
A Variant of Earley Deduction with
Partial Evaluation?

Stefan Brass and Heike Stephan

Martin-Luther-Universität Halle-Wittenberg, Institut für Informatik,
Von-Seckendorff-Platz 1, D-06099 Halle (Saale), Germany

brass@informatik.uni-halle.de, stephan@informatik.uni-halle.de

Abstract. We present an algorithm for query evaluation given a logic
program consisting of function-free Datalog rules. The algorithm is based
on Earley Deduction [7, 10], but uses explicit states to eliminate rules
which are no longer needed, and partial evaluation to minimize the work
at runtime. At least in certain cases, the new method is more efficient
than our SLDMagic-method [2], and also beats the standard Magic set
method. It is also theoretically interesting, because it consumes one EDB
fact in each step. Because of its origin, it is especially well suited for
parsing applications, e.g. for extracting data from web pages. However, it
has the potential to speed up basic Datalog reasoning for many semantic
web applications.

1 Introduction

The goal of deductive database systems is to support efficient reasoning with
large numbers of facts. This is for instance needed in semantic web applications.
Although there is a relatively long history of research for query evaluation in
deductive databases, with the magic set method as an established standard,
efficiency is still a problem. This is not only a matter of finding a competent
programmer, but it also needs more research. For instance, in [2] we proposed
an improvement to the magic set method, and in [3] we studied implementation
alternatives for bottom-up evaluation.

In the last time, extensions of Datalog have been shown to be very relevant
for semantic web tasks, e.g. [8] (see also [1, 9]) shows how to translate SPARQL to
Datalog with answer set semantics, [6] translates description logics into variants
of Datalog with existential quantification in the rule heads, and [5] discusses
how to adapt Datalog to semistructured data and to RDF. In [4], we study
how output, e.g. the generation of web pages, can be done declaratively with an
extension of Datalog with ordered predicates.

All these extensions of course need also the basic reasoning capability for
classical Datalog, which is the subject of this paper. We take an old algorithm
for query evaluation, Earley Deduction [7, 10], and improve it by separating

? This is a significantly extended and improved version of a paper that appeared in
the 26th Workshop on Logic Programming (WLP’12).



2 Stefan Brass and Heike Stephan

states, eliminating unnecessary rules early, and doing partial evaluation. The
partial evaluation is somewhat similar to the one we developed for our SLDMagic
method [2]. It makes the algorithm very competitive, because a lot can already
be done at compilation time.

The new algorithm loops through a sequence of states (basically sets of rules
being processed), where a single database fact is used from one state to the next.

The algorithm is interesting also because it especially fits applications in
which input must be parsed (after all, the Earley algorithm was a parsing al-
gorithm). While our modified Earley deduction can in principle be used for
arbitrary logic programs, there is a special optimization potential when it can
be proven that only one fact is applicable in a state, and we do not have to check
whether there is a cycle in the state sequence. In parsing applications, the EDB
facts have a natural order, and are consumed in this order.

2 Basic Definitions

Definition 1 (Rule). A rule is a formula of the form A← B1∧· · ·∧Bn, where
A and Bi, i = 1, . . . , n are positive literals, i.e. atomic formulas p(t1, . . . , tm)
with a predicate p and terms tj, j = 1, . . . ,m. Terms are variables or constants.
The head of the above rule is A, the body is B1 ∧ · · · ∧ Bn. A rule with empty
body (i.e. n = 0) and without variables is called a fact.

Definition 2 (Range Restriction). A rule is range-restricted iff every vari-
able that appears in the head appears also in the body.

Range restriction ensures that when a rule is applied to derive an instance
of the head (given facts matching the body literals), the derived instance does
not contain variables, i.e. is again a fact.

Definition 3 (EDB- and IDB-Predicates, Program and Database).
Predicates are partioned into EDB (“extensional database”) and IDB-predicates
(“intentional database”). A logic program P is a finite set of range-restricted
rules with an IDB-predicate in the head and a non-empty body. A database D is
a finite set of facts with EDB-predicate.

The requirement that the body of program rules is non-empty simplifies later
definitions, but is no restriction: One can use an EDB-predicate true without
arguments and put it into the database.

Definition 4 (Answer Predicate). We assume that an IDB-predicate answer
is distinguished as “main” predicate. It may appear only in the heads of rules in
the program.

We assume that the program contains the query in the form of rules about
this special predicate. The goal of query evaluation is to determine the answer-
facts which are derivable from P∪D, i.e. program and database together. Besides
rules about the answer predicate, the program may also contain view definitions
or rules defining auxiliary predicates.



A Variant of Earley Deduction with Partial Evaluation 3

Definition 5 (Selection Function). A selection function chooses for every
rule A← B1, . . . ,Bn with n ≥ 1 an index i ∈ {1, . . . , n} (i.e. a body literal).

For simplicity of presentation, in the following we will assume a selection
function that always selects the first body literal. However, we note that in the
database context the selection function is an important optimization parameter.
So a real implementation will use a selection function that tries to make use of
input arguments (constants) and database access structures (indexes).

Definition 6 (Normalization of Rules). Let an infinite sequence X1,X2, . . .
of variables be given. Without loss of generality we assume that these variables
do not appear in the given program. A rule R is called normalized iff it contains
only variables that appear in this sequence, and if Xi appears in the rule, then
X1, . . . ,Xi−1 must appear to the left of Xi in the rule (i.e. variables are numbered
in the order of first occurrence).

The normalized version of a rule R′ is the unique normalized rule R = R′ θ
which can be reached by a variable renaming θ.

The condition that the Xi do not appear in the program saves us a variable
renaming when unifying literals from a normalized rule and a program rule.

3 Deduction Method

The method works by looping through a series of states, where one EDB fact is
processed in each state transition. Each state contains the rules or remainders
of rules which are currently being processed, i.e. which can participate in the
derivation of answer-facts after having seen a certain sequence of database facts.
Body literals which are already proven are removed, and unifying substitutions
are applied to the rules. Therefore the rules in the state are specialized and
simplified versions of program rules. Within the state, we explicitly represent
the “is called by” relation between the rules:

Definition 7 (State). A state S is a finite directed graph (V, E), the nodes V
of which are normalized rules, and an edge (R1, R2) ∈ E is read “R1 has been
called by (the selected literal in) R2”.

During the construction of a state, we need in addition the information which
rules are new, because certain deduction steps are only applied to new rules:

Definition 8 (Extended State). An extended state is a triple (V, E ,A) such
that (V, E) is a state, and A ⊆ V. Rules in the set A are called “active rules”.

The construction of the initial state starts with (normalized versions of) all
rules about answer, which are all active. There are no edges yet, because these
rules did not call each other (answer appears only in the rule heads).

The following operation adds called program rules. Input values from the call
are propagated to the rule by adding not the rule itself, but a specialized version
of the rule, such that all derived instances of the head will fit the calling literal:



4 Stefan Brass and Heike Stephan

Definition 9 (Instantiation). Let an extended state S = (V, E ,A) and a pro-
gram P be given. For each active rule R1 ∈ A and program rule R2 ∈ P
such that the head of R2 unifies with the selected literal in R1, let θ be the
most general unifier, and R′2 be the normalized version of R2 θ. Then the ex-
tended state S ′ = (V ′, E ′,A′) with V ′ := V ∪ {R′2}, A′ := A ∪ {R′2}, and
E ′ := E∪{(R′2, R1)} can be reached by instantiation. If S ′ 6= S, we write S →I S ′.

The following operation does a resolution step with a given EDB fact: It
removes the corresponding body literal and applies the unifying substitution to
the rest of the rule. This operation is called “reduction”.

Definition 10 (EDB-Reduction). Let an extended state S = (V, E ,A) be
given. For each rule R ∈ V − A, R = A ← B1 ∧ · · · ∧ Bn, such that F unifies
with the selected literal B1, let θ be the mgu, and R′ be the normalized ver-
sion of (A ← B2 ∧ · · · ∧ Bn) θ. Then the extended state S ′ = (V ′, E ′,A′) with
V ′ := V ∪ {R′}, A′ := A ∪ {R′}, and E ′ := E ∪ {(R′, R′′) | (R,R′′) ∈ E} can be
reached by EDB-reduction with F. If S ′ 6= S, we write S →E(F) S ′.

The condition that EDB-reduction can be applied only to non-active rules
avoids that the same rule can be reduced twice in one state transition. This is
important to keep the facts used in state transitions synchronized with the EDB
fact sequence (see Def. 17).

When reduction has removed the last body literal, an IDB fact is proven.
Then the called rule returns the answer to the caller, and the IDB fact is used to
reduce the body of the calling rule. The difference to EDB-reduction is that here
the “is called by” relation between the rules is used (EDB reduction reduces any
rule in the state, IDB reduction only the calling rule).

Definition 11 (IDB-Reduction). Let an extended state S = (V, E ,A) be
given. For each pair of rules (R1, R2) ∈ E, such that R1 is a fact F, and R2

has the form A← B1 ∧ · · · ∧Bm, where the selected literal B1 is unifiable with F,
let θ be the mgu, and R′ be the normalized version of (A← B2∧· · ·∧Bn) θ. Then
the extended state S ′ = (V ′, E ′,A′) with V ′ := V ∪ {R′}, A′ := A ∪ {R′}, and
E ′ := E ∪ {(R′, R3) | (R2, R3) ∈ E} can be reached by IDB-reduction. If S ′ 6= S,
we write S →R S ′.

Actually, the states are constructed such that when there is an edge from R1

to R2, the head of R1 is always unifiable with the selected literal in R2: When
a rule is added by instantiation, its head can be only more specialized than the
calling literal (one would get it by applying the unifier to the selected literal
in R2). Later reduction steps specialize R1 further, while R2 does not change.

So far, we have defined single deduction steps. But of course, we want to
apply them repeatedly “until nothing changes”, so we reach a kind of fixpoint.
For a given fact F ∈ D, let the combined relation be→C(F):=→I ∪ →E(F) ∪ →R.

Note that all of the above relations between extended states are confluent,
i.e. if S →∗ S1 and S →∗ S2 there is a state S ′ with S1 →∗ S ′ and S2 →∗ S ′.
This is obvious because the operations only add nodes and edges to the state,



A Variant of Earley Deduction with Partial Evaluation 5

and additional nodes and edges do not prevent the application of an operation
that was applicable before.

For a given program, database, and state, instantiation and reduction can
be applied only finitely many times, because only instances of program rules or
“remainders” of rules already in the state can be added: No rule can get longer
than the longest rule in the state and the program, and no rule can contain
other constants than the constants contained in state, program and database.
The variables in the rules are normalized, so the number of variables appearing
in the state is also bounded by the number of terms in the longest rule.

Therefore, every state has a unique normal form with respect to each of these
relations. The normal form can be reached by iteratively applying the relation
as long as possible (i.e. until nothing more can be added to the state). We need
two normal forms, one with respect to instantiation only, and one applying all
deduction steps (given a single database fact):

Definition 12 (Closures). Given an extended state S and program P, we write
Inst+(S) for the unique normal form of S with respect to →I (instantiation).

Given an extended state S, program P, and a fact F ∈ D, we write Conseq+F (S)
for the unique normal form of S with respect to →C(F).

Definition 13 (Initial State). Given a program P, let V be the set of an-
swer rules: V := {R ∈ P | R is a rule about answer}. Let S0 := Inst+((V, ∅,V))
(i.e. instantiation is applied to the given initial rules, which are all considered
active). If S0 = (V0, E0,A0), the initial state for this program is (V0, E0).

I.e. the initial state consists of the rules about answer in P, plus all rules
which can be added by instantiation (repeatedly, until nothing changes).

Now the successor state of a state (V, E) is computed by applying all de-
duction steps with a given database fact F, i.e. computing Conseq+F (S) with
S := (V, E , ∅). (All rules are considered inactive at the beginning, but active
rules are generated via EDB-reduction.) After the consequences are computed,
we need the following “cleanup” operation, which removes rules which are no
longer needed. Remember that reduction only adds new rules, but it does not
remove the original rules. This is done for two reasons: (1) It ensures the con-
fluence, and thus the existence of a unique normal form. (2) In the case of
IDB reduction, the rule might permit several distinct reductions, either in the
same state transition, or in a later state transition. So we must be careful to
remove only rules which cannot contribute to a solution in this state sequence.

Definition 14 (State Cleanup). Given an extended state S = (V, E ,A),
let V ′ be the set of rules R ∈ V satisfying one of the following conditions:

– R is a fact about answer, or
– R is reachable via the edges in E from an active rule R′ ∈ A (this includes

the case R ∈ A), where R′ has a non-empty body (this implies that R has a
non-empty body, too).

Then Cleanup(S) := (V ′, E ′) with E ′ := E ∩ (V ′ × V ′).



6 Stefan Brass and Heike Stephan

IDB-facts are removed, because all possible derivations with them have been
done. The answer-facts are treated specially, because the “output” computed in
the state needs to be stored somewhere. However, they will not participate in
further derivations, so except for the output, they are not needed in the state.

Definition 15 (Successor State). Let a program P, a database D, a state
S = (V, E), and a fact F ∈ D be given. The successor state S ′ for S with respect
to F is Cleanup(Conseq+F ((V, E , ∅))), unless the result is empty, in which case
there is no successor state.

Definition 16 (Computed Answers). A fact answer(c1, . . . , cm) is computed
if there is a sequence of states S0, . . . ,Sn such that S0 is the initial state, Si is
the successor state for Si−1 with respect to a fact Fi ∈ D (i = 1, . . . , n), and
answer(c1, . . . , cm) ∈ Vn, where (Vn, En) = Sn.

As explained above, there can be only finitely many states for a given pro-
gram P and database D. However, the sequence of states could be cyclic, so
one must check whether a newly constructed state is indeed new. Of course,
optimizations are possible and subject of our further research.

Example 1. Let the following program be given:

grandparent(X,Z)← parent(X,Y) ∧ parent(Y,Z).
parent(X,Y) ← mother(X,Y).
parent(X,Y) ← father(X,Y).
answer(X) ← grandparent(ann,X).

Here, father and mother are EDB-predicates, so they are defined by a collection
of facts in a database. The initial state is shown in the following picture.

answer(X1)← grandparent(ann,X1).

6

grandparent(ann,X1)← parent(ann,X2) ∧ parent(X2,X1).

��
��

��1

parent(ann,X1)← mother(ann,X1).
PP

PP
PPi

parent(ann,X1)← father(ann,X1).

The links between rules correspond to the “is called by” relationship. Actu-
ally, one can start at a rule in the state and compose a goal in the SLD-tree by
following the links and replacing the selected literal of the calling rule by the
goal computed for the called rule (initially the body). Of course, a unification
must be done, but it is guaranteed to succeed, because the constraints of the
calling rule were propagated when the node for the called rule was constructed
(e.g. the argument ann in the example). The advantage of the proposed method
is that many nodes of the SLD-tree are encoded in a single state — in some
cases infinitely many: E.g. p(X) ← p(X) gives an infinite SLD-tree, but in the
state it is represented only once with a cyclic “is called by” relationship.



A Variant of Earley Deduction with Partial Evaluation 7

From one state to the next, a single EDB-fact is used. The distinction between
program rules and EDB facts is important, because for the partial evaluation,
we will later assume that the database is known only at runtime (and can change
between one execution of the “compiled” program and the next). For example,
using the fact mother(ann, betty), we get the state shown in the next picture:

answer(X1)← grandparent(ann,X1).

6

grandparent(ann,X1)← parent(betty,X1).

��
��

��1

parent(betty,X1)← mother(betty,X1).
PP

PP
PPi

parent(betty,X1)← father(betty,X1).

The proven literal is removed from the rule, and matching rules are found for
the next selected literal.

In this example, backtracking will be needed, because another fact, e.g.
father(ann, chris), could be applied in the initial state. However, in many ex-
amples, especially for parsing applications, it can be proven that only a single
EDB-fact can be applied, and therefore no backtracking will be necessary.

With a second state transition, an answer will be computed. For instance,
with the fact mother(betty, doris), we arrive at the following state:

answer(doris).

The computed IDB-facts parent(betty, doris) and grandparent(ann, doris) were re-
moved as part of the state cleanup operation (together with the rules which
cannot yield further answers in a future state transition). ut

Example 2. Let the left recursive version of the standard transitive closure pro-
gram be given:

[1] path(X,Y)← edge(X,Y).
[2] path(X,Z) ← path(X,Y) ∧ edge(Y,Z).

Let the database be

[3] edge(1, 2).
[4] edge(2, 3).

Now let the following query be given:

[5] answer(X)← path(1,X).

The initial state S0 consists of the query plus rules added by instantiation:

[6] path(1,X)← edge(1,X). // inst. of [1] because of [5]
[7] path(1,X)← path(1,Y) ∧ edge(Y,X). // inst. of [2] because of [5]



8 Stefan Brass and Heike Stephan

Of course, [7] also calls for instantiation, but that gives again [6] and [7]. Thus,
S0 is

[5]

�
��

[6]
@
@I

[7]- ��
@@��	

Now by applying the database fact [3] edge(1, 2), the following reductions are
done:

[8] path(1, 2). // Reduction of [6] with [3]
[9] answer(2). // Reduction of [5] with [8]

[10] path(1,X) ← edge(2,X). // Reduction of [7] with [8]

Standard IDB-facts like [8] are eliminated at the end of the construction of the
successor state (with the cleanup operation). Answer facts like [9] are kept to
show the answer(s) computed in the state, but they have no links (the answer-
predicate cannot appear in rule bodies). The interesting case are rules which are
not finished like [10]: Such rules remain in the state, and they have links to the
same rules as the original rule, from which they were generated by reduction, so
in this case it has links to [5] and to [7]. Therefore, these rules are copied to the
successor state S1:

[5]

�
��

[10]
@
@I

[7]- ��
@@��	

[9]

Next, using the database fact [4] edge(2, 3) in state S1 permits the following
reductions:

[11] path(1, 3). // Reduction of [10] with [4]
[12] answer(3). // Reduction of [5] with [11]
[13] path(1,X) ← edge(3,X). // Reduction of [7] with [11]

As explained before, [11] is only temporarily needed while the reductions are
done, [12] is the computed answer, and [13] has links to [5] and [7] (inherited
from [7] from which it was constructed). Thus, the successor state S2 is:

[5]

�
��

[13]
@
@I

[7]- ��
@@��	

[12]

Any other application of the database facts leads to the empty set (i.e. fails).
Note that S1 and S2 differ only in one constant (3 instead of 2). Partial

evaluation, discussed below, will produce one “parameterized state”, with this
constant as a parameter. ut



A Variant of Earley Deduction with Partial Evaluation 9

Theorem 1 (Correctness). Every computed answer is indeed a logical conse-
quence of P ∪ D.

Proof. This is easy: Each step (reduction and instantiation) is a logical conse-
quence of P ∪ D and the previously computed rules. ut

Definition 17 (Bottom-Up Derivation Tree). Let a program P and data-
base D be given. A bottom-up derivation tree is a finite tree with nodes labelled
by facts, such that for each node the following holds: Suppose the node is la-
belled with F. Then either F ∈ D, and the node is a leaf node, or there is a
rule A← B1 ∧ · · · ∧ Bn ∈ P and a ground substitution θ for this rule such that
F = A θ and the child nodes are marked with Bi θ for i = 1, . . . , n in this se-
quence. (This assumes the first literal selection rule, otherwise the subtrees must
be re-ordered corresponding to the evaluation sequence of the body literals.) A
bottom-up derivation tree for F is such a tree with the root node labelled with F.
The EDB fact sequence of a bottom-up derivation tree is the sequence of labels
of the leaf nodes (in the order defined by the tree).

It is this fact sequence which must be used to get a state sequence which
derives the fact at the root of the tree:

Theorem 2. Let S0 = (V0, E0) be a state containing a rule R = A← B1∧· · ·∧Bn

with selected literal B1. Let θ be a ground substitution for the variables in B1 such
that B1 θ has a bottom-up derivation tree with EDB fact sequence F1, . . . ,Fm.
Then there are successor states Si of Si−1 wrt Fi, i = 1, . . . ,m, such that the
following holds:

– If n > 1, then (A← B2 ∧ · · · ∧Bn) θ is contained in Sm. Furthermore, every
rule R′ ∈ V0 which is reachable from R via E0 is still contained in every Si,
i = 1, . . . ,m, as are the edges between these rules.

– If n = 1, then A θ is generated by reduction from R with Fm in the last state
transition (since it is an IDB fact, it will finally be removed, unless it is an
answer-fact, but all further reductions with it are done). Furthermore, every
rule R′ ∈ V0 which is reachable from R via E0 is still contained in every Si,
i = 1, . . . ,m − 1 (i.e. until the penultimate state), as are the edges between
these rules.

Proof. The proof is by induction on the height of the bottom-up derivation tree
for B1 θ. For space reasons, the details are contained only in the technical report
version of this paper. ut

Corollary 1 (Completeness). Every fact answer(c1, . . . , cn) which is a logical
consequence of P ∪ D is computed.

4 Partial Evaluation

The goal of partial evaluation is to do the main work of the computation of
the states once and for all at “compile time”, when the actual extensions of



10 Stefan Brass and Heike Stephan

the EDB-predicates are not yet known. Furthermore, even when only a single
run of the program is planned, it can be advantageous to compute beforehand
what can be done independently of actual constants. Our deduction method is
intended for data-intensive applications, so there are relatively few rules and
a large number of facts. Therefore, basically the same computation steps will
be repeated many times for different data values (constants). Whatever can be
done independently of the actual constant should be done only once. Indeed,
only with partial evaluation our deduction method has a chance to be superior
to other established methods.

Partial evaluation requires to separate what is known at compile time from
what is known only later at runtime. In our case, the actual values of con-
stants from EDB facts are not yet known. We represent them by special vari-
ables C1, C2, . . . and remember that they will actually be bound at runtime, so
there will be a ground substitution given for them. Furthermore, the substitu-
tion is the same for the complete set of rules forming a “parameterized state”.
Therefore, these special variables are not local to the rules, but have a value
globally defined for the entire state. At runtime, a state can be represented
by the number of the parameterized state and the ground substitution for the
special variables. If one wants to express the computation with states again as
Datalog, one could create a predicate for each state with the parameters as argu-
ments. This is useful for explaining the method (and for comparing our approach
with Magic Sets). However, in the end, our goal is to translate directly to an
implementation language like C++.

Example 3. Consider the following program:

[1] answer(X)← edge(a,X).
[2] answer(X)← edge(b,X).

This is also the initial state S0 (modulo rule normalization). It does not con-
tain parameters: constants in the program are known at compile time. Now the
successor state must be computed for the fact

[3] edge(C1, C2).

The actual constants are not yet known, therefore they are replaced by pa-
rameters C1 and C2. When reduction is applied to the first rule, we get the
unifier θ1 = {C1/a, X/C2}. An alternative would be θ′1 = {C1/a, C2/X}. How-
ever, since substitutions for the parameters must be treated specially, it is easier
to orient variable-to-variable bindings in direction to the parameter.

Whenever a parameter gets bound to a constant, we must distinguish two
cases: Either the actual value at runtime is equal to the constant, or not. We
might get two different successor states in both cases, although often, there will
be no successor state in the other case (i.e. we get the empty set of rules). Of
course, the same happens when the substitution binds two parameters together,
e.g. {C1/C2}. One case is that the two values are indeed equal, i.e. C1 = C2, the
other is that they are not equal (in which case the unifier is not acceptable, and
the result of the reduction or instantiation step is not included in the successor



A Variant of Earley Deduction with Partial Evaluation 11

state for this case). Of course, the conditions for a case must be consistent. If
we assume that C1 6= C2, we cannot bind C1 and C2 later to the same constant.
This is a consequence of the fact that the parameters are like global variables
for the state, so they cannot be replaced by different values for different rules in
the state.

But let us continue with the example. The first case is C1 = a. Reduction
gives the rule

[4] answer(C2).

No further reduction can be applied under the assumption C1 = a, thus this
is already one possible successor state. It contains a parameter, so we call it
S1(C2). One can encode the state transition as the following rule:

[5] S1(C2)← S0 ∧ edge(C1, C2) ∧ C1 = a.

The other case is C1 6= a. Then it is clear that a reduction with the first rule
is not possible. A reduction step with the second rule gives the substitution
{C1/b, X/C2} and the resulting state is

[6] answer(C2).

This happens to be the same as the second state, so we encode it as S1(C2),
too. The condition is C1 6= a ∧C1 = b. Of course, this could be simplified, since
the second part implies the first one. But since it will be implemented as an
“if . . . else if . . . ”-chain, this simplification is not important. Finally, the case
C1 6= a ∧ C1 6= b remains. But then no reduction is possible, and thus, there is
no successor state in this case. ut

Example 4. This example explains why the negation of the condition of a sub-
stitution must be considered, too. Let the following program be given:

[1] answer(X, 1) ← edge(a,X).
[2] answer(Y, 2)← edge(X,Y) ∧ color(X, red).

Again, this is the initial state S0. The successor state must be computed for

[3] edge(C1, C2).

First, a reduction step with the first rule is possible and gives the substitution
{C1/a, X/C2}. Therefore, we consider the case C1 = a. This needs to hold for
the entire result state, so C1 is replaced in all previously generated rules by a,
and in all further derivation steps for this case. Therefore, the result state is

[4] answer(C2, 1).
[5] answer(C2, 2) ← color(a, red).

Let us encode this as S1(C2).
The other case is C1 6= a. In that case, a reduction with the first rule is not

possible, only with the second rule. The result is



12 Stefan Brass and Heike Stephan

[6] answer(C2, 2)← color(C1, red).

This state will be called S2(C1, C2). It is important to exclude C1 = a here,
because otherwise the same rule instance would be applied twice. This would
reduce the efficiency, and if duplicates were important, we would get the wrong
number. Partial evaluation should not change the number of derivations that are
possible. The state transition can be described by the following rules:

[7] S1(C2) ← S0 ∧ edge(C1, C2) ∧ C1 = a.
[8] S2(C1, C2)← S0 ∧ edge(C1, C2) ∧ C1 6= a.

The condition S0 is actually not needed (“true”), since there is always an initial
state. ut

Definition 18 (Parameterized State). A parameterized state with n param-
eters is a finite directed graph (V, E) where the vertices are rules which can
contain the special variables C1, . . . , Cn, standard variables X1,X2, . . ., and no
other variables. The standard variables must be numbered in each rule in the
order of occurrence.

When a parameterized state is computed, it can be checked whether it differs
only in the numbering of the parameters from a previously computed state. Then
the earlier representation can be used.

The inititial parameterized state is equal to the initial state (it has no pa-
rameters). It would also be possible to allow queries with parameters — so that
the compilation is done only once, and the query can be executed several times
with different values for the parameters. But the same effect can be reached by
creating a new EDB-predicate for the parameter values, and storing the concrete
values in the database before the query is executed.

Now let a parameterized state S be given with n parameters C1, . . . , Cn. To
compute the successor state for an EDB-predicate r of arity k, we use the “pa-
rameterized fact” r(Cn+1, . . . , Cn+k). Whenever a unification is done, we must
keep in mind that the Ci represent unknown constants. Therefore, bindings be-
tween standard variables and parameters are done from the standard variable to
the parameter. Basically, the unifying substitution is split in two parts, which
can be applied one after the other: One part maps the standard variables in rules
from state and program, and one part maps the parameters Ci.

The first part of the substitution can be applied at compile time as as usual.
The second part yields a condition for the ground substitution that is defined
by the data at runtime.

Definition 19 (Condition for a Substitution). Let a substitution θ for the
parameters be given. The corresponding condition is the conjunction of

– Ci = c for each parameter Ci such that θ(Ci) is a constant c, and
– Ci = Cj for each parameter Ci such that θ(Ci) is a parameter Cj with j 6= i.

The empty conjunction (in case θ(Ci) = Ci for all i) is treated as true.
Conversely, given any consistent conjunction of such equations and negated

formulas, the corresponding substitution maps a parameter Ci to



A Variant of Earley Deduction with Partial Evaluation 13

– the constant c if Ci = c is logically implied,
– the parameter Cj if j > i is the greatest natural number such that Ci = Cj

is logically implied,
– Ci otherwise.

During the computation of the successor state, one keeps a formula ϕ which
describes the current case. It is a conjunction of such formulas describing param-
eter substitutions and their negations. Whenever a unification is done during the
computation of the successor state, which computes the unifier θ, two cases are
distinguished, which lead to different successor parameterized states (at compile
time, one uses backtracking to follow both paths, at runtime the actual constant
values choose one case):

– The unification will be successful also with the real parameter values, thus
the formula ϕ′ corresponding to θ is added to the current case, i.e. ϕ := ϕ∧ϕ′.

– The unification will not be successful, thus the negation of ϕ′ will hold
for the parameter values, i.e. ϕ := ϕ ∧ ¬ϕ′. Since this is the case where
the unification will fail at runtime, the resulting rule is not added to the
successor state computed at compile time, i.e. the instantiation or reduction
is not done in this case.

Of course, if ϕ gets inconsistent, the current case is void and one can backtrack
to compute the next successor state. If the domains are large enough, it is not
difficult to check these formulas for consistency: One starts with one set for
each parameter and for each constant. Whenever an equation (non-negated,
of course) makes two parameters or a parameter and a constant equal, one
merges the two sets. If a set contains two distinct constants, the formula is
obviously inconsistent. After one is done with the non-negated equations, one
checks each negated conjunction: If it contains at least one equation where the
two sides belong to different sets, it is satisfied (in the interpretation which
assigns every set a different value, which is the best possible interpretation for
trying to satisfy inequalities, i.e. if there is one negated conjunction not satisfied
in this interpretation, it will not be satisfied in any model of the positive part).

Now suppose one has computed a successor state and a formula ϕ describing
the condition on the parameters. Because some unifications might have intro-
duced additional constraints on the parameters which are not contained in other
unifications, it is advantageous to apply the substitution corresponding to ϕ to
all rules in the state. This is not strictly needed, since the parameter values must
satisfy ϕ when the successor state is reached, but it might reduce the number of
parameters in the state. Suppose that m parameters remain in the state. They
are ordered in some sequence as Ci1 , . . . , Cim (trying to reuse already computed
states if possible). Now in the state, the parameter Cij is replaced by Cj . Let
the result be S ′. Then the state transition corresponds to the following rule:

S ′(Ci1 , . . . , Cim)← S(C1, . . . , Cn) ∧ r(Cn+1, . . . , Cn+k) ∧ ϕ.

Example 5. In the grandparent example (Example 1), the result of partial eval-
uation looks as follows:



14 Stefan Brass and Heike Stephan

S0.
S1(C2) ← S0 ∧mother(C1, C2) ∧ C1 = ann.
S1(C2) ← S0 ∧ father(C1, C2) ∧ C1 = ann.
S2(C3) ← S1(C1) ∧mother(C2, C3) ∧ C1 = C2.
S2(C3) ← S1(C1) ∧ father(C2, C3) ∧ C1 = C2.
answer(C1)← S2(C1).

Of course, one could optimize the initial state S0 away, and apply the equations
to reduce the number of parameters. For the planned translation to C++, this
is not important, but for a comparison with magic sets, one would do this. In
the grandparent example, the result of the magic set transformation is recursive.
There are solutions for this, but magic sets is far from using one EDB fact in
each rule application. If one compares the number of applicable rule instances
(which does not count the recursion overhead), magic sets needs 18 compared
to our 10. More arguments in derived predicates and a larger join is needed. ut

5 Termination of Partial Evaluation

In general, it is possible that partial evaluation does not terminate, i.e. it gener-
ates states with more and more parameters. While a concrete database state has
only a fixed number of data values, the result of partial evaluation must work
for a state of any size. There are two solutions to this problem:

– One can find syntactic conditions for programs where it is guaranteed that
partial evaluation terminates. An easy case are non-recursive programs, but
we strongly presume that this holds also for left-recursive programs.
It seems that right-recursive programs can also be allowed, if one replaces
instantiation and reduction on the last literal of a rule (if it is an IDB-literal)
by a single resolution step as in SLD-resolution (“last literal resolution”).

– While left- and right-recursion are sufficient for many interesting applica-
tions, and deserve an especially efficient implementation, the relation to
parsing shows that it cannot always work this way: Basically, what we have
constructed is a finite state machine which walks over the EDB facts. The
states have parameters, but the amount of information stored in them is
bounded. We need backtracking only when different facts can be applied in
a state, but this does not happen for parsing applications. Therefore, it is
obvious that there are cases where a stack is needed for computing a sin-
gle solution. A trick already used for SLDMagic [2] works here, too: For
a recursive call, which is neither left- nor right-recursive, one can set up a
subquery, and later treat the solution like an EDB-fact. Another possible
solution, more in the spirit of Earleys algorithm, is not to copy all reachable
rules from one state to the next, but to set up “global links” in such cases.

6 Conclusions

The proposed method (with partial evaluation) saves work at runtime in two
cases: First, long chains of calls between IDB-predicates are optimized away,



A Variant of Earley Deduction with Partial Evaluation 15

since in every step an EDB-fact is used. The number of leaf nodes in a bottom-
up derivation tree for an answer is the number of state transitions needed to
compute this answer. Second, if there are several rules called in the same state
and having a common prefix in the body, this prefix is processed in parallel.

Furthermore, it is easily visible which EDB-facts could be used in a given
state. Often, it is clear that there can be only one applicable fact, e.g. because
of key constraints or mutual exclusions. Then no preparation for backtracking
is needed, and it might be possible to reuse the storage space for the state, and
to avoid copying operations for the parameters.

Progress is reported at: http://dbs.informatik.uni-halle.de/Earley.

References

1. Angeles, R., Gutierrez: The expressive power of SPARQL. In: Sheth, A., et al.
(eds.) The 7th International Semantic Web Conference (ISWC 2008). pp. 114–129.
No. 5318 in LNCS, Springer (2008),
http://www.dcc.uchile.cl/cgutierr/papers/expPowSPARQL.pdf

2. Brass, S.: SLDMagic — the real magic (with applications to web queries). In:
Lloyd, W., et al. (eds.) First International Conference on Computational Logic
(CL’2000/DOOD’2000). pp. 1063–1077. No. 1861 in LNCS, Springer, Heidelberg,
Berlin (2000)

3. Brass, S.: Implementation alternatives for bottom-up evaluation. In: Hermenegildo,
M., Schaub, T. (eds.) Technical Communications of the 26th International Con-
ference on Logic Programming (ICLP’10). Leibniz International Proceedings in
Informatics (LIPIcs), vol. 7, pp. 44–53. Schloss Dagstuhl (2010),
http://drops.dagstuhl.de/opus/volltexte/2010/2582

4. Brass, S.: Order in datalog with applications to declarative output. In: Barceló,
P., Pichler, R. (eds.) Datalog in Academica and Industry, 2nd Int. Workshop,
Datalog 2.0. LNCS, vol. 7494, pp. 56–67. Springer-Verlag (2012),
http://users.informatik.uni-halle.de/~brass/order/

5. Bry, F., Furche, T., Ley, C., Marnette, B., Linse, B., Schaffert, S.: Datalog re-
launched: Simulation unification and value invention. In: de Moor, O., Gottlob,
G., Furche, T., Sellers, A. (eds.) Datalog Reloaded, First International Workshop,
Datalog 2010. pp. 321–350. No. 6702 in LNCS, Springer-Verlag (2011)

6. Cal̀ı, A., Gottlob, G., Lukasiewicz, T.: A general Datalog-based framework for
tractable query answering over ontologies. In: Proc. of the 28th ACM SIGMOD-
SIGACT-SIGART symposium on Principles of database systems (PODS’09). pp.
77–86. ACM (2009)

7. Pereira, F.C.N., Warren, D.H.D.: Parsing as deduction. In: Proceedings of the
21st Annual Meeting of the Association for Computational Linguistics (ACL). pp.
137–144 (1983), http://www.aclweb.org/anthology/P83-1021

8. Polleres, A.: From SPARQL to rules (and back). In: Proceedings of the Sixteenth
International World Wide Web Conference (WWW2007). pp. 787–796 (2007),
http://wwwconference.org/www2007/papers/paper435.pdf

9. Polleres, A.: How (well) do Datalog, SPARQL and RIF interplay? In: Barceló,
P., Pichler, R. (eds.) Datalog in Academica and Industry, 2nd Int. Workshop,
Datalog 2.0. pp. 27–30. No. 7494 in LNCS, Springer (2012)

10. Porter III, H.H.: Earley deduction (1986),
http://web.cecs.pdx.edu/~harry/earley/earley.pdf


