that the only input to the semantic check is
the query itself and the database schema (especially, the constraints on the
base tables).

The authors would be thankful for reports about any further semantic errors
or violations of good style that are not treated in this paper.
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