
Semantic Errors in SQL Queries: A Quite Complete List

Stefan Brass Christian Goldberg
Martin-Luther-Universiẗat Halle-Wittenberg, D-06099 Halle (Saale), Germany

(brass|goldberg)@informatik.uni-halle.de

Abstract

We investigate classes of SQL queries which are syn-
tactically correct, but certainly not intended, no mat-
ter for which task the query was written. For instance,
queries that are contradictory, i.e. always return the
empty set, are obviously not intended. However, current
database management systems execute such queries
without any warning. In this paper, we give an exten-
sive list of conditions that are strong indications of se-
mantic errors. Of course, questions like the satisfiabil-
ity are in general undecidable, but a significant subset
of SQL queries can actually be checked. We believe that
future database management systems will perform such
checks and that the generated warnings will help to de-
velop code with fewer bugs in less time.

1. Introduction

Errors in SQL queries can be classified into syntactic
errors and semantic errors. A syntactic error means that
the entered character string is not a valid SQL query.
In this case, any DBMS will print an error message be-
cause it cannot execute the query. Thus, the error is cer-
tainly detected and usually easy to correct.

A semantic error means that a legal SQL query was
entered, but the query does not or not always produce
the intended results, and is therefore incorrect for the
given task. Semantic errors can be further classified into
cases where the task must be known in order to detect
that the query is incorrect, and cases where there is suffi-
cient evidence that the query is incorrect no matter what
the task is. Our focus in this paper is on this latter class,
since there is often no independent specification of the
goal of the query. For instance, consider this query:

SELECT *
FROM EMP
WHERE JOB = ’CLERK’

AND JOB = ’MANAGER’

This is a legal SQL query, and it is executed e.g. in Or-
acle9i and DB2 V8.1 without any warning. However,
the condition is actually inconsistent, so the query re-
sult will be always empty. Since nobody would use a
database in order to get an always empty result, we can
state that this query is incorrect without actually know-
ing what the task of the query was. Such cases do hap-
pen, e.g. in one exam exercise that we analyzed, 10 out
of 70 students wrote an inconsistent condition.

It is well known that the consistency of formulas
is undecidable, and that this applies also to database
queries. However, although the task is in general un-
decidable, many cases that occur in practice can be de-
tected with relatively simple algorithms.

Our work is also inspired by the programlint ,
which is or was a semantic checker for the “C” pro-
gramming language. Today C compilers do most of
the checks thatlint was developed for, but in ear-
lier times, C compilers checked just enough so that
they could generate machine code. We are still at this
development stage with SQL today. Printing warnings
for strange SQL queries is very uncommon in current
database management systems.

We currently develop a similar tool for SQL queries
(calledsqllint ). We believe that such a tool would
be useful not only in teaching, but also in application
software development. At least, a good error message
could speed up the debugging process. Furthermore,
runtime errors are possible in SQL, e.g., in some con-
texts, SQL queries or subqueries must return not more
than one row. The occurrence of this error depends on
the database state (the data), therefore it is no neces-
sarily found during testing. Certainly it would be good
to prove that all queries in a program can never violate
this condition. Our tool does not depend on the data,
it only takes the schema information (including con-
straints) and an SQL query as input. Therefore, it is not
necessary to check the queries in each execution.

The main contribution of this paper is a list of seman-
tic errors that represents years of experience while cor-



recting hundreds of exams that contained SQL queries.
However, we have also tried to explain the general prin-
ciples from which these errors can be derived (as far as
possible). Therefore, it is not simply by chance whether
an error appears on our list, but the list has a certain de-
gree of completeness (except possibly in Section 4).

While our experience so far has only been with errors
made by students, not professional programmers, most
of the students will become programmers, and they will
not immediately make fewer errors.

The paper is structured by reasons why SQL queries
can be considered suspicious: Unnecessary complica-
tions (Section 2), inefficient formulations (Section 3),
violations of standard patterns (Section 4), many dupli-
cates (Section 5), and the possibility of runtime errors
(Section 6). Furthermore we suggest some style checks
in Section 7. Section 8 contains some statistics how of-
ten errors appeared in exams. Related work is discussed
in Section 9.

In the examples, we use a database schema for stor-
ing information about employees and departments:

EMP(EMPNO, ENAME, JOB, SAL, COMM,
DEPTNO→DEPT)

DEPT(DEPTNO, DNAME, LOC)

This is a simplified version of an example schema that
comes with the Oracle DBMS.

2. Unnecessary Complications

Queries can be considered as “probably not in-
tended” when they are unnecessarily complicated. Sup-
pose the user wrote a queryQ, and there is an equivalent
query Q′ that is significantly simpler, and can be de-
rived fromQ by deleting certain parts. There might be
the following reasons why the user did not writeQ′:

• The user knew thatQ′ is not a correct formulation
of the task at hand. In this case,Q is of course also
not correct, but the error might be hidden in the
more complicated query, so that the user did not
realize this. A warning would certainly be helpful
in this case.

• The user did not know thatQ′ is equivalent. Since
Q′ is not a completely different query, but results
from Q by deleting certain parts, this shows that
the user does not yet master SQL. Again, a warn-
ing would be helpful. Often, the simpler query will
actually run faster (e.g. the Oracle 9i query opti-
mizer does not seem to remove unnecessary joins).

• The user knew thatQ′ is equivalent, but he or she
believed thatQ would run faster. Since SQL is a
declarative language this should only be the last re-
sort. With modern optimizers, this should not hap-
pen often in practice. If it is necessary, there prob-
ably should be some comment, and this could also
be used to shut off the warning. Although we know
at least one case where a more complicated query
actually does run faster on Oracle 9i, SQL does not
make any guarantees about how a query is evalu-
ated. Thus, in the next Oracle version or when one
uses a different DBMS, it might be that the rela-
tive speed ofQ andQ′ dramatically changes.

• The user knew thatQ′ is equivalent, but thought
thatQ would be clearer for the human reader and
easier to maintain. One must be careful to define
the possible transformations fromQ to Q′ such
that this does not happen. For instance, it might
be clearer to use explicit tuple variables in attribute
references, even if the attribute name is unique. Re-
moving the tuple variable in this case cannot be
considered as producing a different, shorter query.
Obviously, we would also not require that mean-
ingful names for tuple variables are shortened or
that comments are removed. Furthermore, using
certain optional keywords (e.g. “AS”) is a matter
of taste. Unfortunately, this means that every pos-
sible “shortening transformation” of SQL queries
must be considered separately (as done below).

Actually, “equivalence” in the sense of requiring exactly
the same query result in all database states would make
the condition still too strict. First, we not only want to
minimize the query, but also the query result. Consider
the following query which is quite typical for beginning
SQL programmers:

SELECT EMPNO, ENAME, JOB
FROM EMP
WHERE JOB = ’MANAGER’

The last column in the query result is superfluous, we
know that it must always be “MANAGER”. Therefore,
no information is lost when this column is removed. Of
course, trying to minimize the query result without loss
of information does not mean that we apply compres-
sion algorithms or difficult encodings. The important re-
quirement is that from the shorter query result, the user
can reconstruct the original query result with “very lit-
tle intellectual effort” — less than what would be re-
quired for reading the long version. This statement is a
bit fuzzy, but it can be made precise by listing the oper-
ations that are permitted for reconstructing the original



query result. In this paper, we only need constant rela-
tions (in the case of inconsistent conditions) and projec-
tions. In the example, we would use

πEMPNO, ENAME, JOB←’MANAGER’ .

Furthermore, it is better to exclude certain unusual
states when we require that the result of both queries
(Q andQ′) is the same. For example, it happens some-
times that students declare a tuple variable, and then do
not use it and forget to delete it:

SELECT DISTINCT DNAME
FROM DEPT, EMP

The “DISTINCT ” is also a typical example where the
wrong patch was applied to a problem noticed by the
student (many duplicates). The above query returns al-
ways the same result as the following one, except when
EMPis empty:

SELECT DISTINCT DNAME
FROM DEPT

Therefore, we will require the equivalence only for
states in which all relations are non-empty. It might even
be possible to assume that all columns contain at least
two different values.

Some types of errors produce many duplicates. More
powerful query simplifications can be used if these du-
plicates are not considered as important for the equiv-
alence (at least if the simpler queryQ′ produces less
duplicates than the more difficult queryQ). E.g. in the
above example, we would want to delete the unused tu-
ple variable even ifDISTINCT were not specified. Du-
plicates are further considered in Section 5.

Now we give a list of all cases in which a query can
be obviously simplified under this slightly weakened
notion of equivalence. In each of these cases, a warn-
ing should be given to the user.

2.1. Entire Query Unnecessary

Error 1: Inconsistent conditions. Nobody would pose
a query if he or she knew beforehand that the query re-
sult is empty, no matter what the database state is. In
general, one could also construct other queries that have
a constant result for all database states (maybe under the
assumption that relations are not empty).

2.2. SELECT Clause

Error 2: Unnecessary DISTINCT. One should use an
explicit duplicate elimination only when necessary. Be-
cause of keys it sometimes can be proven that a query

cannot return duplicates. ThenDISTINCT should not
be used, because the query then will run slower (at least
the Oracle 9i and DB2 V8.1 optimizers do not remove
the unnecessary duplicate elimination). Always writ-
ing “DISTINCT ” furthermore shadows possible errors:
When a query does produce duplicates, it is often help-
ful to understand why.

Error 3: Constant output column. An output column
is unnecessary if it contains a single value that is con-
stant and can be derived from the query without any
knowledge about the database state. This was already
illustrated at the beginning of this section.

Error 4: Duplicate output column. An output column
is also unnecessary if it is always identical to another
output column.

2.3. FROM Clause: Unnecessary Tuple Vars

Error 5: Unused tuple variables. (See the discussion
about equivalence at the beginning of this section.)

Error 6: Unnecessary joins. If only the key attributes
of a tuple variableX are accessed, and this key is
equated with the foreign key of another tuple vari-
ableY , X is not needed.

Error 7: Tuple variables that are always identical. If
the key attributes of two tuple variablesX andY over
the same relation are equated, the two tuple variables
must always point to the same tuple.

2.4. WHERE Clause

Error 8: Implied, tautological, or inconsistent sub-
conditions. The WHERE-condition is unnecessarily
complicated if a subcondition (some node in the oper-
ator tree) can be replaced byTRUEor FALSE and the
condition is still equivalent. E.g. it happens sometimes
that a condition is tested underWHEREthat is actually a
constraint on the relation.

Error 9: Comparison with NULL. At least in Ora-
cle, it is syntactically valid to writeA = NULL, but this
condition has a constant truth value (null/unknown). In
other systems, this would be a syntax error.

Error 10: Unnecessarily general comparison opera-
tor. Consider the query:

SELECT ENAME, SAL
FROM EMP
WHERE SAL >= (SELECT MAX(SAL)

FROM EMP)



In this case, one could write= instead of>=. Also writ-
ing IN here is quite confusing.

Error 11: LIKE without wildcards. If LIKE is used
without wildcards “%” and “_”, it can and should be re-
placed by “= (there is a small semantic difference with
blank-padded vs. non blank-padded comparison seman-
tics in some systems). This could be seen as a special
case of Error 10, but it is so common that it should be
treated separately.

Error 12: Unnecessarily complicated SELECT lists
in EXISTS-subqueries. In EXISTS-subqueries, the
SELECT list is not important. Therefore, it should be
something simple (e.g. “* ” or “ 1” or a single attribute).

Error 13: IN/EXITS condition can be replaced by
comparison. Consider the following query:

SELECT ENAME
FROM EMP X
WHERE X.EMPNO NOT IN

(SELECT Y.EMPNO
FROM EMP Y
WHERE Y.JOB = ’MANAGER’)

The WHERE-condition can be equivalently replaced by
X.JOB <> ’MANAGER’. The point here is that the
two tuple variables over the same relation are matched
on their key. This is very similar to Error 7 above, but
here a subquery is involved.

2.5. Aggregation Functions

Error 14: Unnecessary DISTINCT in aggrega-
tions. MIN and MAXnever needDISTINCT . When
DISTINCT is used in other aggregation functions, it
might not be necessary because of keys. See also Er-
ror 30.

Error 15: Unnecessary argument of COUNT. There
are two versions of the aggregation functionCOUNT:
One with an argument, and one without an argument
(written asCOUNT(*) ). We would prefer the version
without argument whenever this is equivalent, i.e. when
there is noDISTINCT and when the argument can-
not be null. That might be a matter of taste, but at least
when counting duplicates is important, the meaning of
the query is obscured by aCOUNTargument.

2.6. GROUP BY Clause

Error 16: GROUP BY with singleton groups. If it
can be proven that each group consists only of a sin-
gle row, the entire aggregation is unnecessary.

Error 17: GROUP BY with only a single group. If it
can be proven that there is always only a single group,
theGROUP BYclause is unnecessary, except when the
GROUP BYattribute should be printed underSELECT.

Error 18: Unnecessary GROUP BY attributes. If a
grouping attribute is functionally determined by other
such attributes and if it does not appear underSELECT
or HAVINGoutside of aggregations, it can be removed
from theGROUP BYclause.

Error 19: GROUP BY can be replaced by DIS-
TINCT. If exactly the SELECT-attributes are listed
under GROUP BY, and no aggregation functions
are used, theGROUP BYclause can be replaced by
SELECT DISTINCT (which is shorter and clearer).

2.7. HAVING Clause

In the HAVING-clause, the same errors as in the
WHERE-clause are possible. In addition, conditions that
are possible underWHEREare better written there (see
Error 22 below).

2.8. UNION/UNION ALL

Error 20: UNION can be replaced by OR. If the
two SELECT-expressions use the sameFROM-list the
sameSELECT-list, and mutually exclusiveWHERE-
conditions,UNION ALL can be replaced by a single
query with theWHERE-conditions connect byOR. There
are similar conditions forUNION.

2.9. ORDER BY Clause

Error 21: Unnecessary ORDER BY terms. Suppose
that the order by clause isORDER BYt1, . . . , tn.
Then ti is unnecessary if it is functionally determined
by t1, . . . , ti−1. This especially includes the case thatti
has only one possible value.

3. Inefficient Formulations

Although SQL is a declarative language, the pro-
grammer should help the system to execute the query ef-
ficiently. Most of the unnecessary complications above
also lead to a longer runtime, if the optimizer does not
discover them (e.g., errors 2, 5, 6, 7, 8, 11, 13, 14, 16,
17, 20). In the following two cases the query does not
get shorter by choosing the more efficient formulation.



Error 22: Inefficient HAVING. If a condition uses
only GROUP BYattributes and no aggregation func-
tion, it can be written underWHEREor underHAVING.
It is much cheaper to check it already underWHERE.

Error 23: Inefficient UNION. UNION should be re-
placed byUNION ALLif one can prove that the results
of the two queries are always disjoint, and that none of
the two queries returns duplicates.

4. Violations of Standard Patterns

Another indicator for possible errors is the violation
of standard patterns for queries.

Error 24: Missing join conditions. Missing join con-
ditions are a type of semantic error that is mentioned
in most text books. However, it is seldom made precise
how such a test should be formally done. The follow-
ing is a very strict version: First, the conditions is con-
verted to DNF, and the test is done for each conjunc-
tion separately. One creates a graph with the tuple vari-
ablesX as nodes. Edges are drawn between tuple vari-
ables for which a foreign key is equated to a key, ex-
cept in the case of self-joins, where any equation suf-
fices. The graph then should be connected, with the pos-
sible exception of nodesX such that there is a condi-
tion X.A = c with a key attributeA and a constantc.

Error 25: Uncorrelated EXISTS-subqueries. If an
EXISTS-subquery makes no reference to a tuple vari-
able from the outer query, is is either globally true or
globally false. This is a very unusual behaviour. Actu-
ally, uncorrelatedEXISTS-subqueries are simply miss-
ing join conditions (possibly for anti-joins).

Error 26: SELECT-Clause of subquery uses no tu-
ple variable from the subquery. E.g. something like
the following puzzled a team of software engineers for
quite some time, they even thought that their DBMS
contained a bug, because it did not give any error:

SELECT ENAME
FROM EMP
WHERE DEPTNO IN

(SELECT EMPNO
FROM DEPT
WHERE LOC = ’BOSTON’)

The underlined attribute is a typing error, correct would
beDEPTNO. However, this is correct SQL,EMPNOsim-
ply references the tuple variable from the outer query.
In this particular example, also missing join condition
should have been detected, but that is not always the
case.

Error 27: Conditions in the subquery that can be
moved up. A condition in the subquery that accesses
only tuple variables from the main query is strange.

Error 28: Comparison between different domains.
If domain information is available, a comparison be-
tween attributes of different domains is suspicious. This
is another reason why in the design phase, domains
should be defined, even if they are not directly sup-
ported in the DBMS. If there is no domain informa-
tion, one could analyze an example database state for
columns that are nearly disjoint.

Error 29: Strange HAVING. UsingHAVINGwithout
a GROUP BYclause is strange: Such a query can have
only one result or none at all.

Error 30: DISTINCT in SUM and AVG. For the ag-
gregation functionsSUMandAVG, duplicates are most
likely significant.

Error 31: Wildcards without LIKE. When “=” is
used with a comparison string that contains “%”, proba-
bly “LIKE ” was meant. For the other wildcard, “_”, it
is not that clear, because it might more often appear in
normal strings.

5. Duplicates

Query results that contain many duplicates are diffi-
cult to read. It is unlikely that such a query is really in-
tended. Furthermore, duplicates are often an indication
for another error, e.g. missing join conditions.

Error 32: Many duplicates. Consider this example:

SELECT JOB
FROM EMP

This query will produce many duplicates without any
order. It is quite clear that it would have been better to
chose one of the following formulations:

• If the number of duplicates is not important:

SELECT DISTINCT JOB
FROM EMP

• If it is important:

SELECT JOB, COUNT(*)
FROM EMP
GROUP BY JOB

But duplicates are not always bad. Consider, e.g.:

SELECT ENAME
FROM EMP
WHERE DEPTNO = 20



Although it might be possible that there are two em-
ployees with a common name, this is not very likely.
And when it happens, the duplicate might be important.
The reason is that although the name is not a strict key, it
is used in practice for identifying employees. Thus, we
need a declaration of such “soft keys”. Then we check
whether there could possibly be duplicates under the as-
sumption that these soft keys were real keys.

If there is no information about soft keys, one could
run the query on an example database state. If it pro-
duces a lot of duplicates, we could give a warning. Tech-
niques developed in query optimization for estimating
the result size can also be used.

6. Possible Runtime Errors

Runtime errors are detected by the DBMS while
it executes the query. Often they occur only in some
database states, while the same query runs well for other
data. A query should be considered as problematic if
there is at least one state in which the error occurs.

Error 33: Subqueries terms that might return more
than one tuple. If one uses a subquery as a term, e.g. in
a condition of the formA = (SELECT ...) , it is
important that the subquery returns only a single value.
If this condition should ever be violated, the DBMS will
generate a run-time error.

As usual for runtime errors, the occurrence of the er-
ror depends on the evaluation sequence. For instance,
consider the following query:

SELECT DISTINCT E1.ENAME
FROM EMP E1, EMP E2
WHERE ’NEW YORK’ =

(SELECT LOC FROM DEPT D
WHERE D.DEPTNO = E1.DEPTNO

OR D.DEPTNO = E2.DEPTNO)
AND E1.EMPNO = E2.EMPNO

If the underlined condition is evaluated before the sub-
query (or pushed into the subquery), there is no prob-
lem. Otherwise the runtime error occurs. The SQL stan-
dard does not clarify this point, but it seems safest to
require that the subquery returns only a single tuple
for each assignment of the tuple variables in the outer
query, no matter whether that assignment satisfies the
conditions of the outer query or not.

Error 34: SELECT INTO that might return more
than one tuple. If a SELECT ... INTO ... com-
mand in embedded SQL should ever return more than
one tuple, a runtime error occurs.

Error 35: No indicator variable for arguments that
might be null. In Embedded SQL, it is necessary to
specify an indicator variable if a result column can be
null. If no indicator variable is specified, a runtime er-
ror results. Note that this can happen also with aggrega-
tion functions that get an empty input.

Error 36: Difficult type conversions. Also, the very
permissive type system of at least Oracle SQL can pose
a problem: Sometimes strings are implicitly converted
to numbers, which can generate runtime errors.

Error 37: Runtime errors in datatype functions.
Datatype operators have the usual problems (e.g. divi-
sion by zero). It is difficult for the SQL programmer to
really avoid this, e.g. this is still unsafe:

SELECT ENAME
FROM EMP
WHERE COMM <> 0 AND SAL/COMM > 2

SQL does not guarantee any specific evaluation se-
quence. A declarative solution would be to extend
SQL’s three-valued logic by a truth value “error”, and
to evaluate e.g. “error and false” to false. We do not
know whether this is done in any DBMS. Thus, our test
should print a warning whenever in a termA/B appear-
ing underWHERE, B can be zero, no matter what other
conditions there are. However, if the term appears un-
derSELECT, one can assume that theWHERE-condition
is satisfied.

7. Style Checks

1. A tuple variable in the main query should not be
“shadowed” by a tuple variable of the same name
in a subquery.

2. A tuple variable from an outer query should not be
accessed without its name in a subquery (i.e. only
“A” instead of “X.A”).

3. An IN -subquery that is correlated, i.e. accesses tu-
ple variables from the outer query, should proba-
bly be replaced by anEXISTS-subquery.

4. It might be a matter of taste, but a large number
of unnecessary parentheses is also not helpful for
reading the query.

5. Of course, SQL queries should be portable be-
tween different DBMS. However, there is a trade-
off between portability on the one hand, and con-
ciseness and efficiency on the other hand.



8. Some Numbers about Error Occurrence

The above list is based on our experience from grad-
ing a large number of exams and homeworks. Af-
ter this error taxonomy was finished, we analyzed
the SQL exercises in midterm and final exam of the
course “Databases I” at the University of Halle, win-
ter term 2003/04. The results are shown in Figure 1.
The midterm exam had 153 participants (exercises A,
B, C), and the final exam hat 148 participants (exer-
cises D, E, F). Course material and exam exercises
are available from the project web page (see Con-
clusions). We did sometimes count several unrelated
semantic errors in the same exercise, but that did not oc-
cur often. The number of exams that contained at least
one semantic error is the sum of the entries “Only Se-
mantics” and “Both”. Of course we counted only
semantic errors from our above list, i.e. that are de-
tectable without knowing the task of the query. “Wrong
task” lists the number of exams that can only be de-
tected as incorrect if the goal of the query is known. As
can be seen, in the syntactically relatively simple ex-
ercises of the midterm exam, there are many more ex-
ams with detectable semantic errors than with syntax
errors. This demonstrates that the tool we are develop-
ing will be useful. “Not Counted” lists exams that did
not try the particular exercise, or that contained so se-
vere syntax errors that looking at semantic errors in
detail was not possible. In the exams that were ana-
lyzed with this error taxonomy, the most often occur-
ring semantic errors are (percentages are relative to all
detected semantic errors):

15,2 % 32. Many Duplicates
13,2 % 24. Missing Join Conditions
12,5 % 1. Inconsistent Conditions
11,2 % 6. Unnecessary Joins
7,6 % 5. Unused Tuple Vars
6,3 % 16. Singleton Groups
5,3 % 8. Implied etc. Subconditions
4,6 % 7. Always Identical Tuple Vars

9. Related Work

It seems that the general question of detecting se-
mantic errors in SQL queries (as defined above) is new.
However, it is strongly related to the two fields of se-
mantic query optimization and cooperative answering.

Semantic query optimization (see e.g. [3, 9, 2]), also
tries to find unnecessary complications in the query, but
otherwise the goals are different. As far as we know,
no system prints a warning if the optimizations are “too

Error A B C D E F
∑

1 3 4 14 1 14 2 38
2 2 - 5 2 2 - 11
3 - - - - 1 - 1
4 - - 2 - - - 2
5 - - 2 11 9 1 23
6 - - 25 2 5 2 34
7 5 - 8 - - 1 14
8 2 2 6 4 1 1 16
9 - 6 - - - - 6

10 - - - 1 - 3 4
11 2 3 2 - - - 7
13 - - - 2 2 1 5
16 - - - 1 2 16 19
17 - - - 1 - - 1
18 - - - 1 1 1 3
19 - - - - 1 - 1
20 1 - - - - - 1
22 - - - 3 - 1 4
24 1 3 29 2 5 - 40
25 - - - - 6 - 6
27 - - - 1 3 - 4
28 - 5 1 - - - 6
31 11 - - - - - 11
32 - 46 - - - - 46

Correct 104 37 30 18 45 54 32%
Only Syntax 7 17 9 86 30 57 23%

Only Semantics 20 50 50 8 31 18 19%
Both 6 11 23 17 15 7 9%

Wrong Task 12 30 9 6 23 8 7%
Not Counted 4 8 32 13 4 4 10%

Figure 1. Error Statistics for Two Exams

good to be true”. Also the effort for query optimization
must be amortized when the query is executed, whereas
for error detection, we would be willing to spend more
time. Finally, soft constraints (that can have exceptions)
can be used for generating warnings about possible er-
rors. but not for query optimization.

Our work is also related to the field of cooperative
query answering (see, e.g., [8, 5, 7]). However, there the
emphasis is more on the dialogue between DBMS and
user. As far as we know, a question like the possibility of
runtime errors in the query is not asked. Also, there usu-
ally is a database state given, whereas we do not assume
any particular state. For instance, the CoBase system
would try to weaken the query condition if the query
returns no answers. It would not notice that the condi-
tion is inconsistent and thus would not give a clear er-
ror message. However, the results obtained there might
help to suggest corrections for a query that contains this



type of semantic error.
The SQL Tutor system described in [11, 12] discov-

ers semantic errors, too, but it has knowledge about the
task that has to be solved (in form of a correct query).
In contrast, our approach assumes no such knowledge,
which makes it applicable also for software develop-
ment, not only for teaching.

Further studies about errors in database queries, es-
pecially psychological aspects, are [14, 13, 10, 6, 4].

10. Conclusions

There is a large class of SQL queries that are syntac-
tically correct, but nevertheless certainly not intended,
no matter what the task of the query might be. One
could expect that a good DBMS prints a warning for
such queries, but, as far as we know, no DBMS does
this yet.

We are currently developing a tool “sqllint ” for
finding semantic errors in SQL queries. The list of er-
ror types contained in this paper can serve as a specifi-
cation of the task of this tool. We have algorithms for
all of the error types (for a suitable SQL subset), but
for space reasons, we could not present them here (see,
however, the technical report [1]). The error checks can
often be reduced to a consistency test. While the unde-
cidability in the general case remains, we can at least
use the mature methods of automated theorem prov-
ing. We also have simpler, direct sufficient conditions
for some of the errors. The current state of the project is
reported at:

http://www.informatik.uni-halle.de
/˜brass/sqllint/

In future work, we especially want to investigate pat-
terns for SQL queries in greater detail (by analyzing a
large collection of SQL queries from real projects).

The authors would be thankful for reports about any
further semantic errors or violations of good style that
are not treated in this paper.

Acknowledgements

We would like to thank the following persons, who
all made important contributions to this work. Sergei
Haller and Ravishankar Balike told us about Error 26.
Joachim Biskup contributed the idea that query size es-
timation techniques could be used. We had a very inter-
esting and inspiring discussion with Ralph Acker about
runtime errors. Elvis Samson developed the prototype
of the consistency test. The discussions with Alexander

Hinneburg have been very helpful, especially he sug-
gested further related work and gave us an example for
an SQL query that is longer than an equivalent query,
but runs faster.

References

[1] Stefan Brass, Christian Goldberg.Detecting Logical Er-
rors in SQL Queries. Technical Report, University of
Halle, 2004.

[2] Qi Cheng, Jarek Gryz, Fred Koo, Cliff Leung, Linqi Liu,
Xiaoyan Qian, Bernhard Schiefer. Implementation of
Two Semantic Query Optimization Techniques in DB2
Universal Database.Proceedings of the 25th VLDB Con-
ference, 687-698, 1999.

[3] U. S. Chakravarthy, J. Grant, and J. Minker. Logic-based
approach to semantic query optimization.ACM Trans-
actions on Database Systems, 15:162–207, 1990.

[4] Hock C. Chan. The relationship between user query ac-
curacy and lines of code.Int. Journ. Human Computer
Studies 51, 851-864, 1999.

[5] Wesley W. Chu, M.A. Merzbacher and L. Berkovich.
The design and implementation of CoBase. InProc. of
ACM SIGMOD, 517-522, 1993.

[6] Hock C. Chan, Bernard C.Y. Tan and Kwok-Kee Wei.
Three important determinants of user performance for
database retrieval.Int. Journ. Human-Computer Stud-
ies 51, 895-918, 1999.

[7] Wesley W. Chu, Hua Yang, Kuorong Chiang, Michael
Minock, Gladys Chow and Chris Larson. Cobase: A
scalable and extensible cooperative information system.
Journal of Intelligent Information Systems, 1996.

[8] Terry Gaasterland, Parke Godfrey and Jack Minker. An
Overview of Cooperative Answering. Journal of Intelli-
gent Information Systems 21:2, 123–157, 1992.

[9] Chun-Nan Hsu and Craig A. Knoblock. Using inductive
learning to generate rules for semantic query optimiza-
tion. In Advances in Knowledge Discovery and Data
Mining, pages 425–445. AAAI/MIT Press, 1996.

[10] W.J. Kenny Jih, David A. Bradbard, Charles A. Snyder,
Nancy G.A. Thompson. The effects of relational and
entity-relationship data models on query performance of
end users. Int. Journ. Man-Machine Studies, 31:257–
267, 1989.

[11] A. Mitrovic. A knowledge-based teaching system for
SQL. InED-MEDIA 98, pages 1027–1032, 1998.

[12] Antonija Mitrovic, Brent Martin, and Michael Mayo.
Using evaluation to shape its design: Results and ex-
periences with SQL-Tutor.User Modeling and User-
Adapted Interaction, 12:243–279, 2002.

[13] A. Rizzo, S. Bagnara and Michele Visciola. Human er-
ror detecting processes.Int. Journ. Man-Machine Stud-
ies 27, 555-570, 1987.

[14] C. Welty. Correcting user errors in SQL.International
Journal of Man-Machine Studies 22:4, 463-477, 1985.


