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Bottom-up evaluation of Datalog has been studied for a long,tand is standard material in text-
books. However, if one actually wants to develop a deduckatabase system, it turns out that there
are many implementation options. For instance, the se@uenghich rule instances are applied is
not given. In this paper, we study a method that immediate$sia derived tuple to derive more tu-
ples (called the Push method). In this way, storage spadetéymediate results can be reduced. The
main contribution of our method is the way in which we minimthe copying of values at runtime,
and do much work already at compile-time.

1 Introduction

The efficient evaluation of queries expressed as logic pragrremains an everlasting problem. Of
course, big achievements have been made, but at the sanmertiblem size and complexity grows. Any
further progress can increase the practical applicahifitpgic-based, declarative programming.

Our long-term goal is to develop a new deductive databasierys This has many aspects, for
instance, language design. However, in the current paperexelude all special language features,
including negation, and focus on efficient query evaluatmrbasic Datalog.

The magic set method is the standard textbook method for mgaottom-up evaluation goal-
directed. Many optimizations have been proposed, inctudiar own SLDMagic method [1] and a
method based on Earley deduction [3]. We assume in the d¢upegrer that such a rewriting of the
program has been done, so we can concentrate on pure bgttevaiwation.

As we understand it, bottom-up evaluation is an impleméanaif the Tp-operator that computes the
minimal model of the program. However, an implementatiofrée in the order in which it applies the
rule instances, while th@&-operator first derives all facts that are derivable with\aegiset of known
facts, before the derived facts are used (in the next iteratFurthermore, facts do not have to be stored
until the end of query evaluation, but can be deleted as seaf possible derivations using them have
been done, except for the facts that form the answer to thg.qlikeerefore, the sequence of rule instance
application becomes important. If one computes predicafrddicate as the standard textbook method,
one of course needs to store the entire extension of thegatedi However, if one uses derived tuples
immediately, it might be possible to store only one tupléhefpredicate during the evaluation. Of course,
for duplicate elimination and termination, it might stik Imecessary to store extensions of a few selected
predicates. It is also not given that tuples (facts) mustelpeasented explicitly as records or objects in
the program. It suffices if one knows where the values of simglumns (predicate arguments) can be
found. In this way, a lot of copying can be saved becausedtptahe rule head are typically constructed
from values bound in the rule body. Of course, one must ertbatehe values are not changed before
all usages are finished.
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Our plan is to translate Datalog to+€, and to generate executable code from the resulting pragram
This permits to use existing compilers for low-level optadions and gives an interface for defining
built-in predicates. In[]2], we already discussed impletagon alternatives for bottom-up evaluation
and did performance comparisons for a few example progralos.we will improve the “push method”
from that paper by changing the set of variables used to septéntermediate facts. This is essential for
reducing the amount of copying. It also enables us to do m@eomputation at “compile time”.

The idea of immediately using derived facts to derive moogsfés not new. For instance, variants
of semi-naive evaluation have been studied which work isway [10] 12]. It also seems to be related
to the propagation of updates to materialized views. Howedhe representation of tuples at runtime
and the code structure is different from [10] (and this iseesial for the reduction of copying values).
The paperi[1R2] translates from a temporal Datalog extertsiérolog, which makes any efficiency com-
parison dependend on implementation details of the usdddg’compiler. We also believe that the rule
application graph introduced in our paper is a useful condeyrther literature about the implementation
of deductive database systems is, for instance,![8,[4,]97,11I3]. A current commercial deductive DB
system is LogicBlox([5]. A benchmark collection is OpenRadach [6].

2 Basic Definitions

In this paper, we consider basic Datalog, i.e. pure Proldlgoui negation and without function symbols
(i.e. terms can only be variables or constants). We alsamassuithout loss of generality that all rules
have at most two body literals. The output of our rewritingtimoels [1.[ 3] has this property. (But in
any case, it is no restriction since one can introduce irgdiate predicates.) Finally, we require range-
restriction (allowedness), i.e. all variables in the hehthe rule must also appear in a body literal. For
technical purposes, we assume that each rule has a unigueumber.

As usual in deductive databases, we assume that EDB and i&xcptes are distinguished (“exten-
sional” and “intensional database”). EDB predicates afandé by facts only, e.g. stored in a relational
database or specially formatted files. Also program inpoepsesented in this way. IDB predicates are
defined by rules. There is a special IDB-predicaiewer that only appears in the head of one or more
rules. The task is to compute the extension of this predicatee minimal model of the program, i.e. all
derivableanswer-facts.

We assume that the logic program for the IDB predicates alsasehe query (i.e. thenswer-rules)
are given at “compile time”, whereas the database for the BEicates is only known at “runtime”.
Since the same program can be executed several times wWeéledif database states, any optimization or
precomputation we can do at compile time will pay off in mass$es. It might even be advantageous in
a single execution because the database is large.

Since we want to generate+€ code, we assume that a data type known for every argument of
an EDB predicate. The method does not need type informatiotDB predicates (this is implicitly
computed). Data structures for storing relations for ED&djrates can be characterized with binding
patterns: A binding pattern for a predicagiewith n arguments is a string of lengthover the alpha-
bet{b,f}. The letterb (“bound”) means that a value for the corresponding argunsgkiown when the
predicate relation is accessed (inpfit];free”) means that a value needs to be looked up (output).

As mentioned above, our rewriting methods([1, 3] producegthat have at most two body literals.
Furthermore the case of two IDB-literals is rare — it is onbed in special cases for translating complex
recursions. Most rules have one body literal with IDB-peatit and one with EDB-predicate. Of course,
there are also rules with only one body literal (EDB or IDB).
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3 Accessing Database Relations

The approach we want to follow is to translate Datalog inte- Gvhich can then be compiled to machine
code. Of course, we need an interface to access relatiotisef@DB predicates. These relations can be
stored in a standard relational database, but it is alsalpese program this part oneself (at the moment,
we do not consider concurrent updates and multi-user gccess

We assume that it is possible to open a cursor (scan, itg@ter the relation, which permits to loop
over all tuples. We assume that for every EDB predigatiere is a clasp_cursor with the following
methods:

e void open(): Open a scan over the relation, i.e. place the cursor béfierérst tuple.

e bool fetch(): Move the cursor to the next tuple. This function must alscdlkd to access the
first tuple. It returnstrue if there is a first/next tuple, afalse if the cursor is at the end of the
relation.

e T col_i(): Getthe value of théth column (attribute) in the current tuple. Hérds the type of
thei-th column.

e close(): Close the cursor.

For recursive rules, we will also need
e push(): Save the state of the cursor on a global stack.
e pop(): Restore the state of the cursor.

A relation may have special access structures (e.g. it nuglgtored in a B-tree, hash table or array).
Then not only a full scan (corresponding to binding pattérn. f) is possible, but also scans only over
tuples with given values for certain arguments. We assuidrttsuch cases there are additional cursor
classes callegp_cursor_f3, with a binding patter8. These classes have the same methods as the other
cursor classes, only thgpen-method has parameters for the bound arguments. Epgs i& predicate of

arity 3 that permits particularly fast access to tuples withiven value of the first argument, and if this
argument has typent, the clasg_cursor_bff would have the methodpen (int x).

4 Duplicate Elimination and Termination

The main contribution of this paper is the way in which cogyand materialization of tuples is avoided.
Our method basically pushes newly derived facts to bodsalsenvhere they can be used to derive further
facts.

However, in the presence of recursion, we must be able tamuothether a derived tuple is new or
not. Therefore, in each recursive cycle, at least one palimust be materialized (“tabled”) to ensure
termination. A simple solution is to create hash tablesHergredicates in question.

This solution means that we materialize the extensions miesiibB predicates (hopefully, only a
few) and copy all data values for the tuples of these preglicah some cases, information about order
or acyclicity might help to avoid this. Information aboutykeand data distribution could be used to make
sensible optimization decisions. Furthermore, if tuplespoduced in a sort order, the duplicate check
can be done very efficiently and without storing the pre@ieattension. All this is subject of our future
work.

It is also interesting that the data values in a derived taptestored at different times in program
variables. For instance, we might know that wipgX,Y') is generatedX only seldom changes, and
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(Declaration Section);
(Initialization Section); // Initializes backtrack_stack
while(!backtrack_stack.is_empty()) {
switch(backtrack_stack.pop()) {
case L1:
11:
(Code Piece 1);
// break or goto at end of Code Piece
case L2:
12:
(Code Piece 2);

Figure 1: Overall structure of the generated code

changes much more often. Then a nested relation might bédveabling the predicate for the purpose
of duplicate detection.

Of course, breaking each recursive cycle with a duplicateatien is only the minimum we have to
do to ensure termination. Also non-recursive rules canrgéaeuplicates, and in some cases it might be
more efficient to detect these duplicates early in order tadasluplicate computations (since the price
for duplicate detection is quite high, in other cases it rhlggamore efficient to simply do the duplicate
work).

5 Code Generation: Overall Structure

The result of the translation looks basically as shown iruFgfl. So there are many small code pieces,
each with a label that is suitable forgato. Furthermore, when there are several things to do, e.g. a
generated fact can be used in more than one rule, a backinatkigpset up for the second rule, and then
agoto is done for the first. When an execution path reaches an emdythtch is left with break, and
one of the delayed tasks is taken from the stack. Therefah eode piece also has a unique number,
which can be stored on the backtrack stack, and used igsthiech to reach the code piece.
Optimizations are possible, e.g. one can order the codegpach that some jumps can be elimi-
nated, because the target is immediately following. Sone&theck points can be avoided by finding a
suitable code sequence.

5.1 Declaration Section

Data not known at compile time always originates from theldase. In order to minimize copying, we
(usually) introduce a &+ variable only for Datalog variables which

e occur in an EDB body literal,

e but do not occur in an IDB body literal of that rule (becausentithe value comes from another
rule, where a variable has been created, if the value is rmvkrat compile time),



S. Brass & H. Stephan 17

e and occur in the head of that rule (because otherwise the dales not really have to be processed
in the program).

For instance, consider the following rule:

If q is an IDB predicate and an EDB predicate, we create a-€variable only forX. A variable or
constant forY exists already when the rule is activated.

In seldom cases of recursive rule applications (see Sdsibhelow) we create & variables for all
variables of the rule.

If the above condition shows the we must createra Gariable for variableX in rule p, we generate
the following code line in the declaration section:

T vp_X;

We use the prefix with the rule number so that there can be ne ramflicts between variables of
different rules.T is the G-+ data type for the database column in whiloccurs.

5.2 Symbolic Facts

A symbolic fact consists of an IDB predicapeand a tuple(ty, ..., t,) of C++ variables (i.e. their iden-
tifiers) and constants, wheres the arity ofp. So a symbolic fact represents what is known at compile
time about a fact that will be derived at runtime. For someiargnts, we might know the exact value (a
constant), for other arguments, we know ther@ariable which will contain the value.

An initial set of symbolic facts is derived by rules withol@B body literals. Then our task is to
pass each derived symbolic fact to matching IDB body liteeald to derive a symbolic fact for the rule
head. For each such rule application, a code piece is gedendtich does the remaining computation
at runtime. The computation of symbolic facts is similarhe standard fixpoint iteration to compute
the minimal model (but it is done at “compile time”, when thatalfor the EDB predicates are not yet
known).

“Matching” between a symbolic fact and a body literal medrat they are unifiable. In general a
full unification must be done (at compile time). Consider. ¢hg body literap(X, X,a) and the symbolic
fact p(b,v1.Y,v1.Y). The rule cannot be applied to the symbolic fact, so no codenerated for this
case.

5.3 Rule Application Graph

As explained above, we assume that all rules have at mostday liierals. A “Symbolic Rule Appli-
cation” is represented by

e arule from the logic program with one IDB body literal, toget with a symbolic fact matching
this body literal, or

e arule without IDB body literals, or

e a rule with two IDB body literals, with one of the two selectedgether with a symbolic fact
matching this body literal. (In the rare case of two IDB boitigrhls, we use temporary tables for
facts matching each body literal. The symbolic fact in thie mpplication describes the situation
that we just computed a new fact for one of the IDB body literdtor the other body literal we
use the table with previously computed facts.)
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The result of a symbolic rule application is a symbolic fatet p(ts,...,t,) be the head of the rule,
and p be its rule number. If the rule has an IDB body literal, febe a most general unifier with the
input symbolic fact. We require that variable-to-variabladings are done such that logic variables are
replaced by @+ variables. Then the derived symbolic facpig, .. .,un), whereu; is

e t; if tj is a constant.
e t;0if t;j is a variable which appears in the IDB body literal (if thesene).
e vp X if tj is a variableX which does not appear in the IDB body literal.

Now we can do a standard fixpoint computation to compute atlmlic facts which are derivable from
the program. This process will come to an end, because theewh symbolic facts is bounded: There
is only a finite number of &+ variables (at most the number of variables in the given |ggagram,
where variables with the same name in different rules coandistinct). Furthermore, only a finite
number of constants occurs in the given logic program (@mstwhich appear only in the database are
not known at “compile time” and not used for computing synibdcts).

The structure of the computation can be shown in a “rule agptin graph”. It has two types of
nodes, namely symbolic facts (“fact nodes”), and symbalie applications (“rule nodes”). There is an
edge from every symbolic fact to every symbolic rule appia@mawhich uses the symbolic fact. Further-
more, there is an edge from every symbolic rule applicatoiié¢ symbolic fact it generates.

Of course, it is possible to show only the rule in nodes for Isgiic rule applications (since the
symbolic fact is identified by the incoming edge, except m¢hse of two IDB body literals). However,
then there can be several nodes marked with the same rugepdissible that a single rule is compiled
several times for different symbolic facts matching its ID&dy literal.

Note also that not every application of a recursive rule tgratwlic fact is actually recursive: Only
if the same symbolic fact can be generated by applying thés(raaybe indirectly via other rules), we
have to be prepared for recursive invocations of the codeedi@r the symbolic rule application. This
can be seen from cycles in the graph.

Finally, nodes in the graph from which there is no path taaswer-node can be eliminated: They do
not contribute to the computation of the answer. If the pragis the result of a program transformation
like magic sets, this path will not be followed at runtimet fius better not to generate code for it. An
example of such a program is

answer(X) <« q(X,a).

q(X,Y) +— p(Y,X).

p(a,X) «— r(X).

p(b,X) +— s(X).
The rule application graph is shown in Figlte 2. The righhpatuseless. In the code generation below,
we assume that such useless computation paths have beereceim®. from every node a fact node with
predicateanswer is reachable. This in particular means that every fact node avpredicate different
from “answer” has an outgoing edge.

5.4 Variable Conflicts
In rare cases of recursive rule applications, it is posditdé a rule is applied to a symbolic fact which
contains already a variable generated for that rule. An piais

p(X,Y) «+ r(X)Y).
p(Y,Z) <+ p(X,Y)Ar(Y,2Z).
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answer(v3_X)

answer(X) < q(X,a).

q(v3.X.a) q(vaX.b)
q(X.Y) < p(Y.X). q(X.Y) < p(Y.X).
p(a,v3X) p(b,va )
p(a.X) + r(X). p(b,X) ¢ s(X).

Figure 2: Rule Application Graph with Useless Part (to bmilated).

The first rule generates the symbolic fa¢t1_X,v1_Y). When we insert this into the second rule, we
getp(vi_Y,v2_Z). Now we have to insert this again into the second ruleZ contains the input value
for Y, but must also be set with a new data value frorin this case, some copying seems unavoidable.
While there are optimizations possible, the simplest gmiut to create a &+ variable for each logical
variable of the rule, and to copy first the values from the irfaat to the right variable (which might
need temporary variables, e.g. for swapping the values@i/twiables). For recursive rule applications,
the previous variable values are also stored on a stack &#®$5.6 below).

5.5 Labels for Code Pieces

We need goto label and/or aase selector value (a unigue number) for each code piece impiténge
a symbolic rule application. We write

1_start(p(ty,...,tn), P, p(u1,...,un))

for the goto-label of the code piece for application of ryvewith body literalp(us,...,u,) to the sym-
bolic factp(ty,...,tn). Of course, instead of listing the body litepgls, . .., un) explicitly, one could also
use its position number in the rufe In any case, the implementation will replace thislhgtart_n
with some unique number. The symbolic constant for thease-value is written a&_START(. . .) (and
also made a legal € identifier by using the same unique number). Sometimes trereontinuations
or other code pieces, therefore the label is markedsasr's”.

5.6 Protection of Variable Values

Of course, when a code piece corresponding to a symboli@apghication is executed, the+& variables
in the symbolic facp(t,...,tn) must still have the same value as when this task was genertatisd
possible that the ID/label of the code piece was pushed obdhktrack stack and it is executed only
later.

However, for every &+ variable, a new value is assigned only in code pieces forittggesrule for
which the variable was introduced (to hold a data value faEBB literal in that rule).
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Furthermore, it is important that the backtrack points &t lon a stack. So we will return to that rule
only after all backtrack points which use the value (and lavs generated later) have been processed—
unless the rule is recursive. In this case, the variableevalust be saved (on another stack suitable for
the data type), and we put the ID of a code piece on the bag&kstack which restores the variable value.
This is done whenever we enter a recursive rule, and onlyddables set in this rule (the derived fact
might contain also variables passed from elsewhere anchaoiped in the rule).

If the backtrack stack shrinks below this point, all usagas® new variable value are done, and the
old value is restored, so that older backtrack points find/éthee which was current when the backtrack
point was created.

6 Code Pieces

In this section, we define a number of code pieces which arslations of different types of rules.
Each code piece corresponds to a symbolic rule applicaionsimplicity, we do not consider variable
conflicts (Sectioh 514) here.

6.1 IDB-Facts

Suppose the program contains an IDB-fa@ts,...,c,). For each body litergb(ts,...,t,) of a rulep
that unifies with the fagb(cy, ..., cn), the case selector value

L_START(p(Cy,...,Cn), P, p(t1,...,tn))
is pushed on the backtrack stack during initialization.

6.2 One EDB-Body Literal

Consider the rule(ts,...,tn) < r(us,...,un) wherer is an EDB predicate. Lgb be the rule number.
Letp(ty,...,tn) be the symbolic fact generated by the rule£ t; if t; is a constant, and :=vp_Xif t;
is the variablex).

Among all possible cursorsursor_r_f for r choose one such that for all bound argument positions
(i.e. B = b), uj is a constant. This is always possible because every nelatipports a full table scan,
i.e. an access path with all argument positions “free”. Batiausly, if there are constants among the
and there are available indexes, it is best to choose onetingtiimallest estimated result size. In the
declaration section, generate

cursor_r_f8 cp;

Define symbolic constants INIT_p andL_CONT_p as unique numbers for cases in the switch. Gener-
ate the following code in the initialization section:

backtrack_stack.push(L_INIT_p);
All following code is generated in thewitch:
1. Generate
case L_INIT_p:
2. Letiq,...,ix be the bound argument positionsfin Generate:

cp.open(Uj,...,Uj);
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10.

11.

(Note that although anothease follows, execution simply continues.).

. Generate:

case L_CONT_p:

The following loop (item #) is left withgoto when the first fact is generated. But before the jump,
this case label is pushed on the backtrack stack, so thabdpad continued later.

. Generate

while(cp.fetch()) {

. Letu;,,...,u; be the constants among the ..., umn which correspond to free argument positions

in B. If k> 1, generate
if(cp.col_itO) !'=ujy |l -+~ |l cp.col_ix() '= uj)
continue;

l.e. if the current tuple of the EDB-predicate does not hdaerequired values for the constant
arguments, we immediately start the next iteration ofith£le-loop (i.e. fetch the next tuple).

. For every variablé/, which appears more than once amongdhe..,um: Letu;,,...,u; be all

equal toY (note thatk > 2). Generate a test that the same value appears in thesensolum

if(cp.col_i1() '=cp.col_ip || --- || cp.col_ixo1() '=cp.col_ix())
continue;

. For every variable; in the head leti; be any occurrence of this variable among the. .., um.

Because of the range restriction (allowedness) conditiothe rulesX; must occur in the body.
Generate for eack;:

vp_Xi = cp.col_jO;

. In case the predicatewas selected for a duplicate check, the following must beedwmre: The

result tuplep(ty, ..., tn) with the current values of the+@ variables is entered into a hash table or
other data structure. If the tuple was already present, iomg\sdoes ‘continue;” to skip it.

. Generate:

backtrack_stack.push(L_CONT_p) ;

This ensures that thehile-loop above will be continued later. Since then the valueshef
variables introduced in the rule will change, this label traeson the stack below every task using
the generated tuple.

Letps, ..., px be all rules with an IDB body litera;, i := 1,... .k, which matches the generated
symbolic factp(ty,...,tn). Fori :=2,... Kk, generate
backtrack_stack.push(L_START(p(t,...,tn), @i, Bi));
Finally, generate
goto 1_start(p(ty,...,tn), P1, B1);
Generate

} // End of while-loop

break;
Thebreak; is important if thewhile-loop ends because no (further) matching fact is found in the
relationr. Otherwise, the loop is left witBoto when the first/next matching fact is found.
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6.3 Two EDB-Body Literals

In the output of SLDMagic, this case does not occur. Howeves,easy to extend the above program
code. One uses two cursors, one for each body literal, anchéstedwvhile-loops. For simplicity, we
implement all joins as “nested loop join” (or “index join” ihe data structure for the relation supports
the corresponding binding pattern). Later, sort ordershiri@ used, so that also a “merge join” can be
generated.

6.4 One IDB-Body Literal
Consider the rule

p(tl, .. ,tn) < q(ul,. ..,Um),

whereq is an IDB-predicate. Lep be the number of this rule. Due to partial evaluation doneatpile
time, several specializations of the same rule might bergge® There is one code piece per symbolic
fact q(us,...,um) which matches the body literal. L& be a most general unifier, where variable-to-
variable bindings are done such that logic variables arkcefd by G+ variables i.eu; is replaced
by uj, if both are variables. The generated symbolic fagi(ig0,...,t,60). Note that because of the
range restriction requirement, every variable amongtttaso appears as ar), and then it is unified
with a constant or a €+ variable. Thus, no new- variables are introduced in this case.

1. Generate
case L_START(q(u1,...,um), P, q(ui,...,um)):
1_start(q(ug,...,um), P, q(u,...,um)):
If this rule application is activated via backtracking, tese label is used. If it is activated as the

first usage of a generated fact, a jump togheo label is done (as a slight optimization of pushing
something on the backtrack stack and immediately poppiagdin).

2. Now the part of the unification which can only be done atimatmust be generated. L\, . .., Vk
be all G+ variables which replaces by constants or a different variable ;6. V,). If k > 0,
generate:

ifVy =40 I - 1] W 1= WB)
break;

So we simply stop executing this code piece if the currentftacg does not unify with the body
literal. Then another task will be taken from the backtratelcls in the main loop.

3. Next, if the predicatep was selected for a duplicate check, the code to enter thét teple
p(t16,...,tn0) with the current values of the+@ variables into a hash table is generated here.
If the tuple was already present (so we just computed a datplicone simply doesteak;” to
end the code piece (as undér 2 above).

4. Letps,...,px be all rules with an IDB body literaB;, i := 1,...,k, which matches the generated
symbolic factp(t16,...,tn0). Fori:=2,...,k, generate

backtrack_stack.push(L_START (p(t16,...,tn0), O, Bi));
Finally, generate
goto 1_start(p(t16,...,tn0), p1, B1);
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6.5 One IDB- and one EDB-Body Literal
Consider the rule

p(t1,...,tn) < q(u1,...,um) Ar(vi,...,vi),
whereq is an IDB-predicate and is an EDB-predicate. Leb be the number of this rule. Again,
there is one code piece per symbolic fa@ls,...,uyn) which matches the IDB body literal. Lé& be
a most general unifier ang(ts,...,t,) be the generated symbolic fact as defined in Se€fidn 5.3. As in
Sectior 6.2, select a binding patteBrfor accessing the EDB-relatian A value forv; is known (i.e.
can be “bound”) ifv; is a constant or a variable which also appearg(in,...,um) (When execution
reaches this code piece, a concrete fact is given for the 10d titeral). In the declaration section,
generate

cursor_r_f3 cp;
All following code is generated in thewitch:
1. Generate
case L_START(q(u1,...,um), P, q(ui,...,um)):
1_start(q(ug,...,um), P, q(ug,...,um)):

2. Now the part of the unification of the given fact with the IDBdy literal, which can only be done

at runtime, must be generated. Mgt. .., Vi be all G-+ variables withv; 8 #£ V. If k > 0, generate:
if(Vp '= V10 || - 1] W '= WO)
break;
This ends the execution of this code piece if the rule is nptiegble.

3. Now we must use a cursor to access the tuples for the EDB litedsl r(vs,...,v). In case
this rule is recursive, it might be possible that the statéhefcursor and the values of the vari-
ablesvp_X set in this rule are still needed by backtrack points on taeks(unless we know that
there are no such backtrack points, e.g. because the nexung application is the last use of the
fact). Therefore, we generate

cp.push(Q);
And for each variablep_X we generate
value_stack.push(vp_X);
(There are probably several value stacks for different tigoes.)
Finally we generate a backtrack point:
backtrack_stack.push(L_RESTORE_p);
The code for thigase in the switch simply restores the variable values and the cursor state by

popping them (in the inverse order). In this way, all earbiacktrack points (below the one just
generated) find the old cursor state and variable values.

4. Now we open the cursor over the EDB-relationith the selected binding pattefh Letiy, ..., ik
be the bound argument positionsfin Generate:
cp.open(Vij,..., Vi) ;
wherev;; is
v, if this is a constant,
e vj,0if vj; is a variable which appears in the IDB body litegal. .).
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Generate:
case L_CONT_p:

When we are finished with using the computed fact, backtmacketurns here to continue the
following loop.

. Generate

while(cp.fetch()) {

. Now we do that part of the section fefvy,...,v|) that was not supported by the data structure

for r with binding pattern3 (e.g., hash table). Lat,...,ix be the free argument positions fh
such thaty;; is a constant or a variable which appears the the IDB bodsalitg. ..). Letv;, be
defined as ih}4 above. K> 1, generate
if(cp.col_it) !'= vy |l -+ || cp.col i) '= vj)
continue;

I.e. if the current tuple in the EDB relation does not haverdwiired values, we continue with the
next iteration of therhile-loop undef®.

. For every variablé&/, which appears more than once amongihe..,v;, but not in the IDB lit-

eralq(...): Letuj,,...,u; be all equal tor (note thatk > 2). Generate:

if(cp.col_ir) '=cp.col_iz || -+ || cp.col_ix-1() '=cp.col_ix())
continue;

For every variable; in the head, which does not appear in the IDB body litefal .), letv; be
any occurrence of this variable among the. .., v,. Because of the range restriction (allowedness)
condition on the rules, it must occur there. Generate foh &ac

vp_Xj = ¢cp.col_jO;
In case predicatewas selected for a duplicate check, we again enter the teglétp(ty, ... ,tn)

with the current values of the4@ variables into a hash table. If the tuple was already presaset
simply does ¢ontinue;” to compute the next tuple.

Generate:
backtrack_stack.push(L_CONT_p);

Letps,...,px be all rules with an IDB body literaB;, i := 1,...,k that matches the generated
symbolic factp(ty,...,tn). Fori :=2,... Kk, generate

backtrack_stack.push(L_START(p(t,...,tn), @i, Bi));
Then generate
goto 1_start(p(ty,...,tn), P1, B1);

Finally, we must close the ope&inile-loop (8. above) and finish the code piece in case the loop
does not find any (further) matching tuple. Generate:

}

break;

In addition, there is a code piece fetise L_RESTORE_p as explained under itelnh 3 above. It is executed
when this rule application is finished. It pops everythinghped there and then doeseak ; to continue
with the next task from the backtrack stack.



S. Brass & H. Stephan 25

6.6 Two IDB-Body Literals

This is a complicated case and needs intermediate storageles generated for the body literals.
Fortunately, this occurs rarely in the output of the SLDMagiethod (only when translating recursions
that are not tail recursions).

A general solution, which does not need information abosibtlder of generated tuples, is to manage
one set of tuples for each body literal. In the code pieceHerdase that a new tuple has been derived
for the left body literal, this tuple is joined with all tuen the current set for the right body literal. In
the same way, when a new tuple is generated for the right bigas| it is joined with all existing tuples
for the left bodly literal.

This means that we now need cursors also for the intermestiatage of generated IDB facts, and
these cursors must keep information about the last fact wheynwere created (since new facts can be
appended to the list while the cursor is active—these facist mot be returned by the cursor).

Recursion can be handled in the same way as before: When anew §enerated for a body literal,
we save the state of the cursor and all variables of that cbe pcontinue with derivations using the
new fact, and later return to the old fact. However, since mgnay have intermediate storage now, it is
also possible to create a queue of facts for each body litwhath must still be used in derivations.

If it is possible to generate all facts for the left body lgebefore the first fact for the right body
literal, one obviously needs intermediate storage onlyterleft body literal. In this case it can later be
treated like an EDB literal.

If one should be able generate facts for both literals in tre @der of the common variables (the
join attributes), one would need intermediate storage @oya single tuple for each body literal (we
would basically do a merge join).

6.7 Generated Answer-Facts

For rules about the predicasaswer, one can print the generated tuple or insert it into a resldition
whenever the above code would jump to a body literal whicls tise generated fact (there are no body
literals with predicatanswer). One can also offer the cursor interface of Sedtion 3.

7 Conclusion

We have presented a detailed description of the push medhazfficient bottom-up evaluation algorithm
for pure Datalog programs. Itis implemented as a transidtiom Datalog to G+.

In the push method, derived facts are immediately used ivedeew facts without generally mate-
rializing immediate results. A specific feature introdudedhis paper is the representation of derived
tuples which significantly reduces the amount of copyingsTéthe result of the partial evaluation to do
as much as possible work already at “compilation time” (atghice of producing several specializations
of the same rule, i.e. the generated code might grow whilémenis saved). The rule application graph
defined here is useful for planning the evaluation.

First performance tests show some improvement over theguewersion of the push method
from [2]. We plan to develop a more complete implementatiod to investigate further optimizations.
The current state of the project is reported at

http://www.informatik.uni-halle.de/~brass/push/.
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