
SLDMagic — The Real Magic
(with Applications to Web Queries)?

Stefan Brass

University of Pittsburgh, Dept. of Information Science and Telecommunications,
135 N. Bellefield Ave., Pittsburgh, PA 15260, USA

sbrass@sis.pitt.edu

Abstract. The magic set technique is a standard technique for query
evaluation in deductive databases, and its variants are also used in mod-
ern commercial database systems like DB2. Numerous improvements of
the basic technique have been proposed. However, each of these opti-
mizations makes the transformation more complicated, and combining
them in a single system is at least difficult.
In this paper, a new transformation is introduced, which is based on
partial evaluation of a bottom-up meta-interpreter for SLD-resolution.
In spite of its simplicity, this technique gives us a whole bunch of opti-
mizations for free: For instance, it contains a tail recursion optimization,
it transforms non-recursive into non-recursive programs, it can pass ar-
bitary conditions on the parameters to called predicates, and it saves the
join necessary to get subquery results back into the calling context. In
this way, it helps to integrate many of the previous efforts.
The usefulness of these optimizations is illustrated with example pro-
grams querying the World Wide Web.

1 Introduction

Many current developments aim at integrated systems consisting of a program-
ming language and a database management system. For instance, object-oriented
database systems combine both functionalities, but also stored procedures and
triggers in relational systems go into this direction. Deductive databases offered
such an integrated language for a long time. Theoretically, this is very appeal-
ing since here a declarative language is also used for the programming part.
Declarativity has proven to be very useful in SQL.

Deductive database systems have also become interesting again because they
are well suited to process graph-structured data, and the World Wide Web can
be seen as a large directed graph of interconnected documents. This view of the
WWW is the basis of web query languages, e.g. [KS95,MMM97,HLLS97]. Also,
recently proposed data models for semi-structured data and XML [ABS00] as
well as the RDF model for Web metadata are graph-structured.
? This paper is a completely rewritten and significally extended version of a paper

which appeared in the electronic proceedings of the International Workshop on “Ad-
vances in Databases and Information Systems”, Moscow, 1996.

One of the biggest problems of deductive databases is still the performance,
which is quite far behind other integrated DB/PL systems. It is known that
“Bottom-Up [evaluation with magic sets] Beats Top-Down for Datalog” [Ull89a].
However, as noted by Ross [Ros91] (see also [Ull89a]), this does not mean that
current deductive databases are at least as efficient as Prolog implementations.
This is not even true asymptotically (in O-notation). So let us quickly explain
the main difference between magic sets and SLD-resolution (which is the basis
of Prolog evaluation). Although both are top-down evaluation methods, and in
fact equally goal-directed (see, e.g., [Bra95]), there are important differences.

The magic set method treats predicates (views) like procedures, which are
called with a set of bindings for the input (bound) arguments. This input relation
is the so-called “magic set”. They return a relation for all arguments, such that
every returned tuple agrees with one input tuple in the bound arguments. So
the result is the semijoin of the magic set and the full extension of the predicate.
Of course, the trick is to avoid computing this full extension.

For instance, consider a predicate local link(From URL,To URL, Label) which
returns links in the web page From URL refering to a page To URL on the same
server. An invocation with the first argument bound could look as follows:

From URL
http://x.edu/
http://y.edu/

-
local link

From URL To URL Label
http://x.edu/ http://x.edu/a . . .
http://x.edu/ http://x.edu/b . . .
http://y.edu/ http://y.edu/c . . .

In contrast, SLD-resolution works by repeatedly “unfolding” query literals —
it replaces the predicate call by the predicate definition. This is what many
relational database systems do with view definitions, but in SLD-resolution this
is the only computation mechanism and works also with recursive views. Let
local link be defined as follows:

local link(From URL,To URL, Label)← link(From URL,To URL, Label) ∧
same server(From URL,To URL).

Furthermore, let the query be

local link(’http://www.pitt.edu’,URL, Label) ∧
like(Label, ’%Inf%Sc%’).

SLD-resolution replaces this query by

link(’http://www.pitt.edu’,URL, Label) ∧
same server(’http://www.pitt.edu’,URL) ∧
like(Label, ’%Inf%Sc%’).

In SLD-resolution, there is no explicit procedure call and return. Instead, we
always work on complete continuations of the computation. Even if we should
choose to evaluate next the calls to link and same server, the control passes then

immediately to like without entering the rule for local link again. This is essential
for tail recursions. Furthermore, we can choose a different evaluation sequence,
for instance evaluate the call to like before the call to same server. This gives
us a much bigger optimization potential than the sideways information passing
rule of magic sets, which can only locally reorder the body literals within a rule
(or decide not to use all available bindings)1.

Of course, SLD-resolution also has its problems, the most important being
the possibility of non-termination. There are tabulation techniques which avoid
this [SSW94], but these are essentially equivalent the magic set method. In this
paper, we present a new method to combine advantages of bottom-up evaluation
and SLD-resolution. The title says that this is the “real magic”, because we
believe that it was from the beginning the goal of the magic set transformation
to combine bottom-up evaluation with Prolog evaluation (i.e. SLD-resolution).

Deductive databases are normally applied when there are large sets of facts
which Prolog implementations cannot handle. While we do SLD-resolution as
Prolog, we execute it on a bottom-up machine using set-oriented evaluation
techniques. Whereas Prolog always does nested loop joins, we can apply merge-
joins or hash-joins. Also, we will see that the SLD-resolution selection function,
which is not used in Prolog, can be an important means for query optimization.

Our approach is based on the idea of partially evaluating a meta-interpreter.
Bry has done this for the standard magic set technique [Bry90], we only start
with another meta-interpreter and do a bit more involved partial evaluation. It
is fascinating how many optimizations we get for free based on this idea. Such
optimizations are known for the magic set method [MFPR90,Ros91,GM92], but
integrating them in a single system is at least hard work.

2 Problems of Magic Set Query Evaluation

Let us consider some examples which demonstrate weak points of the standard
magic set technique. We will see that an approach based on SLD-resolution can
avoid these problems. Specialized solutions to most of these shortcomings have
already been developed. Our contribution is an integrated approach which solves
all of these problems (and is actually quite simple).

2.1 Tail Recursions

It is a standard task to find all documents which are reachable from a given docu-
ment via local links (i.e. links refering to documents on the same server). In order
to do this, we first define a predicate for the transitive closure (corresponding to
−→∗ in WebSQL [MMM97]):

local reachable(X,Y)← local link(X,Y,).
local reachable(X,Z) ← local link(X,Y,) ∧ local reachable(Y,Z).

1 “Informally, for a rule of a program, a sip represents a decision about the order
in which predicates of the rule will be evaluated, and how values for variables are
passed from predicates to other predicates during evaluation.” [BR91]

Then we can call this predicate with the given start document, say d0:

local reachable(d0,D).

To keep the example simple, let us consider the following hypertext structure:

d0

�
�
�
�
�
��� d1

�
�
�
�
�
���

· · ·
dn−1

�
�
�
�
�
��� dn

However, the same problem appears when we have additional links, and this
path is only a subgraph. Actually, we could have used any reasonable connection
of n+ 1 pages (e.g. a star topology with backlinks).

In order to solve the task, we must only follow the links and output every page
we reach. Thus a complexity of O(n) seems reasonable, or O

(
n ∗ log(n)

)
, if we

check for cycles due to backlinks. But if we use the magic set technique in this ex-
ample, the complexity is at least O(n2). The reason is that this method explicitly
represents the results of subqueries. We start with the call local reachable(d0,D),
but since there is a link to page d1, we get the recursive call local reachable(d1,D),
and so on, for any page of the chain. For each such subquery, the magic set
method computes all matching facts which follow from the original program.
So we not only get local reachable(d0, d1), . . . , local reachable(d0, dn), but also
local reachable(d1, d2), and so on. This is a quadratic number of facts, thus the
complexity is at least O(n2), and probably higher due to join computations and
duplicate eliminations.

In contrast, Prolog can process this example in linear time, and this can be
understood without looking inside Prolog implementations. The tree of goals
(queries) created by SLD-resolution for the above program and data (including
the rule for local link) contains 8n+ 5 nodes, and all nodes have ≤ 3 literals.

However, SLD-resolution will not terminate for cyclic hypertext graphs. But
our method of evaluating SLD-resolution bottom-up will compute only a finite
number of SLD-goals, and does so in the required time O

(
n∗log(n)

)
. In contrast,

previous tabulation methods for making SLD-resolution terminate, such as those
used in the XSB-system [SSW94], have the same problem as magic sets: They
store proven instances of literals in a table, which is already a quadratic number.

The magic set method with tail-recursion optimization developed in [Ros91]
and further analyzed in [RS91,SR93] solves the problem. There are also methods
for more specific kinds of tail-recursions [NRSU89,Ull89b,KRS90]. However, our
method contains such optimizations, and solves many other problems as well.

Current query languages for the web, semistructured data, and XML typi-
cally contain path expressions for following edges in the graph. There are spe-
cialized algorithms for evaluating these expressions which of course do not have
this problem. While path expressions work well for XML, retrieving a page on
the web is an expensive operation, so we might need the full power of Datalog
to describe as precisely as possible which links we want to follow.

2.2 Nonrecursive Programs

The following predicate computes pages reachable via at most two local links:

reach2(X,Y)← local link(X,Y,).
reach2(X,Z) ← local link(X,Y,) ∧ local link(Y,Z,).

The program is non-recursive and should be easy to evaluate. However, if we use
the magic set technique for the query reach2(d0,D), we get a recursive program.
The reason for this problem is that the magic set technique collects all calls to a
predicate (with the same “binding pattern”) into a single magic predicate. But
here, due to the second rule for reach2, the queries for local link (in the second
body literal) depend on solutions for local link (in the first body literal). And of
course, solutions for a predicate always depend conversely on the queries.

In contrast, SLD-resolution treats the two calls to local link separately, and
thus the problem does not occur. Of course, merging calls sometimes can be
advantageous, if this helps to avoid recomputations. Therefore our method can
be parameterized in such a way that for every body literal either magic sets or
SLD-resolution can be chosen.

The methods of [GM92] ensure that non-recursive programs are transformed
into non-recursive programs. The basic approach is also to distinguish the two
calls. In one of their solutions, they also do some unfolding, and add a “covered
subgoal elimination” which we do not (yet) have. Again, the strength of our
solution is that it solves different problems at the same time.

2.3 Getting Results Back into the Context of the Caller

Suppose we have a relation my links(URL, Last Visited) in which we store our
personal collection of most interesting web pages. It is the combination of such
local information with a web interface which makes web query languages a useful
and powerful tool. Now the following predicate returns those pages which have
changed since the time of last visit:

has changed(URL)← my links(URL, Last Visited) ∧
doc mtime(URL,Modif) ∧
Modif > Last Visited.

When has changed is called with URL free, the magic set method will evaluate
the body literals in the given sequence. So it first accesses the relation my links.
This gives bindings for the two variables URL and Last Visited. Let us assume
that doc mtime is also an IDB-predicate:

doc mtime(URL,Modif)← www get(URL,Title,Modif,Contents).

Then a magic set for doc mtime is constructed by projecting the bindings for URL
and Last Visited on the variable URL. The predicate doc mtime returns bindings
for URL and Modif. But in the context of the calling rule, all three variables URL,

my links(URL, Last Visited) ∧ doc mtime(URL,Modif) ∧ Modif > Last Visited

URL Last Visited

...
...

URL Last Visited Modif

...
...

...

?
π

URL
...

61

URL Modif

...
...

?
6

doc mtime

Fig. 1. Projection and Join During Magic Set Evaluation

Last Visited, and Modif are bound, and all three variables are still needed. Thus,
the two relations must be joined on the attribute URL (see Figure 1).

Since a join is expensive, it would have been better not to project the vari-
able Last Visited away. SLD-resolution always retains the complete bindings for
all variables which are still needed: The goals in the SLD tree contain the full
continuation of the computation.

Magic sets with supplementary predicates do not solve this problem. This
method reduces unnecessary recomputations while evaluating a single rule, but
does not change the arguments of the IDB-predicates, as would be required here.

Magic sets could be advantageous to SLD-resolution if e.g. my links would
produce several solutions for a single URL (In the given example, this cannot
happen because URL is key). Then the projection could do a duplicate elimina-
tion and thereby reduce the input to doc mtime.

2.4 Passing Conditions on the Parameters to Called Predicates

Suppose that we are again interested in pages from our hotlist which were mod-
ified since our last visit, but only from a specific server. Then we use the query

has changed(URL) ∧ on server(URL, ’www.sis.pitt.edu’).

Consider now the evaluation of has changed: While my links is a locally stored
relation, the call to the WWW-interface predicate doc mtime is very expensive:
We have to fetch each page under all URLs stored in my links, and only later
throw out all pages which are not on the given server.

The problem here is that for the magic set technique, the structure of the
program in predicates is significant: The “sideways information passing” strategy
cannot move literals between predicate boundaries. However, in this case, the
optimal sequence would be

my links(URL, Last Visited) ∧
on server(URL, ’www.sis.pitt.edu’) ∧
doc mtime(URL,Modif) ∧
Modif > Last Visited.

The literals on server(URL, ’www.sis.pitt.edu’) and Modif > Last Visited are very
cheap to evaluate, however, they can only be evaluated after their arguments
are bound. And of course, we should try to “fail as early as you can”, at least
before very expensive literals are evaluated. This corresponds to the classical
optimization strategy to push selections as far “down” as possible, and especially
evaluate them before expensive joins.

The magic set technique can pass only conditions of the form X = const on the
parameters to the called predicates. The rectification transformation [Ull89b] was
invented to handle conditions of the form X = Y. The technique of [MFPR90] can
pass conditions of the form X < const. Our method inherits from SLD-resolution
the possibility to evaluate arbitrary conditions of the parameters as soon as they
become bound. In SLD-resolution this kind of “global optimization” is done by
means of the selection function: It decides which literal from the continuation
should be evaluated next. In this way, it considerably generalizes the magic set
SIP-strategy (at least the reordering part. The SIP-strategy also can decide to
use only a subset of the available bindings.)

While we reach the same optimization as [MFPR90], the method of [SR92]
has features which would have to be added to our approach. It can move linear
arithmetic constraints both from the uses of a predicate into its rules as well as
from the definitions towards its uses. Our method breaks up the rule structure
so that constraints to be satisfied are visible when we evaluate a predicate.
However, it evaluates them only as soon as the become bound, we do not yet
check the constraints for consistency. We also do not generate constraints for
predicates which would help to detect inconsistencies earlier. On the other hand,
our method is not limited to any particular type of constraints. Any predicate
which can be evaluated cheaply can act as a constraint.

2.5 Combining Conditions for Index Access

This greater flexibility in the evaluation order is also important for index struc-
tures which can evaluate conjunctions of literals. For instance, when we submit
a query to a search engine, we should first collect all literals specifying search
terms for the same document.

Suppose we have defined a predicate containing the URLs of possible job
offers in the Web:

job offer(URL)← keyword(’Job Opportunity’,URL).
job offer(URL)← keyword(’Free Positions’,URL).

Here the predicate keyword gives access to a search engine. While this particular
definition of the predicate job offer is very naive, such predicates can be used to
represent knowledge about searching in the WWW. The possibility to reuse and
share such knowledge is an important issue for future web querying systems.

Now suppose that we are interested only in job offers mentioning “Prolog”:

job offer(URL) ∧ keyword(’Prolog’,URL).

Then it might be important that when we evaluate the call to job offer, we
already see that there is another call to the predicate keyword. It will certainly
be better to combine the search terms, and not to collect first all job offers and
then to select those mentioning “Prolog”.

In general, index structures often allow to evaluate conjunctions of literals at
once. Even a classical B-tree over e.g. the attribute Sal of the relation emp allows
us to evaluate a conjunction like emp(X,Y,Sal)∧ Sal ≥ 1000∧ Sal ≤ 1500 in one
shot. However, in the source program, these conditions might not be contained
in the same rule. Therefore, good query optimization needs the unfolding power
of SLD-resolution.

It is sometimes assumed that standard relational query optimization can be
done after the magic-set transformation. In our view, this is an error. The result
of the transformation prescribes more or less the evaluation order. So many
physical parameters (such as the existence of indexes) must already be taken
into account when the transformation is done.

3 The Meta-Interpreter

Often, an evaluation method can be explained by presenting an interpreter for it.
If this interpreter is written in the language itself, it is called a meta-interpreter.
It is a standard exercise in Prolog programming courses to write an interpreter
for Prolog in Prolog. However, Bry clarified in [Bry90] that such interpreters
depend heavily on the machine model used to execute them. While the standard
meta-interpreter runs only on Prolog, Bry developed a meta-interpreter which
formalized top-down evaluation, but run itself on a bottom-up machine. He used
explicit call and return, and in this way reconstructed the standard magic set
transformation. So all we have to do now is to start with a meta-interpreter
which describes real SLD-resolution.

3.1 Bottom-Up Execution of SLD-Resolution

We present SLD-goals (nodes of the SLD-tree) by lists of literals which still have
to be proven. For instance, the query local reachable(d0,D) gives the root node
of the SLD-tree:

node
(
[local reachable(d0,D)]

)
.

The rules of the given program are stored in the form rule(Head,Body), e.g.

rule
(

local reachable(X,Z), [local link(X,Y,), local reachable(Y,Z)]
)
.

Now the SLD-resolution step can be described by means of the following main
rule of our meta-interpreter (for simplicity, we have chosen here the “first literal”
selection function of Prolog):

node(Child)←
node([Lit|Rest]) ∧
rule(Lit, Body) ∧
append(Body, Rest, Child).

Our meta-interpreter will be evaluated bottom-up, so you have to read the rule
from right to left: If we insert, e.g., the above node- and rule-facts, we will derive
the following node-fact:

node
(
[local link(d0,Y,), local reachable(Y,D)]

)
.

Bottom-up evaluation with non-ground facts does the necessary unification, and
renames the variables of the used “facts” before that in order to avoid name
clashes. In addition, it treats derived facts as duplicates if they differ only by a
variable renaming from known facts. This is important for the termination and
can be easily achieved by normalizing variable names (e.g. X1,X2, . . .).

There is the small problem that in this way it is difficult to track the bind-
ing for the answer variable D. When all literals are proven, we get the empty
goal node([]), but the answer substitution is lost. We solve this problem by
adding to each derived node-fact the current instance of the query. This will be
the first argument of the predicate node, the second argument will be the current
goal as above. So instead of the above node-fact we really derive

node
(

local reachable(d0,D), [local link(d0,Y,), local reachable(Y,D)]
)
.

This is similar to a rule where the head always remains an instance of the query
and we iteratively unfold the body. Since the substitutions are also applied to
the first argument, it contains the proven query instance as soon as the goal
becomes empty:

node
(

local reachable(d0, d2), []
)
.

The complete meta-interpreter is shown in Figure 2. We assume there that EDB-
facts from the database are stored in the predicate db. The distinction between
program rules with empty bodies and database facts becomes relevant only later
when we do partial evaluation. For simplicity, we assume that the query is a single
literal stored in the predicate query. The meta-interpreter can be executed by
deductive database systems like CORAL [RSSS94] which allow structured terms
and non-ground facts.

Theorem 1 (Relation to SLD-Resolution). Let the above meta-interpreter
be executed on rule, db, and query-facts corresponding to a program P, database
DB, and query Q. Then it computes the goals in the SLD-tree for P∪DB∪{←Q}:

– For every node N in the SLD-tree with goal ← A1 ∧ · · · ∧ An, there is a fact
node

(
Qθ, [A′1, . . . ,A

′
n]
)

which is derivable from the meta-interpreter and a

/* Initialization (Root Node): */

node
(

Query, [Query]
)
←

query(Query).

/* SLD-Resolution: */
node(Query, Child)←

node
(

Query, [Lit|Rest]
)
∧

rule(Lit, Body) ∧
append(Body, Rest, Child).

/* Evaluation of DB-Literal: */
node(Query, Rest)←

node
(

Query, [Lit|Rest]
)
∧

db(Lit).

/* Turn Proven Query into Answer: */
answer(Query)←

node
(

Query, []
)
.

Fig. 2. Bottom-Up Meta-Interpreter for SLD-Resolution

variable-renaming σ such that A′iσ = Ai, i = 1, . . . , n, and Qθσ is the result
of applying to the query all most general unifiers which SLD-resolution used
on the way from the root node to N .

– And vice versa, every derivable fact corresponds in this way to (at least) one
node in the SLD-tree.

From the soundness and completeness of SLD-resolution, we directly get the
following corollary:

Theorem 2 (Soundness and Completeness). Let the meta-interpreter be
executed on rule, db, and query-facts corresponding to a program P, database DB,
and query Q.

– For every derived fact answer(Qθ), the substitution θ is a correct answer
substitution.

– For every correct answer substitution θ, there is a derived fact answer(Qθ′)
and a substitution σ with θ = θ′σ.

3.2 Termination

So our meta-interpreter correctly simulates SLD-resolution. As explained in Sec-
tion 2, this is advantageous for many applications. But do we get in exchange
for these advantages also the problem of possible non-termination? The answer
is: Often not. Since we do not compute the nodes themselves, but only the

goals attached to them, the termination behaviour is better than that of SLD-
resolution. For instance, the rule p(X) ← p(X) poses no problem at all, since it
does not yield new goals. In general, we can guarantee the termination for all
tail-recursive Datalog-programs using only finite database predicates. We do not
suggest to simulate SLD-resolution for predicates with other kinds of recursions.
For such programs, we will later present a combined method which allows to use
the “magic set” behaviour (tabulation) for calling some literals.

Definition 1 (Tail-Recursive Program). A program is at most tail-recursive
iff for every rule

A← B1 ∧ · · · ∧ Bm,

the predicates of Bi, 1 ≤ i ≤ m− 1, do not depend on the predicate of A, i.e. no
body literal except possibly the last is recursive.

Note that this class of programs is larger than the class for which the “right re-
cursion optimization” of [Ull89b] is applicable. Most practical programs are cov-
ered. The condition ensures that the number of literals in SLD-goals is bounded
(assuming the left-to-right selection function).

Theorem 3 (Sufficient Condition for Termination). Let P be an at most
tail-recursive program, DB a database, and Q be a query such that P∪DB∪{← Q}
is finite and does not contain structured terms. Then the bottom-up evaluation
of the above meta-interpreter terminates, i.e. there are only finitely many facts
derivable from it (modulo variable renamings).

3.3 Adding “Magic Set” Behaviour

Because of the problems with general recursive calls, we might be interested
to evaluate such literals with the magic set technique. Also, the strength of
magic sets is that every predicate is evaluated only once for the same input
values. While often the behaviour of SLD-resolution is better, we sometimes
might want to table calls and computed results in order to avoid unnecessary
recomputations. Fortunately, it is easy to extend the meta-interpreter in such a
way that we can choose for every body literal whether it should be evaluated
via SLD-resolution or via magic sets.

Let us enclose body literals intended for magic set evaluation into the special
predicate call. Then it suffices to add the two rules in Figure 3 to our meta-
interpreter. The idea is that we allow SLD-resolution to call itself recursively for
evaluating certain literals (like standard SLD-resolution does for negative liter-
als). So we now construct not a single SLD-tree, but one for each recursive call.
This explict call and return is the key to understanding the difference between
magic sets and SLD-resolution. One can view the two rules also as describing
SLD-resolution with tabulation: The first rule enters a predicate call into a table,
and the second rule takes solutions from a table in order to solve this literal.

If all IDB-literals are evaluated in subproofs, we get something very similar to
magic sets with supplementary predicates: The query-facts correspond to magic
facts, answer-facts correspond to derived IDB-facts, and node-facts correspond
to facts of the supplementary predicates.

/* Set Up Recursive Call (Derive Magic Fact): */
query(Lit)←

node(, [call(Lit)|]).

/* Get Result of Recursive Call: */
node(Query, Rest)←

node(Query, [call(Lit)|Rest]) ∧
answer(Lit).

Fig. 3. Additional Meta-Interpreter Rules for “Magic Set” Behaviour

Interpreter

Database (db)�

Query (query)�

Program (rule)�


Known at
Compiletime

}
Known at
Runtime

Fig. 4. Inputs of the Meta-Interpreter

4 Partial Evaluation

While the above meta-interpreter can be directly executed (e.g. on CORAL), the
use of lists and non-ground facts significantly decreases the performance. It is well
known that from an interpreter, one can get a compiler via partial evaluation.
Such a compiler will transform a program intended for SLD-evaluation into a
program which runs on a bottom-up machine. For Bry’s meta-interpreter, it was
sufficient to unfold the call to the predicate rule. In our case, partial evaluation
becomes a bit more complicated. There are a number of papers which investigate
partial evaluation for Prolog (i.e. top-down evaluation), but partial evaluation
for bottom-up execution seems to be a new problem.

Our task is to evaluate the meta-interpreter as far as possible, given program
and query, but with a yet unknown database (see Figure 4). Especially, we should
try to avoid using lists and non-ground facts. This is feasible, since the number of
literals in node-facts is bounded as long as the program is at most tail-recursive
or other recursions are evaluated via call.

Our main idea is to use conditional facts of the form A← B to separate what
is known at compile-time (A) from what is only at runtime (B). For instance, we

might know at compilation time that we can derive facts of the form

node
(

local reachable(d0,D), [local reachable(d,D)]
)
.

This corresponds to the situation that we have followed links from the start
page d0 to some page d, and therefore any page D reachable from d is also
reachable from d0. Of course, the possible values for d depend on the data, and
are not yet known at compile time. So we would encode this knowledge as

node
(

local reachable(d0,D), [local reachable(X,D)]
)
← p(X)

where p is a new predicate used for the runtime computations.
Let us now explain the partial evaluation in more detail. Basically, we do a

standard bottom-up fixpoint computation, but we work now with conditional
facts. So we have a set COND of conditional facts which will increase until a
fixpoint is reached. An important invariance is that COND will never contain
two different conditional facts with the same predicate p in the body. In this
way, we can translate facts produced later at runtime (e.g. p(d)) uniquely back
to facts of the original program.

We start with the following facts COND (if we want to partially evaluate our
meta-interpreter):

– db
(

p(X1, . . . ,Xn)
)
← p(X1, . . . ,Xn) for every EDB-predicate p. Actually, if

there are certain small lookup-tables which seldom change, we might be
allowed to compile them into our program. In this case we would have a
conditional fact db

(
p(c1, . . . , cn)

)
← true for every row (c1, . . . , cn) in the

lookup-table.
– query(Query) ← true for the given query literal Query. If we want to run

the query repeatedly with different constants, we can replace them by vari-
ables X1, . . . ,Xn and start with query(Query)← p(X1, . . . ,Xn) instead. When
the constants are known at runtime, we would add the corresponding p-fact.

– rule
(

A, [B1, . . . ,Bm]
)
← true for each rule A← B1, . . . ,Bm in the given input

program.

In addition we have a set PROG of program rules which are the result of the
partial evaluation. The set PROG starts out empty.

Now let A ← B1, . . . ,Bm be a rule of our meta-interpreter (or whatever
program we want to partially evaluate). We choose conditional facts B′i ← Ci
from COND (but with fresh variables) such that there is an mgu θ of (B1, . . . ,Bm)
and (B′1, . . . ,B

′
m). Then the result of the unfolding with respect to the given

conditional facts is
Aθ ← C1θ ∧ · · · ∧ Cmθ.

Now the body is already in the right form, but we want to encode also the head
via a conditional fact. Let Y1, . . . ,Yn be those variables which appear in Aθ
and in at least one of the Ciθ. Then we search COND for a conditional fact of
the form Aθ ← p(Y1, . . . ,Yn) (with any predicate p and the variables possibly
renamed). If there is none, we insert this conditional fact with a new predicate p

into COND. Finally, we add the rule p(Y1, . . . ,Yn)← C1θ ∧ · · · ∧Cmθ to PROG.
Of course, duplicate elimination is needed here: We normalize the variables in
such a way that we do not get two rules in COND or PROG which differ only in
a renaming of variables.

Some body literals (like the call to append) can already be evaluated fully at
compile-time, so there is no need for a matching fact pattern.

When a fixpoint is reached, PROG is the result of the partial evaluation. Each
fact derivable from PROG can be translated back into the syntax of the original
program by a unique rule from COND.

In the special case of the meta-interpreter, we can guarantee that partial
evaluation terminates under the above conditions (all recursions other than tail-
recursions are evaluated via call, the input program contains no structured terms,
program and database are finite). We also can handle structured terms at least
when we move them into the conditional fact bodies which are evaluated at
runtime. More research is needed for deciding which function symbols can in
general be evaluated during partial evaluation.

5 Conclusions

SQL-3 contains recursion, and current applications like web queries really need
it. The main techniques for evaluating recursion are magic sets (with many vari-
ants) and SLD-resolution (used in Prolog). In this paper, we have clarified the
differences between these two techniques. We have shown that SLD-resolution is
often advantageous, and that SLD-resolution can be evaluated in a set-oriented
fashion using database techniques. A first prototype implementation of the trans-
formation is available from http://www2.sis.pitt.edu/~sbrass/sldmagic/.

It seems that for future performance improvements, we have to look more
at the internal data structures. Especially, we want to avoid copying variable
values. Our goal is to reach the performance of Prolog systems. This also needs
a powerful program analysis to avoid duplicate eliminations.

For simplicity, we have considered only negation-free programs. Adding strat-
ified negation is not difficult, although some care has to be taken to make the out-
put stratified. We are currently working on using our ideas from [BD99,ZBF97]
to handle general negation.

References

[ABS00] S. Abiteboul, P. Bunemann, D. Suciu (eds.): Data on the Web: From Rela-
tions to Semistructured Data and XML. Morgan Kaufmann, 2000.

[BD99] S. Brass, J. Dix: Semantics of (disjunctive) logic programs based on partial
evaluation. The Journal of Logic Programming 40 (1999), 1–46.

[BR91] C. Beeri, R. Ramakrishnan: On the power of magic. The Journal of Logic
Programming 10 (1991), 255–299.

[Bra95] S. Brass: Magic sets vs. SLD-resolution. In J. Eder, L. A. Kalinichen-
ko (eds.), Advances in Databases and Information Systems (ADBIS’95),
185–203, Springer, 1995.

[Bry90] F. Bry: Query evaluation in recursive databases: bottom-up and top-down
reconciled. Data & Knowledge Engineering 5 (1990), 289–312.

[GM92] A. Gupta, I. S. Mumick: Magic-sets transformation in nonrecursive systems.
In Proc. of the Eleventh ACM SIGACT-SIGMOD-SIGART Symposium on
Principles of Database Systems (PODS’92), 354–367, 1992.

[HLLS97] R. Himmeröder, G. Lausen, B. Ludäscher, C. Schlepphorst: On a declarative
semantics for web queries. In Fifth International Conference on Deductive
and Object-Oriented Databases (DOOD’97), 1997.

[KRS90] D. B. Kemp, K. Ramamohanarao, Z. Somogyi: Right-, left- and multi-linear
rule transformations that maintain context information. In D. McLeod,
R. Sacks-Davis, H. Schek (eds.), Proc. Very Large Data Bases, 16th
Int. Conf. (VLDB’90), 380–391, Morgan Kaufmann Publishers, 1990.

[KS95] D. Konopnicki, O. Shmueli: W3QS: A query system for the world-wide web.
In U. Dayal, P. M. D. Gray, S. Nishio (eds.), Proc. of the 21st Int. Conf. on
Very Large Data Bases, (VLDB’95), 54–65, Morgan Kaufmann, 1995.

[MFPR90] I. S. Mumick, S. J. Finkelstein, H. Pirahesh, R. Ramakrishnan: Magic
conditions. In Proc. of the Ninth ACM SIGACT-SIGMOD-SIGART Sym-
posium on Principles of Database Systems (PODS’90), 314–330, 1990.

[MMM97] A. O. Mendelzon, G. Mihaila, T. Milo: Querying the world wide web.
Journal of Digital Libraries 1 (1997), 68–88.

[NRSU89] J. F. Naughton, R. Ramakrishnan, Y. Sagiv, J. D. Ullman: Efficient evalu-
ation of right-, left-, and multi-linear rules. In Proceedings of the 1989 ACM
SIGMOD International Conference on Management of Data, 235–242, 1989.

[Ros91] K. A. Ross: Modular acyclicity and tail recursion in logic programs. In
Proc. of the Tenth ACM SIGACT-SIGMOD-SIGART Symp. on Princ. of
Database Systems (PODS’91), 92–101, 1991.

[RS91] R. Ramakrishnan, S. Sudarshan: Top-down vs. bottom-up revisited. In
V. Saraswat, K. Ueda (eds.), Proc. of the 1991 Int. Symposium on Logic
Programming, 321–336, MIT Press, 1991.

[RSSS94] R. Ramakrishnan, D. Srivastava, S. Sudarshan, P. Seshadri: The CORAL
deductive system. The VLDB Journal 3 (1994), 161–210.

[SR92] D. Srivastava, R. Ramakrishnan: Pushing constraint selections. In Proc. of
the Eleventh ACM SIGACT-SIGMOD-SIGART Symposium on Principles
of Database Systems (PODS’92), 301–315, 1992.

[SR93] S. Sudarshan, R. Ramakrishnan: Optimizations of bottom-up evaluation
with non-ground terms. In D. Miller (ed.), Proceedings of the International
Logic Programming Symposium (ILPS’93), 557–574, MIT Press, 1993.

[SSW94] K. Sagonas, T. Swift, D. S. Warren: XSB as an efficient deductive database
engine. In R. T. Snodgrass, M. Winslett (eds.), Proc. of the 1994 ACM
SIGMOD Int. Conf. on Management of Data (SIGMOD’94), 442–453, 1994.

[Ull89a] J. D. Ullman: Bottom-up beats top-down for Datalog. In Proc. of the Eighth
ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database
Systems (PODS’89), 140–149, 1989.

[Ull89b] J. D. Ullman: Principles of Database and Knowledge-Base Systems, Vol. 2.
Computer Science Press, 1989.

[ZBF97] U. Zukowski, S. Brass, B. Freitag: Improving the alternating fixpoint: The
transformation approach. In A. Nerode (ed.), Proc. of the 4th Int. Conf.
on Logic Programming and Non-Monotonic Reasoning (LPNMR’97), 40–59,
LNAI 1265, Springer, 1997.

