
Semantic Errors in SQL Queries

Stefan Brass and Christian Goldberg

Martin-Luther-Universität Halle-Wittenberg, Institut für Informatik,
Von-Seckendorff-Platz 1, D-06099 Halle (Saale), Germany
(brass|goldberg|hinneburg)@informatik.uni-halle.de

Abstract. We investigate classes of SQL queries which are syntactically
correct, but certainly not intended, no matter for which task the query
was written. For instance, queries that are contradictory, i.e. always re-
turn the empty set, are quite often written in exams of database courses.
Current database management systems, e.g. Oracle, execute such queries
without any warning. In this paper, we try to give a complete list of such
errors. Of course, questions like the satisfiability are in general undecid-
able, but a significant subset of SQL queries can actually be checked.
This also applies to the other errors explained in this paper. We are cur-
rently developing a tool that does such checks and believe that it will be
very helpful in teaching SQL (especially for distance learing and online
courses).

1 Introduction

Errors in SQL queries can be classified into syntactic errors and semantic errors.
A syntactic error means that the entered character string is not a valid SQL
query. In this case, any DBMS will print an error message because it cannot
execute the query. Thus, the error is certainly detected and usually easy to
correct.

A semantic error means that a legal SQL query was entered, but the query
does not or not always produce the intended results, and is therefore incorrect
for the given task. Semantic errors can be further classified into cases where the
task must be known in order to detect that the query is incorrect, and cases
where there is sufficient evidence that the query is incorrect no matter what the
task is. Our focus in this paper is on this latter class.

For instance, consider the following query:

SELECT *
FROM EMP
WHERE JOB = ’CLERK’ AND JOB = ’MANAGER’

This is a legal SQL query, and it is executed e.g. in the Oracle8i DBMS without
any warning. However, the condition is actually inconsistent, so the query result
will be always empty. Since nobody would use a database in order to get an
always empty result, we can state that this query is incorrect without actually

2 Stefan Brass and Christian Goldberg

knowing what the task of the query was. Such cases do happen, e.g. in one exam
exercise that we analyzed, 10 out of 70 students wrote an inconsistent condition.

It is well known that the consistency of formulas is undecidable, and that this
applies also to database queries. E.g. one can write a query that checks whether
the database contains a solution to a Post’s correspondence problem, see [1],
Section 6.3. This query does not contain any datatype operations (like +, *).

However, although the task is in general undecidable, many cases that occur
in practice can be detected with relatively simple algorithms.

Our work is also inspired by the program lint, which is or was a semantic
checker for the “C” programming language. Today C compilers do most of the
checks that lint was developed for, but in earlier times, C compilers checked
just enough so that they could generate machine code. We are still at this de-
velopment stage with SQL today. Printing warnings for strange SQL queries is
very uncommon in current database management systems.

The program lint tried to find also errors like uninitialized variables. This
is a clearly undecidable task, and therefore lint sometimes produced error mes-
sages for programs there were correct (and missed some other errors). But in
general, lint was a useful tool. In case of a wrong warning, a good programmer
will think about possible alternative formulations that are easier to verify. Such
formulations will often also be easier to understand by other programmers who
later have to read the code. If there was no better formulation, one could put a
special comment into the program that suppressed the warning.

We believe that such a tool would be useful not only in teaching, but also in
application software development. At least, a good error message could speed up
the debugging process. Also in some contexts, SQL queries or subqueries must
return not more than one row. Otherwise a runtime error is generated, and the
application is terminated. Certainly it would be good to prove that all queries
in an application program can never violate this condition.

The main contribution of this paper is a list of semantic errors that repre-
sents years of experience while correcting hundreds of exams that contained SQL
queries. However, we have also tried to explain the general principles from which
these errors can be derived (as far as possible). Therefore, it is not simply by
chance whether an error appears on our list, but the list has a certain degree of
completeness.

2 Unnecessary Complications

Of course, in general it is difficult to state that a syntactically correct query
is semantically wrong if one does not know the task for which the query was
written. However, queries can be considered as “probably not intended” when
they are unnecessarily complicated. Suppose the user wrote a query Q, and
there is an equivalent query Q′ that is significantly simpler, and basically can be
derived from Q by deleting certain parts. There might be the following reasons
why the user did not write Q′:

Semantic Errors in SQL Queries 3

– The user knew that Q′ is not a correct formulation of the task at hand. In
this case, Q is of course also not correct, but the error might be hidden in
the more complicated query, so that the user did not realize this. A warning
would certainly be helpful in this case.

– The user did not know that Q′ is equivalent. Since Q′ is not a completely
different query, but results from Q by deleting certain parts, this shows that
the user does not yet master SQL. Again, a warning would be helpful. Often,
the simpler query will actually run faster (e.g. the Oracle query optimizer
does not remove unnecessary joins).

– The user knew that Q′ is equivalent, but he or she believed that Q would
run faster. Since SQL is a declarative language this should only be the last
resort. With modern optimizers, this should not happen often in practice.
If it is necessary, there probably should be some comment, and this could
also be used to shut off the warning. Although we know at least one case
where a more complicated query actually does run faster on Oracle 9i, SQL
does not make any guarantees about how a query is evaluated. Thus, in the
next Oracle version or when one uses a different DBMS, it might be that the
relative speed of Q and Q′ dramatically changes.

– The user knew that Q′ is equivalent, but he or she thought that Q would
be clearer for the human reader and easier to maintain. One must be careful
to define the possible transformations from Q to Q′ such that this does not
happen. For instance, it might be clearer to use explicit tuple variables in
attribute references, even if the attribute name is unique. Of course, removing
the tuple variable in this case cannot be considered as producing a different,
shorter query. Even more obviously, we would not require that meaningful
names for tuple variables are shortened or that comments are removed. Also
certain optional keywords (e.g. “AS”) are a matter of taste. Unfortunately,
this means that every possible “shortening transformation” of SQL queries
must be considered separately (as done below).

Actually, “equivalence” in the sense of requiring exactly the same query result in
all database states would make the condition still too strict. First, we not only
want to minimize the query, but also the query result. Consider the following
query which is quite typical for beginning SQL programmers:

SELECT EMPNO, ENAME, JOB
FROM EMP
WHERE JOB = ’MANAGER’

The last column in the query result is superfluous, we know that it must always
be “MANAGER”. Therefore, no information is lost when this column is removed.
Actually, we will see that when we have to decide between a short query and a
short query result, it is likely that we will prefer the short result. Of course, trying
to minimize the query result without loss of information does not mean that we
apply compression algorithms or difficult encodings. The important requirement
is that from the shorter query result, the user can reconstruct the original query
result with “very little intellectual effort” — less than what would be required for

4 Stefan Brass and Christian Goldberg

reading the long version. This statement is a bit fuzzy, but it can be made precise
by listing the operations that are permitted for reconstructing the original query
result. In this paper, we only need constant relations (in the case of inconsistent
conditions) and projections. In the example, we would use

πEMPNO, ENAME, JOB←’MANAGER’.

Furthermore, it is better to exclude certain unusual states when we require
that the result of both queries (Q and Q′) is the same. For example, it happens
sometimes that students declare a tuple variable, and then do not use it and
forget to delete it:

SELECT DISTINCT DNAME
FROM DEPT, EMP

The “DISTINCT” is also a typical example where the wrong patch was applied to
a problem noticed by the student (many duplicates). The above query returns
always the same result as the following one, except when EMP is empty:

SELECT DISTINCT DNAME
FROM DEPT

Therefore, we will require the equivalence only for states in which all relations
are non-empty. It might even be possible to assume that all columns contain at
least two different values.

Some types of errors produce many duplicates. More powerful query simpli-
fications can be used if these duplicates are not considered as important for the
equivalence (at least if the simpler query Q′ produces less duplicates than the
more difficult query Q). E.g. in the above example, we would want to delete the
unused tuple variable even if DISTINCT were not specified. Duplicates are further
considered in Section 5.

Now we give a list of all cases in which a query can be obviously simplified
under this slightly weakened notion of equivalence. In each of these cases, a
warning should be given to the user.

2.1 Entire Query Unnecessary

Error 1: Inconsistent conditions. As noted above, nobody would pose a
query to a database if he or she knew beforehand that the query result is empty,
no matter what the database state is. In this case, the entire query is superfluous.
However, students do write queries with inconsistent conditions in exams.

Note that we must also consider integrity constraints when we talk incon-
sistencies. It might well be that the query condition itself is consistent, but it
contradicts declared integrity constraints. Even then the query result will always
be empty.

It is actually possible that a query result is not empty, but still does not
depend on the database state. Again, the entire query is superfluous. This never
happened in exams we corrected so far, but let us mention this for completeness.
An example is:

Semantic Errors in SQL Queries 5

SELECT COUNT(*)
FROM DEPT
WHERE 1 = 2

2.2 Unnecessarily Complicated SELECT Clause

Error 2: Unnecessary duplicate elimination. We try to teach our students
to use DISTINCT only when necessary. E.g. we would consider the following query
as suboptimal, because the presence of the key EMPNO in the query result ensures
that there are no duplicates even without DISTINCT:

SELECT DISTINCT EMPNO, ENAME, JOB
FROM EMP

This might be a matter of style, but at least the Oracle 8i optimizer does not
remove the unnecessary duplicate elimination, and therefore, the query runs
slower with DISTINCT. Also, when a query actually does produce duplicates, it
is often helpful to understand why. Always writing “DISTINCT” shadows possible
errors.

Error 3: Constant output column. An output column is unnecessary if
it contains a single value that is constant and can be derived from the query
without any knowledge about the database state. This was already illustrated
at the beginning of this section.

Error 4: Duplicate output column. An output column is also unnecessary
if it is always identical to another output column, e.g.

SELECT X.EMPNO, X.DEPTNO, Y.DEPTNO, Y.DNAME
FROM EMP X, DEPT Y
WHERE X.DEPTNO = Y.DEPTNO

In general, it might be possible to say that an output column is unnecessary
if it can be computed from the remaining columns. However, if the computation
rule is not trivial, it might be useful if SQL computes the derived value.

2.3 Unnecessary Complications in the FROM Clause

The next three errors are cases where tuple variables are declared under FROM
that are not really necessary.

Error 5: Unused tuple variables. First, it happens quite often that a student
first declares a tuple variable under from, but does not use it at all. It might
be that he/she simply forgot to delete it. However, some students also seem to
think that tuple variables used in subqueries must also be declared in the main
query.

6 Stefan Brass and Christian Goldberg

Error 6: Unnecessary joins. If only the key attributes of a tuple variable X
are accessed, and this key is equated with the foreign key of another tuple vari-
able Y , X is not needed. An example is:

SELECT EMPNO, ENAME, X.DEPTNO
FROM DEPT X, EMP Y
WHERE X.DEPTNO = Y.DEPTNO AND Y.JOB = ’MANAGER’

Error 7: Tuple variables that are always identical. If the key attributes of
two tuple variables X and Y over the same relation are equated, the two tuple
variables must always point to the same tuple. Then the two tuple variables can
be merged. Often, this will lead to an inconsistent condition.

2.4 Unnecessary Complications in the WHERE Clause

Error 8: Implied, tautological, or inconsistent subconditions.
The WHERE-condition is unnecessarily complicated if a subcondition (some node
in the operator tree) can be replaced by TRUE or FALSE and the condition is still
equivalent. E.g. it happens sometimes that a condition is tested under WHERE
that is actually a constraint on the relation, e.g.

SELECT DNAME
FROM DEPT
WHERE DNAME IS NOT NULL

If DNAME is declared as NOT NULL, the test is unnecessary.

Error 9: Unnecessarily general comparison operator. Consider the query:

SELECT ENAME, SAL
FROM EMP
WHERE SAL >= (SELECT MAX(SAL) FROM EMP)

In this case, one could write = instead of >=. We have also seen students writing
IN here, which is again quite confusing. Another quite common case is to use LIKE
when the comparison string contains no wildcards “%” or “_” (the only reason
could be that one needs a no-pad comparison semantics, but that happens very
seldom).

Error 10: Unnecessary SELECT arguments in EXISTS-subqueries.
In EXISTS-subqueries, the SELECT-list is not important. Therefore, it should
be something simple (e.g. “*” or “1” or a single attribute). The following is
unnecessarily complicated:

SELECT DNAME
FROM DEPT D
WHERE NOT EXISTS(SELECT EMPNO, ENAME, JOB

FROM EMP E
WHERE E.DEPTNO = D.DEPTNO)

Semantic Errors in SQL Queries 7

Error 11: IN/EXITS condition can be replaced by comparison.
Consider the following query:

SELECT ENAME
FROM EMP X
WHERE X.EMPNO NOT IN (SELECT Y.EMPNO

FROM EMP Y
WHERE Y.JOB = ’MANAGER’)

It is equivalent to

SELECT ENAME
FROM EMP X
WHERE X.JOB <> ’MANAGER’

The point here is that the two tuple variables over the same relation are matched
on their key. This is very similar to Error 7 above, but here a subquery is involved.

2.5 Unnecessary Complications in Aggregation Functions

Error 12: Unnecessary DISTINCT in aggregations. The aggregations
MIN and MAX never need DISTINCT. For the aggregations SUM and AVG it is very
unusual to use DISTINCT: When there are duplicates, they are most probably
significant. However, when DISTINCT is used, it might not always be necessary,
e.g. in:

SELECT COUNT(DISTINCT EMPNO)
FROM EMP

Error 13: Unnecessary argument of COUNT. There are two versions of
the aggregation function COUNT: One with an argument, and one without an ar-
gument (written as COUNT(*)). We would prefer the version without argument
whenever this is equivalent, i.e. when there is no DISTINCT and when the argu-
ment cannot be null. However, that might be a matter of taste. But we have
seen quite a number of times something like the following:

SELECT COUNT(JOB)
FROM EMP
WHERE JOB = ’MANAGER’

In this example, only duplicates are counted. Listing “JOB” as the argument of
COUNT obscures the meaning of the query. The following is equivalent and much
clearer:

SELECT COUNT(*)
FROM EMP
WHERE JOB = ’MANAGER’

8 Stefan Brass and Christian Goldberg

2.6 Unnecessary Complications in the GROUP BY Clause

Error 14: GROUP BY with singleton groups. If it can be proven that
each group consists only of a single row, the entire aggregation is unnecessary.
An example is:

SELECT EMPNO, ENAME, MAX(SAL)
FROM EMP
GROUP BY EMPNO, ENAME

Students sometimes write this when asked to compute the employee with maxi-
mum salary (especially when it was emphasized in the course that all attributes
used under SELECT outside of aggregations must appear under GROUP BY).

Error 15: GROUP BY with only a single group. If it can be proven that
there is always only a single group, the GROUP BY clause is unnecessary, except
when the GROUP BY attribute should be printed under SELECT. An example is

SELECT COUNT(*)
FROM EMP
WHERE JOB = ’MANAGER’
GROUP BY JOB

Error 16: Unnecessary GROUP BY attributes. If a grouping attribute is
functionally determined by other such attributes and if it does not appear under
SELECT or HAVING outside of aggregations, it can be removed from the GROUP BY
clause.

2.7 Unnecessary Complications in the HAVING Clause

In the HAVING-clause, the same errors as in the WHERE-clause are possible. In
addition, conditions that are possible under WHERE are better written there (see
Error 18 below).

2.8 Unnecessary Complications in the ORDER BY Clause

Error 17: Unnecessary ORDER BY terms. Suppose that the order by
clause is ORDER BY t1, . . . , tn. Then ti is unnecessary if it is functionally de-
termined by t1, . . . , ti−1. This especially includes the case that ti has only one
possible value.

3 Inefficient Formulations

Although SQL is a declarative language, students should be trained to help the
system to execute the query efficiently. Errors 2 and 12 (DISTINCT when no
duplicates are possible) also fall in this category. However, in the following two
cases the query does not get shorter by choosing the more efficient formulation.

Semantic Errors in SQL Queries 9

Error 18: Inefficient HAVING. If a condition uses only GROUP BY attributes
and no aggregation function, it can be written under WHERE or under HAVING.
It is much cheaper to check it already under WHERE. E.g. in one homework, a
join was done under HAVING, and it was syntactically correct SQL, because the
student added the join attributes under GROUP BY.

SELECT D.DNAME, COUNT(*)
FROM DEPT D, EMP E
GROUP BY D.DEPTNO, D.DNAME, E.DEPTNO
HAVING D.DEPTNO = E.DEPTNO

Error 19: Inefficient UNION. A UNION should be replaced by a UNION ALL
if one can prove that the results of the two queries are always disjoint.

4 Missing Join Conditions

Error 20: Missing Join Conditions. Missing join conditions are a type of
semantic error that is mentioned in most text books. However, it is not com-
pletely clear how a test for missing join conditions should be formally done. A
simple approach is to create a graph with the tuple variables X as nodes. Edges
are drawn between nodes for tuple variables X and Y if there is any atomic for-
mula in which both tuple variables appear. The graph then should be connected,
with the possible exception of nodes X such that there is a condition X.A = c
with a key attribute A and a constant c. This is the weakest form of the test.
One could also draw edges only for equality conditions. Actually, we have seen
a query that contained an error because a tuple variable had a composed key
and only one of the attributes was joined. Thus, the strictest form is to require
joins only over foreign key-key pairs, except in the case of self joins. In addition,
one probably should convert the WHERE-condition first to DNF, and require suf-
ficient join conditions in each conjunction. We are currently investigating which
of the possible variants is best (i.e. catching the most errors while not producing
too many wrong warnings). Note that in some cases, joins can also be done via
subqueries.

In one exam exercise, 11 out of 70 students had an error of this type, although
students had been warned in the course about missing join conditions.

Error 21: Uncorrelated EXISTS-Subqueries. If an EXISTS-subquery makes
no reference to a tuple variable from the outer query, is is either globally true
or globally false. Thus, it either does not change the query result, or it makes
the query result empty. This is a very unusual behaviour. Actually, uncorrelated
EXISTS-subqueries are simply missing join conditions (possibly for anti-joins).

5 Duplicates

Query results that contain many duplicates are difficult to read. It is unlikely that
such a query is really intended. Furthermore, duplicates are often an indication

10 Stefan Brass and Christian Goldberg

for another error, e.g. missing join conditions. Of course, if we could give a more
specific warning, that would be preferable.

Error 22: Many duplicates. Consider the following example:

SELECT JOB
FROM EMP

This query will produce many duplicates without any order. It is quite clear that
it would have been better to chose one of the following formulations:

– If the number of duplicates is not important:

SELECT DISTINCT JOB
FROM EMP

– If it is important:

SELECT JOB, COUNT(*)
FROM EMP
GROUP BY JOB

There are two possible ways to detect this problem: First, we could run the query
on an example database state. If it produces more than 50% duplicates, we could
give a warning. Techniques developed in query optimization for estimating the
result size can also be used: If the estimated size is extremely large, one should
warn the user before the query is really executed.

Second, we check whether the query is guaranteed to return no duplicates.
That would be the same test as for the unnecessary DISTINCT above. However,
dupicates are not always a problem. Consider the following query:

SELECT ENAME
FROM EMP
WHERE DEPTNO = 20

Although it might be possible that there are two employees with a common
name, this is not very likely. And when it happens, the duplicate might be
important. The reason is that although the name is not a strict key, it is used
in practice in order to identify employees. Thus, we need a declaration of such
“soft keys”. Then we simply check whether DISTINCT would be necessary under
the assumption that these soft keys were real keys.

6 Possible Runtime Errors

In C programs, it sometimes happens that a NIL-pointer is dereferenced, and
the program crashes. Actually, such runtime errors are also possible in SQL, and
one should try to verify that they cannot occur. Since these problems depend
on the database state, they are not easily found during testing.

Semantic Errors in SQL Queries 11

Error 23: Subqueries that must not return more than one tuple. If
one uses a condition of the form A = (SELECT ...), it is important that the
subquery returns only a single value. If this condition should ever be violated,
the DBMS will generate a run-time error. This can be tested with a method very
similar to the test for an unnecessary DISTINCT shown above, one only replaces
the SELECT-list by “SELECT ’yes’.

The same problem happens if SQL is embedded in a programming language,
and one uses the SELECT ... INTO ... syntax.

Error 24: No indicator variable for arguments that might be null. In
Embedded SQL, it is necessary to specify an indicator variable if a result column
can be null. If no indicator variable is specified, a runtime error results. Note
that this can happen also with aggregation functions that get an empty input.

Error 25: Difficult Type Conversions Also, the very permissive type system
of at least Oracle SQL can pose a problem: Sometimes strings are implicitly
convered to numbers, which can generate runtime errors. In general, if one knows
domains for the attributes, one could warn the user for comparisons between
attributes of different domains. If there is no domain information, one could
analyze an example database state for columns that are nearly disjoint.

Error 26: Possible runtime errors in datatype functions. Datatype op-
erators have the usual problems (e.g. division by zero).

7 Other Indicators for Errors

Error 27: Wildcards Without LIKE. When “=” is used with a comparison
string that contains “%”, probably “LIKE” was meant. For the other wildcard,
“_”, it is not that clear, because it might more often appear in normal strings.

Error 28: Strange HAVING. HAVING without GROUP BY is strange: Such a
query can have only one result or none at all. In special situations this may be
a useful trick, but more often it is probably an error.

Error 29: SELECT-Clause of Subquery uses no tuple variable from
the subquery. E.g. something like the following puzzled a team of software
engineers for quite some time, they even thought that their DBMS contained a
bug, because it did not give any error:

SELECT ENAME
FROM EMP
WHERE DEPTNO IN (SELECT EMPNO

FROM DEPT
WHERE LOC = ’BOSTON’)

12 Stefan Brass and Christian Goldberg

The underlined attribute is a typing error, correct would be DEPTNO. However,
this is correct SQL, EMPNO simply references the tuple variable from the outer
query. A missing join condition should have been detected here, but a more
specific error message might be helpful. Furthermore, this error might also occur
for other types of subqueries, when there are join conditions.

8 Style Checks

1. A warning should be printed if a tuple variable is “shadowed” by a tuple
variable of the same name in a subquery.

2. A warning should be printed if a tuple variable from an outer query is ac-
cessed without its name in a subquery (i.e. only “A” instead of “X.A”).

3. An IN-subquery that is correlated, i.e. accesses tuple variables from the outer
query, should probably be replaced by an EXISTS-subquery.

4. It is strange when GROUP BY is used, but no aggregation function appears.
This can be used for duplicate elimination, but then DISTINCT would be
clearer. (However, it is also possible to eliminate only some duplicates with
GROUP BY).

5. It might be a matter of taste, but a large number of unnecessary parentheses
is also not helpful for reading the query. Some students who are unsure about
the precedence rules completely parenthesize the WHERE-condition.

6. Of course, SQL queries should be portable between database management
systems. However, there is a tradeoff between portability on the one hand,
and conciseness and efficiency on the other hand.

9 Algorithms

We do not have space here to give algorithms for all of these problems. Consis-
tency tests have been studied in the literature for a long time, some references
are given in the next section. We have shown in [2] that the consistency can be
decided for all SQL queries that contain only a single level of EXISTS-subqueries,
no aggregations and no datatype functions (such as +, *). Often a much deeper
nesting of subqueries is possible. Furthermore, heuristics can be used if the con-
sistency cannot be decided.

Now, tests for most of the problems explained in this paper can be reduced
to a consistency test. As an example, let us consider the test whether DISTINCT
is necessary. It is quite typical. Let the following general query be given:

SELECT DISTINCT t1, . . ., tk
FROM R1 X1, . . ., Rn Xn

WHERE ϕ

Now we modify the query as follows (we duplicate the tuple variables and check
whether there are two different assignments that produce the same result for the
SELECT terms):

Semantic Errors in SQL Queries 13

SELECT *
FROM R1 X1, ..., Rn Xn, R1 X ′1, ..., Rn X ′n
WHERE ϕ AND ϕ′

AND (t1 = t′1 OR t1 IS NULL AND t′1 IS NULL)
AND . . .
AND (tk = t′k OR tk IS NULL AND t′k IS NULL)
AND (X1 6= X ′1 OR · · · OR Xn 6= X ′n)

This query is tested for consistency with the method of [2]. If it is inconsistent,
the DISTINCT is superfluous: The original query can never produce duplicates.

We use Xi 6= X ′i as an abbreviation for requiring that the primary key values
of the two tuple variables are different (we assume that primary keys are always
NOT NULL). If one of the relations Ri has no declared key, duplicate result tuples
are always possible and the DISTINCT is not superfluous. The formula ϕ′ results
from ϕ by replacing each Xi by X ′i.

10 Related Work

It seems that the general question of detecting semantic errors in SQL queries
(as defined above) is new.

Actually, Oracle’s precompiler for Embedded SQL (Pro*C/C++) has an
option for semantic checking, but this means only that it checks whether ta-
bles and columns exist and that the types match. Also “Trouble Checker” from
http://www.msqlproducts.com claims semantic checking, by it concentrates on
procedures and triggers, e.g. it finds loops in triggers. These checks do not cover
semantic errors in the most important declarative part of SQL.

The need of semantically rich error and warning messages for SQL statements
in a learning context has been investigated in [17, 18]. However, the SQL Tutor
system proposed there has knowledge about the task that has to be solved (in
form of a correct query). In contrast, our approach assumes no such knowledge,
which makes it applicable also for software development, not only for teaching.

Of course, for the special problem of detecting inconsistent conditions, a large
body of work exists in the literature. In general, all work in automated theo-
rem proving can be applied (see, e.g., [8]). The problem whether there exists a
contradiction in a conjunction of inequalities is very relevant for many database
problems and has been intensively studied in the literature. Klug’s classic pa-
per [16] checks for such inconsistencies but does not treat subqueries and assumes
dense domains for the attributes. The algorithm in [13] can handle recursion, but
only negations of EDB predicates, not general NOT EXISTS subqueries. A very
efficient method has been proposed by Guo, Sun, Weiss [12]. It can only handle
conjunctions of equalities and inequalities.

Consistency checking in databases has also been applied for testing whether
a set of constraints is satisfiable. A classic paper about this problem is [3] (see
also [4]). They give an algorithm which terminates if the constraints are finitely
satisfiable or if they are unsatisfiable, which is the best one can do in general.

14 Stefan Brass and Christian Goldberg

There is a strong connection of semantic query optimization (see e.g. [6,
14, 5]), to detecting semantic errors, but the goals are different. As far as we
know, DB2 contains some semantic query optimzation, but prints no warning
message if the optimizations are “too good to be true”. Also the effort for query
optimization must be amortized when the query is executed, whereas for error
detection, we would be willing to spend more time. Finally, soft constraints (that
can have exceptions) can be used for generating warnings about possible errors.
but not for query optimization.

Our work is also related to the field of cooperative query answering (see,
e.g. [9, 11]) but there the system would try to weaken the query condition if the
query returns no answers. It would not notice that the condition is inconsistent
and thus would not give a clear error message. However, the results obtained
there might help to suggest corrections for a query that contains this type of
semantic error.

Further studies about errors in database queries, especially psychological
aspects, are [20, 19, 15, 10, 7].

11 Conclusions

There is a large class of SQL queries that are syntactically correct, but never-
theless certainly not intended, no matter what the task of the query might be.
One could expect that a good DBMS prints a warning for such queries, but, as
far as we know, no DBMS does this yet.

In this paper we have shown various kinds of semantic errors that can be
detected without knowing the task of the query. All errors (except 12, 17, 24,
26) did actually occur in exam or homework exercises. More complete statistics
about errors in the analyzed exams will be made available on the internet:

http://www.informatik.uni-halle.de/~brass/sqllint/.

This page also contains a prototype of the consistency test. We have algorithms
for detecting all of the above error types (for a suitable SQL subset). We currently
add these tests to our prototype system and expect that a version that finds many
of the above error types will be available for demonstration at the workshop.

Acknowledgements

Of course, without the students in my database courses, this work would have
been impossible. We would also like to thank Jan Van den Bussche for suggesting
relevant literature and Joachim Biskup for contributing the idea that query size
estimation techniques could be used. We would like to thank Sergei Haller and
Ravishankar Balike for telling us about Error 29. Elvis Samson developed the
prototype of the consistency test, and made several suggestions for improving the
paper, which is both gratefully acknowledged. The discussions with Alexander
Hinneburg have been most helpful, especially he suggested further related work
and gave us an example for an SQL query that is longer than an equivalent
query, but runs faster.

Semantic Errors in SQL Queries 15

References

1. Serge Abiteboul, Richard Hull, and Victor Vianu. Foundations of Databases.
Addison-Wesley, 1994.

2. Stefan Brass, Christian Goldberg, Alexander Hinneburg. Detecting Semantic Errors
in SQL Queries. Technical Report, University of Halle, 2003.

3. François Bry, Rainer Manthey: Checking Consistency of Database Constraints: a
Logical Basis. In Proceedings of the 12th International Conference on Very Large
Data Bases, 13–20, 1986.

4. François Bry, Hendrik Decker, Rainer Manthey: A Uniform Approach to Constraint
Satisfaction and Constraint Satisfiability in Deductive Databases. In Proceedings of
the International Conference on Extending Database Technology, 488–505, 1988.

5. Qi Cheng, Jarek Gryz, Fred Koo, Cliff Leung, Linqi Liu, Xiaoyan Qian, Bernhard
Schiefer. Implementation of Two Semantic Query Optimization Techniques in DB2
Universal Database. Proceedings of the 25th VLDB Conference, 687-698, 1999.

6. U. S. Chakravarthy, J. Grant, and J. Minker. Logic-based approach to semantic
query optimization. ACM Transactions on Database Systems, 15:162–207, 1990.

7. Hock C. Chan. The relationship between user query accuracy and lines of code. Int.
Journ. Human Computer Studies 51, 851-864, 1999.

8. Chin-Liang Chang and Richard Char-Tung Lee. Symbolic Logic and Mechanical
Theorem Proving. Academic Press, 1973.

9. Wesley W. Chu, M.A. Merzbacher and L. Berkovich. The design and implementation
of CoBase. In Proc. of ACM SIGMOD, 517-522, 1993.

10. Hock C. Chan, Bernard C.Y. Tan and Kwok-Kee Wei. Three important deter-
minats of user performance for database retrieval. Int. Journ. Human-Computer
Studies 51, 895-918, 1999.

11. Wesley W. Chu, Hua Yang, Kuorong Chiang, Michael Minock, Gladys Chow and
Chris Larson. Cobase: A scalable and extensible cooperative information system.
Journal of Intelligent Information Systems, 1996.

12. Sha Guo, Wei Sun, and Mark A. Weiss. Solving satisfiability and implication
problems in database systems. ACM Transactions on Database Systems 21, 270–
293, 1996.

13. A. Y. Halevy, I. S. Mumick, Y. Sagiv, and O. Shmueli. Static analysis in Datalog
extensions. Journal of the ACM 48, 971–1012, 2001.

14. Chun-Nan Hsu and Craig A. Knoblock. Using inductive learning to generate rules
for semantic query optimization. In Advances in Knowledge Discovery and Data
Mining, pages 425–445. AAAI/MIT Press, 1996.

15. W.J. Kenny Jih, David A. Bradbard, Charles A. Snyder, Nancy G.A. Thompson.
The effects of relational and entity-relationship data models on query performance
of end users. Int. Journ. Man-Machine Studies, 31:257–267, 1989.

16. Anthony Klug. On conjunctive queries containing inequalities. Journal of the
ACM, 35:146–160, 1988.

17. A. Mitrovic. A knowledge-based teaching system for SQL. In ED-MEDIA 98,
pages 1027–1032, 1998.

18. Antonija Mitrovic, Brent Martin, and Michael Mayo. Using evaluation to shape its
design: Results and experiences with SQL-Tutor. User Modeling and User-Adapted
Interaction, 12:243–279, 2002.

19. A. Rizzo, S. Bagnara and Michele Visciola. Human error detecting processes.
Int. Journ. Man-Machine Studies 27, 555-570, 1987.

20. C. Welty. Correcting user errors in SQL. International Journal of Man-Machine
Studies 22:4, 463-477, 1985.

