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Abstract. Queries that are contradictory, i.e. always return the empty
set, are quite often written in exams of database courses. However, such
queries are executed in current database management systems (e.g., Or-
acle) without any warning. Of course, questions like the satisfiability
are in general undecidable, but we give a quite simple algorithm that
can handle a surprisingly large subset of SQL queries. We then analyze
unnecessary logical complications. Furthermore, we discuss possible run-
time errors in SQL queries and show how a test for such errors can be
reduced to a consistency check. We believe that future database manage-
ment systems will perform such checks and that the generated warnings
will help to develop code with fewer bugs in less time.

1 Introduction

Errors in SQL queries can be classified into syntactic errors and semantic errors.
A syntactic error means that the entered character string is not a valid SQL
query. In this case, any DBMS will print an error message because it cannot
execute the query. Thus, the error is certainly detected and usually easy to
correct.

A semantic error means that a legal SQL query was entered, but the query
does not always produce the intended results, and is therefore incorrect for the
given task. Semantic errors can be further classified into cases where the task
must be known in order to detect that the query is incorrect, and cases where
there is sufficient evidence that the query is incorrect no matter what the task
is. Our focus in this paper is on this latter class.

For instance, consider the following query:

SELECT =*
FROM  EMP
WHERE JOB = °CLERK’ AND JOB = ’MANAGER’

This is a legal SQL query, and it is executed ,e.g., in the Oracle8i DBMS without
any warning. However, the condition is actually inconsistent, so the query result
will be always empty. Since nobody would use a database in order to get an
always empty result, we can state that this query is incorrect without actually
knowing what the task of the query was. Such cases do happen. For example, in
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one exam exercise that we analyzed, 10 out of 70 students wrote an inconsistent
condition.

It is well known that the consistency of formulas is undecidable in first-
order logic, and that this applies also to database queries. For example, one can
write a query that checks whether the database contains a solution to a Post’s
correspondence problem, see [1], Section 6.3. This query does not contain any
datatype operations.

However, although the task is in general undecidable, we will show that many
cases that occur in practice can be detected with relatively simple algorithms.

Our work is also inspired by the program lint, which is or was a semantic
checker for the “C” programming language. Today C compilers do most of the
checks that 1int was developed for, but in earlier times, C compilers checked
just enough so that they could generate machine code. We are still at this de-
velopment stage with SQL today. Printing warnings for strange SQL queries is
very uncommon in current database management systems.

The program lint tried to find also errors like uninitialized variables. This
is a clearly undecidable task, and therefore 1int sometimes produced error mes-
sages for programs that were correct (and missed some other errors). But in
general, 1int was a useful tool. In case of a wrong warning, a good programmer
will think about possible alternative formulations that are easier to verify. Such
formulations will often also be easier to understand by other programmers who
later have to read the code. If there was no better formulation, one could put a
special comment into the program that suppressed the warning.

We believe that such a tool would be useful not only in teaching, but also in
application software development.

Our paper is structured as follows: In Section 2, we show how the consis-
tency of queries in an SQL subset can be checked by combining the well-known
Skolemization method with an efficient algorithm for deciding the consistency
of conjunctive queries. We also explain how to extend the method to the three-
valued logic used in SQL, and how to handle program variables in Embedded
SQL. In the short Section 3, other unnecessary logical complications are dis-
cussed. In Section 4 we show how the consistency check can also be applied
in order to verify that a certain kind of runtime error cannot occur: In some
contexts, SQL queries or subqueries must return not more than one row. In
Section 5, we give some pointers to related work.

2 Inconsistent Conditions

In this section, we present an algorithm for detecting inconsistent conditions in
SQL queries. Since the problem is in general undecidable, we can handle only
a subset of all queries. However, our algorithm is reasonably powerful and can
decide the consistency of surprisingly many queries. To be precise, consistency
in databases means that there is a finite model, i.e. a relational database state
(sometimes called a database instance), such that the query result is not empty.
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In this paper, we assume that the given SQL query contains no datatype
operations, i.e. all atomic formulas are of the form ¢, f¢5 where 6 is a comparison
operator (=, <>, <, <=, > >=), and t1, {2 are attributes (possibly qualified with
a tuple variable) or constants (literals). It should be quite easy to extend it at
least to linear equations (e.g., X.A = 2+Y.A+5*Y.B). Null values and IS NULL
are treated in Section 2.5, before that, they are excluded. Aggregations are not
treated in this paper, they are subject of our future research.

2.1 Conditions Without Subqueries

If the query contains no subqueries, the consistency can be decided with methods
known in the literature, especially the algorithms of Guo, Sun and Weiss [13].

The condition then consists of the above atomic formulas connected with AND,
OR, NOT. We first push negation down to the atomic formulas, where it simply
“turns around” the comparison operator, so it is eliminated from the formula.
Then, we translate the formula in disjunctive normal form: ¢ V ---V ¢, is
consistent iff at least one of the ¢; is consistent.

Now a conjunction of the above atomic formulas can be tested for satisfia-
bility with the method of [13]. They basically create a directed graph in which
nodes are labelled with “Tuplevariable.Attribute” (maybe a representative for
an equivalence class with respect to =) and edges are labelled with < or <. Then
they compute an interval of possible values for each node. Note that SQL data
types like NUMERIC(1) also restrict the interval of possible values.

Unfortunately, if there are only finitely many values that can be assigned to
nodes, inequality conditions (¢; <>t3) between the nodes become important and
can encode graph-coloring problems. Therefore, we cannot expect an efficient
algorithm if there are many <>-conditions. Otherwise, the method of [13] is
fast. (However, the DNF computation that we apply before [13] can lead to an
exponential increase in size.)

2.2 Subgqueries

For simplicity, we treat only EXISTS subqueries. Other kinds of subqueries (IN,
>=ALL, etc.) can be reduced to the EXISTS case. For example, Oracle performs
such a query rewriting before the optimizer works on the query.

Let us first classify variables as existential or universal, depending on how
they would be quantified (3 or V) in tuple relational calculus if the query were
converted to prenex normal form:

Definition 1. Given a query Q, let us call a tuple variable in Q existential if it
is declared in a subquery that is nested inside an even number (including 0) of
NOTs, and universal otherwise. For instance, the tuple variables in the outermost
(main) query are existential.

Ezample 1. The following SQL query lists all locations of departments, such
that all departments at the same location have at least one “Salesman”:
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SELECT DISTINCT L.LOC
FROM DEPT L
WHERE NOT EXISTS(SELECT *
FROM DEPT D
WHERE D.LOC = L.LOC
AND NOT EXISTS(SELECT *
FROM EMP E
WHERE E.DEPTNO = D.DEPTNO
AND E.JOB = ’SALESMAN’))

L and E are existential tuple variables, and D is a universal tuple variable. a

In automated theorem proving (see, e.g., [8]), it is a well-known technique
to eliminate existential quantifiers by introducing Skolem constants and Skolem
functions. This simply means that a name is given to the tuples that are required
to exist. For tuple variables that are not contained in the scope of a universal
quantifier (such as L in the example), a single tuple is required in the database
state. However, for an existential tuple variable like E that is declared within
the scope of a universal tuple variable (D) a different tuple might be required for
every value for D. Therefore, a function fg is introduced that takes a value for D
as a parameter and returns a value for E. Such a function is called a Skolem
function. There is also a Skolem function f; for L, but this function has no
parameters (it is a Skolem constant).

Let us make precise what parameters Y the Skolem function fx for a tuple
variable X must have:

Definition 2. An existential tuple variable X depends on a universal tuple vari-
able Y iff

1. the declaration of X appears inside the scope of Y, and
2.'Y appears in the subquery in which X is declared (including possibly nested
subqueries).

The second part of the condition is not really required, but it reduces the
number of parameters which will help us to handle more queries.

In contrast to the classical case of automated theorem proving, we use a
“sorted” logic: Each tuple variable can range only over a specific relation. There-
fore our Skolem functions have parameter and result types. For example, the
function fg in the example assumes that a tuple from the relation DEPT is given,
and returns a tuple from the relation EMP.

Definition 3. Given a query @, a set of sorted Skolem constants and func-
tions Sqg 1is constructed as follows: For each existential tuple variable X ranging
over relation R, a skolem constant/function fx of sort R is introduced. Let
Yi,..., Y, be all universal tuple variables, on which X depends, and let Y; range
over relation S;. Then fx has n parameters of sort Si,...,Sy.

In the example, there is one Skolem constant and one Skolem function:
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— f.:DEPT,
— fg:DEPT — EMP.

Definition 4. Given a query @, and o relation R, let To(R) be the set of all
terms of sort R that can be built from the constants and function symbols in Sg
respecting the sorts. Let Tg be the union of the Tg(R) for all relation symbols R

appearing in Q.

7o is a kind of Herbrand universe. In Example 1, Tg = {fi, fe(fu)}-

Of course, in general it is possible that infinitely many terms can be con-
structed. Then we cannot predict how large a model (database state/instance)
must be and our method is not applicable. However, this requires at least a
nested NOT EXISTS subquery (otherwise only Skolem constants are produced,
no real functions). The case with only a single level of NOT EXISTS subqueries
corresponds to the quantifier prefix 3*V*, for which it is well known that the
satisfiability of first order logic with equality is decidable (this was proven 1928
by Bernays and Schonfinkel). However, as the example shows, our method can
sometimes handle even heavily nested subqueries, because the set of Skolem
terms does not necessarily become infinite. In this way, the sorted logic used in
SQL differs from the classical approach. The problem of an infinite 7g is treated
further in Section 2.4.

Once we know how many tuples each relation must have, we can easily reduce
the general case (with subqueries) to a consistency test for a simple formula as
treated in [13] (see Section 2.1):

Definition 5. Let a query @ be given, and let Tq be finite. The flat form of the
WHERE-clause is constructed as follows:

1. Replace each tuple variable X of the main query by the corresponding Skolem
constant fx.

2. Next, treat subqueries mested inside an even number of NOT: Replace the
subquery

EXISTS (SELECT ... FROM R; X;, ..., R, X, WHERE ¢)

by o(p) with a substitution o that replaces the existential tuple variable X;
by fx, Yin, ..., Yim,), where Yi1,...,Y; n, are all universal tuple variables
on which X; depends.

8. Finally treat subqueries that appear within an odd number of negations as
follows: Replace the subquery

EXISTS (SELECT ... FROM R; X;, ..., R, X, WHERE ¢)

by (o1(p) OR ... OR ok(p)), where o; are all substitutions that map the
variables X; to a term in To(R;). Note that k = 0 is possible, in which case
the empty disjunction can be written 1=0 (falsity).

In the above example, we would first substitute L by fi and E by fg(D). Since
D is of type DEPT and f;, is the only element of 7¢ (DEPT), the disjunction consists
of a single case with D replaced by fr,. Thus, the flat form of the above query is
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NOT(f..LOC = f..LOC
AND NOT(fg(fy).DEPTNO = f;.DEPTNO
AND fg(fo).JOB = >SALESMAN’))

This is logically equivalent to
fe(fo) .DEPTNO = f, .DEPTNO AND fg(f).JOB = ’SALESMAN’

A model (database state/instance) will have two tuples, one (fi) in DEPT, and
another (fg(fr)) in EMP. The requirements are that their attributes DEPTNO are
equal and that the attribute JOB of the tuple in EMP has the value >SALESMAN’.

As in this example, it is always possible to construct a database state that
produces an answer to the query from a model of the flat form of the query.
The database state/instance will have one tuple in relation R for each term in
7o(R) (and no other tuples). It is possible that two of the constructed tuples
are completely identical (i.e. there can be fewer tuples than elements in 74 (R)).

In the opposite direction, note that NOT EXISTS (V) conditions are only more
difficult to satisfy if the database state/instance contains more tuples. Therefore,
with a single level NOT EXISTS subquery, we need one tuple for each of the tuple
variables in the outer query, but we would introduce no additional tuples for the
relations listed under NOT EXISTS. It is the basic idea of Skolemization that we
can give names to the tuples that the formula requires to exist, and then reduce
the given model to all the named elements.

Theorem 1. Let a query @ be given such that 1g is finite. Q is consistent iff
the flat form of @ is consistent.

Ezxample 2. For instance, the following query was written in an exam. The task
was to find columns that are not indexed.

SELECT X.TABLE_NAME, X.COLUMN_NAME
FROM COLS X, USER_IND_COLUMNS Y
WHERE X.TABLE_NAME = Y.TABLE_NAME
AND X.COLUMN_NAME = Y.COLUMN_NAME
AND NOT EXISTS
(SELECT
FROM  USER_IND_COLUMNS Z
WHERE X.TABLE_NAME = Z.TABLE_NAME
AND X.COLUMN_NAME = Z.COLUMN_NAME)

The subquery correctly requires that there is no entry in USER_IND_COLUMNS
for the column in question, but the join in the outer query requires that there
is such an entry. This is clearly inconsistent. Skolem constants fy and fy are
constructed, and in the subquery, Z is replaced by fy (the only Skolem term
of sort USER_IND_COLUMNS). Thus, we have to check the following condition for
consistency:
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fx.TABLE_NAME = fy.TABLE_NAME
AND fx.COLUMN_NAME = fy.COLUMN_NAME
AND NOT(fx.TABLE_NAME = fy.TABLE_NAME
AND fx.COLUMN_NAME = fy.COLUMN_NAME)

Obviously, the formula is inconsistent. a

2.3 Integrity Constraints
Consider the following query:

SELECT ...

FROM EMP X, EMP Y

WHERE X.EMPNO = Y.EMPNO

AND X.JOB = ’MANAGER’ AND Y.JOB = ’PRESIDENT’

This query is inconsistent, but we need to know that EMPNO is a key of EMP in
order to prove that. The above algorithm constructs just any model of the query,
not necessarily a database state/instance that satisfies all constraints. However,
it is easy to add conditions to the query that ensure that all constraints are
satisfied. For example, instead of the above query, we would check the following
one which explicitly requires that there is no violation of the key:

SELECT ...
FROM EMP X, EMP Y
WHERE X.EMPNO = Y.EMPNO
AND X.JOB = ’MANAGER’ AND Y.JOB = ’PRESIDENT’
AND NOT EXISTS(SELECT *
FROM EMP A, EMP B
WHERE A.EMPNO = B.EMPNO
AND (A.ENAME <> B.ENAME OR
A.JOB <> B.JOB OR ...))

The original query is consistent relative to the constraints iff this extended query
is consistent.

Note that pure “for all” constraints like keys or CHECK-constraints need only
a single level of NOT EXISTS and therefore never endanger the termination of
the method. No new Skolem functions are constructed, the conditions are only
instanciated for each existing Skolem term of the respective sort (relation). This
is also what one would intuitively expect.

Foreign keys, however, require the existence of certain tuples, and therefore
might sometimes result in an infinite set 7. This is subject of the next section.

2.4 Restrictions and Possible Solutions

As mentioned above, the main restriction of our method is that the set 7o must
be finite, i.e. no tuple variable over a relation R may depend directly or indirectly
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on a tuple variable over the same relation R. This is certainly satisfied if there
is only a single level of subqueries.

However, EMP has a foreign key MGR (manager) that references the relation
itself. This is expressed as the following condition:

NOT EXISTS(SELECT *
FROM EMP E
WHERE E.MGR IS NOT NULL
AND NOT EXISTS (SELECT *
FROM EMP M
WHERE E.MGR = M.EMPNO))

We now get a Skolem function fy : EMP — EMP, which will generate infinitely
many terms (if there is at least one Skolem constant of type EMP).

Because of the undecidability, this problem can in general not be eliminated.
However, one could at least heuristically try to construct a model by assuming
that, e.g., 2 tuples in the critical relation suffice. Then 7g(R) would consist of
two constants and one would replace each subquery declaring a tuple variable
over R by a disjunction with these two constants. For relations not in the cycle,
the original method could still be used. If the algorithm of Section 2.1 constructs
a model, the query is of course consistent. If no model is found, the system can
print a warning that it cannot verify the consistency. At user option, it would
also be possible to repeat the step with more constants.

2.5 Null Values
Null values are handled in SQL with a three-valued logic.

Ezample 3. The following query is inconsistent in two-valued logic (without null
values):

SELECT X.A
FROM R X
WHERE NOT EXISTS (SELECT *

FROM R Y
WHERE Y.B = Y.B)

However, this query is satisfiable in SQL if the attribute B can be null: It has a
model in which R contains ,e.g., one tuple t with t.A=1 and t.B is null. ad

We can handle null values by introducing new logic operators NTF (“null to
false”) and NTT (“null to true”) with the following truth tables:

p |NTF(p) INTT(p)
FALSE| FALSE | FALSE
NULL | FALSE | TRUE
TRUE | TRUE | TRUE
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In SQL, a query or subquery generates a result only when the WHERE-condition
evaluates to TRUE. Thus, when EXISTS subqueries are eliminated in Definition 5,
we add the operator NTF:

NTF(o1(¢) OR ... OR og(p)).

In Example 3, a Skolem constant fx is introduced for the tuple variable X, and
the elimination of the subquery gives the following formula:

NOT NTF(fx=fx)

As usual, NOT is first pushed down to the atomic formulas and is there elim-
inated by inverting the comparison operator. This needs the following equiva-
lences (which can easily be checked with the truth tables):

— NOT NTF(y)
— NOT NTT(yp)

NTT(NOT o)
NTF (NOT )

Next the operators NTF and NTT can be pushed down to the atomic formulas by
means of the following equivalences:

— NTF(p; AND ) = NTF(p;) AND NTF(y5)
— NTF (1 OR ) = NTF(p1) OR NTF(p2)
— NTT(p; AND 3) = NTT(y;) AND NTT(w2)
— NTT(p1 OR 3) = NTT(p;) OR NTT(p2)

— NTF(NTF(p)) = NTF(y)
— NTT(NTF ()) = NTF(p)
— NTF(NTT(p)) = NTT(p)
— NTT(NTT(p)) = NTT(p)

Next, the formula is as usual converted to DNF. After that, we must check the
satisfiablility of conjunctions of atomic formulas that have possibly the opera-
tor NTF or NTT applied to them. An attribute can be set to null iff it appears
only in atomic formulas inside NTT and the formula is not IS NOT NULL. Then it
should be set to null, because these atomic formulas are already satisfied without
any restrictions on the remaining attributes. Otherwise the attribute cannot be
set to null. IS NULL and IS NOT NULL conditions can now be evaluated. After
that, we apply the algorithm from [13] to the remaining atomic formulas (that
are not already satisfied because of the null values).

2.6 Program Variables in SQL Statements

In order to be practical, a tool for consistency checks must also be able to check
SQL queries in application programs. Then the queries can contain program
variables. In general, the program variables can be treated like attributes of a
new relation. However, the user should at least be warned if a variable can have
only a single value in a consistent state, or if two variables must always have the
same value. Such restrictions are unlikely: The programmer could as well insert
the only possible value of the program variable, or merge the two variables. If
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necessary, the condition that refers only to the program variables could be tested
outside the SQL query in an if-statement.

This more general consistency check can be done as follows: The satisfiability
test constructs a model, i.e. concrete values ¢; for each program variable v;. Then
one can run it again (once for each program variable) and add v; # ¢; to the
condition. In the same way, if the constructed model assigns the same value to
two distinct program variables v; and v;, one can add the condition v; # v;.

3 Unnecessary Logical Complications

Sometimes, a subcondition is inconsistent, but the entire condition is consistent
(e.g., because of a disjunction). Of course, also the opposite can happen: Subcon-
ditions that are tautologies. Both kinds of unnecessary complications indicate
logical misconceptions and it is quite likely that the query will not behave as
expected.

Furthermore, implied subconditions are unnecessary complications. In certain
circumstances, implied subconditions can help the optimizer to find a better
execution plan, but then they should better be clearly marked as optimizer
hint. In exams, it happens quite often that students add a condition, such as
“A IS NOT NULL” that is already enforced as a constraint.

There are (at least) three possible formalizations of the requirement for “no
unnecessary logical complications”:

Definition 6.

1. A query condition ¢ satisfies criterion 1 iff it is consistent, its negation
is consistent, and whenever a single subcondition of p is negated, it stays
consistent.

2. A query condition  satisfies criterion 2 iff it is not equivalent to true or
false, and whenever a subcondition is replaced by 0 = 0 (true) or 1 = 0
(false), the resulting formula is not equivalent to ¢.

3. A query condition ¢ satisfies criterion 3 iff its disjunctive normal form sat-
isfies criterion 2.

Theorem 2. If a query condition satisfies criterion 2, it also satisfies crite-
rion 1. Furthermore, it is obvious that criterion 8 implies criterion 2.

In both cases, the opposite is not true. For example, (A=2 AND A>1) OR B=1
satisfies criterion 1, but not criterion 2: The underlined subcondition can be
replaced by true, but every subcondition can be negated without the entire
condition becoming inconsistent. The condition (A=1 OR B>2) AND B>O satisfies
criterion 2, but not criterion 3. However, whereas criterion 2 can always be
reached by making the formula shorter, reaching criterion 3 might actually make
the formula longer: Consider, e.g., (A=1 OR B=1) AND (A=2 OR C=2). But for
conjunctions of atomic formulas, all three criteria are equivalent.

The test for each of the three criteria can be reduced to a series of consistency
checks. Let us consider criterion 3, and let the DNF of the query condition be
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C1V---VCp, where C; = (Aj1 A---ANA,; p,). Then criterion 3 is satisfied iff the
following formulas are all consistent:

1. =(Cy V -+ V Cy,), the negation of the entire formula (otherwise the entire
formula could be replaced by “true”),

2. CiAN=(C1 V- VCizy VCiy1 V-V Cy), for i = 1,...,m (otherwise C;
could be replaced by “false”),

3. Ai71 /AR '/\Ai}j—l /\_‘Ai,j/\Ai,j—H /AR ~/\Ai,m/\ﬂ(C’1\/- . 'VCi_1VCi+1V' . '\/Cm)
fori=1,...,m, j=1,...,n; (otherwise A;; could be replaced by “true”).

Another type of unnecessary logical complication is to use a “too general”
comparison operator. For instance, we saw something like the following in more
than one homework:

SELECT ENAME, SAL
FROM  EMP
WHERE SAL >= (SELECT MAX(SAL) FROM EMP)

“="

Here, the “>=” can be replaced by , which would make the condition clearer.
Also “IN” was used in such queries, although it is guaranteed here that the
subquery can return only a single value. The converse case is treated in the next
section.

Of course, unnecessary joins are another important type of logical complica-
tion that should be avoided. This was already studied extensively in the litera-
ture.

4 Possible Runtime Errors

Sometimes, SQL queries must not return more than one value, otherwise a run-
time error occurs. This might be difficult to find during testing, because the error
does not always appear. Especially, if the programmer wrongly assumes that the
data always satisfies the necessary condition, the query will run correctly in all
test database states.

It would be good if a tool could verify that such errors do not occur. Of
course, the problem is in general undecidable.

The test can be easily reduced to a consistency check. Let the following
general query be given:

SELECT ¢1, ..., Tk

INTO Viy, ...y Uk

FROM Ry X1, ..., Rn X»
WHERE ¢

In order to make sure that there are never two solutions, we duplicate the tu-
ple variables and check the following query for consistency. If it is consistent
(including the constraints as explained in Section 2.3), the runtime error can
occur:
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SELECT *

FROM R Xy, ..., Ry Xy, R4 X, ..., R, X
WHERE ¢ AND ¢

AND (X;#X{ OR --- OR X, # X))

The formula ¢’ results from ¢ by replacing each X; by X!. We use X; # X/
as an abbreviation for requiring that the primary key values of the two tuple
variables are different (we assume that primary keys are always NOT NULL). If
one of the relations R; has no declared key, it is always possible that there are
several solutions (if the condition ¢ is consistent).

If the given query uses “SELECT DISTINCT”, one needs to add a test that the
result tuples differ:

SELECT *
FROM Ry Xy, ..., R, X, R4 X{, ..., R, X
WHERE ¢ AND ¢
AND (ty <> t{ OR --- OR ¢ <> 1),
OR ¢; IS NULL AND ¢} IS NOT NULL
OR t; IS NULL AND ¢; IS NOT NULL

OR ¢ IS NULL AND # IS NOT NULL
OR t) IS NULL AND ¢, IS NOT NULL)
AND (X1 #X] OR --- OR X,, # X))

In the same way, GROUP BY queries can be treated: Then ¢, ...,t¢, are the
GROUP BY attributes.

The same problem occurs with conditions of the form A = (SELECT ...),
when the subquery returns more than one value. Actually, whenever a subquery
is used as scalar expression, it must not return multiple rows. If the subquery
is non-correlated (i.e. does not access tuple variables from the outer query), we
can use exactly the same test as above. If the query is correlated, it might not
be completely clear what knowledge from the outer condition should be used.

In order to be safe, we propose to ignore the outer condition. Let the subquery
have the form

SELECT t1, ..., tj
FROM Ry X1, ..., Ry X,
WHERE ¢

If it access the tuple variables S Y1, ..., Sy, Yy, from the outer query, we would
require that the following query is inconsistent (after adding the constraints):

SELECT *

FROM Ry Xy, ..., Ry X,, RiX|, ..., R, X\, S1Y1, ..., SV,
WHERE ¢ AND ¢

AND (X1 #X{ OR --- OR X, # X))

However, it might be possible to interpret the restriction in a more liberal way.
Consider a database with relations R(A, B) and S(A, B) (A is in both cases the
primary key). Let the query be:
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SELECT =*

FROM R X, RY

WHERE X.B = (SELECT S.B FROM S WHERE S.A = X.A OR S.A = Y.A)
AND X.A=Y.A

If the conditions are evaluated in the sequence in which they are written down,
this would give a runtime error. If the condition on the tuple variables in the
outer query is evaluated first, there would be no error. Even if the conditions
were written in the opposite sequence, it is not clear whether this query should
be considered as ok. After all, the query optimizer should have the freedom to
choose an evaluation sequence. This is a general problem with runtime errors,
also known from programming languages. The SQL-92 standard does not address
this problem. If one should decide that some part of the outer condition is
evaluated before the subquery, one could add that part to our test query.

In Oracle9i, the example does not generate a runtime error: It seems that
the condition in the outer query is evaluated first or pushed down into the
subquery (independent of the sequence of the two conditions). However, one can
construct an example with two subqueries, where Oracle generates a runtime
error for o3 AND ¢, but not for ¢ AND ;. Therefore, in order to be safe, one
should require that the subquery returns a single value for any given assignment
of the tuple variables in the outer query (not necessarily one that satisfies other
conditions of the query). This is what we have encoded in the test above.

Further runtime errors, which can be handled with similar methods, are:

1. Using SELECT INTO or FETCH without an indicator variable when the corre-
sponding result column can be null.

2. Possibly type conversion errors from strings to numbers when the string has
not a numeric format.

3. In addition, datatype operators have the usual problems (e.g., division by
Z€ero).

5 Related Work

As far as we know, there is not yet a tool for checking given SQL queries for
semantic/logical errors without knowlege about the application. However, the
question is strongly related to the two fields of semantic query optimization and
cooperative answering.

Actually, Oracle’s precompiler for Embedded SQL (Pro*C/C++) has an op-
tion for semantic checking, but this means only that it checks whether tables
and columns exist and that the types match.

Of course, for the special problem of detecting inconsistent conditions, a large
body of work exists in the literature. In general, all work in automated theo-
rem proving can be applied (see, e.g., [8]). The problem whether there exists a
contradiction in a conjunction of inequalities is very relevant for many database
problems and has been intensively studied in the literature. Klug’s classic pa-
per [16] checks for such inconsistencies but does not treat subqueries and assumes
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dense domains for the attributes. The algorithm in [14] can handle recursion, but
only negations of EDB predicates, not general NOT EXISTS subqueries. A very
efficient method has been proposed by Guo, Sun, Weiss [13]. We use it here as
a subroutine. Our main contribution is the way we treat subqueries. Although
this uses ideas known from Skolemization, the way we apply it combined with an
algorithm like [13] seems new. We also can handle null values and query parame-
ters. Consistency checking in databases has also been applied for testing whether
a set of constraints is satisfiable. A classic paper about this problem is [3] (see
also [4]). They give an algorithm which terminates if the constraints are finitely
satisfiable or if they are unsatisfiable, which is the best one can do. However, the
approach presented here can immediately tell whether it can handle the given
query and constraints. Also in the field of decription logics, decidable fragments
of first order logic are used. Recently Minock [17] defined a logic that is more
restricted than ours, but is closed under syntactic query difference.

There is a strong connection to semantic query optimization (see ,e.g., [6, 5]).
However, the goals are different. As far as we know, DB2 contains some semantic
query optimzation, but prints no warning message if the optimizations are “too
good to be true”. Also the effort for query optimization must be amortized when
the query is executed, whereas for error detection, we would be willing to spend
more time. Finally, soft constraints (that can have exceptions) can be used for
generating warnings about possible errors, but not for query optimization.

Our work is also related to the field of cooperative query answering (see,
e.g., [12,9,11]). However, there the emphasis is more on the dialogue between
DBMS and user. As far as we know, a question like the possibility of runtime
errors in the query is not asked. Also, there usually is a database state given,
whereas we do not assume any particular state. For instance, the CoBase system
would try to weaken the query condition if the query returns no answers. It would
not notice that the condition is inconsistent and thus would not give a clear error
message. However, the results obtained there might help to suggest corrections
for a query that contains this type of semantic error.

The SQL Tutor system discussed in [18,19] assumes knowledge about the
specific task in form of a correct query.

Further studies about errors in database queries, especially psychological
aspects, are [21, 20, 15, 10, 7].

6 Conclusions

There is a large class of SQL queries that are syntactically correct, but never-
theless certainly not intended, no matter what the task of the query might be.
One could expect that a good DBMS prints a warning for such queries, but, as
far as we know, no DBMS does this yet.

In this paper we have analyzed some kinds of such semantic errors: Inconsis-
tent conditions, unnecessary logical complications, and queries that might gener-
ate runtime errors. There are many further types of errors that can be detected
by static analysis of SQL queries, a list is given in the technical report [2].
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A prototype of the consistency test is available from

http://www.informatik.uni-halle.de/ brass/sqllint/.

A new version is currently being developed and will be made available under the
same address.
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