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Abstract. This paper contains a proposal how goal-directed query eval-
uation for the well-founded semantics WFS (and other negation seman-
tics) can be done based on elementary program transformations. It also
gives a new look at the author’s SLDMagic method, which has several
advantages over the standard magic set method (e.g., for tail recursions).

1 Introduction

The efficient evaluation of queries to logic programs with nonmonotic negation
remains an everlasting problem. Of course, big achievements have been made, but
at the same time problem size and complexity grows, so that any further progress
can increase the practical applicability of logic-based, declarative programming.

In this paper, we consider non-disjunctive Datalog, i.e. pure Prolog without
function symbols, but with unrestricted negation in the body. All rules must
be range-restricted (allowed), i.e. variables appearing in the head or a negative
body literal must also appear in a positive body literal.

We are mainly interested in the well-founded semantics WFS, but since our
method is based on elementary program transformations, it can also be used
as a pre-computation step for other semantics. Of course, it is well-known that
because of odd loops over negation, for the stable model semantics it does not
suffice to follow only the predicate calls from a given goal. But see, e.g. [2, 11].

The magic set transformation [1] is the best known method for goal-directed
query evaluation in deductive databases. However, it has a number of problems:

– For tail recursions, magic sets are significantly slower than SLD-resolution
(e.g. a quadratic number of facts derived compared with an SLD-tree con-
taining only a linear number of nodes/literals). This problem applies to all
methods which store literals implicitly proven in the SLD-tree (“lemmas”).

– It sometimes transforms non-recursive programs into recursive ones. In the
same way, a stratified program can be transformed into a non-stratified one.

– It can only pass values for arguments to called predicates, not more general
conditions. Furthermore, optimizations based on the evaluation sequence of
called literals are restricted to the bodies of single rules.

– Quite often, variable bindings are projected away in order to call a predicate,
and are later recovered by a costly join when the predicate succeeded.
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While some of these problems have been solved with specific optimizations, our
“SLDMagic”-method [3] solved all these problems by simulating SLD-resolution
bottom-up.

Of course, sometimes magic sets are better: If the same literal is called repeat-
edly in different contexts, magic sets proves it only once, whereas SLD resolution
proves it again each time. Therefore, SLDMagic had the possibility to mark pos-
itive body literals with call(. . .), in which case they were proven separately in
a different SLD-tree. I.e. we assume that the programmer or an automatic op-
timizer marks some of the positive body literals of the rules with the special
keyword “call”. In this way, the best of both methods can be combined. Fur-
thermore, when we want to compute the structure of occurring goals already
at “compile-time” (when the facts/relations for database predicates are not yet
known), we needed to introduce at least one “call” in recursions which are not
tail-recursions. Since call-literals are proven in a subproof (much like negation as
failure), the length of the occurring goals in the SLD-tree became bounded, and
we could encode entire goals as single facts (where the arguments represented
the data values only known at “run time”).

However, SLDMagic could not handle negation. It is the purpose of this
paper to remedy this problem, and to give a different look at the method, which
opens perspectives for further improvements. Whereas earlier, we described the
method by means of partial evaluation of a meta-interpreter, we now combine it
with our work on elementary program transformations.

Together with Jürgen Dix, we investigated ways to characterize nonmono-
tonic semantics of (disjunctive) logic programs by means of elementary program
transformations [4, 5]. We used the notion of conditional facts, introduced by
Bry [7] and Dung/Kanchansut [10]. A conditional fact is a ground rule with
only negative body literals. If a nonmonotonic semantics permits certain simple
transformations, in particular the “Generalized Principle of Partial Evaluation”
[9, 12] (which is simply unfolding for non-disjunctive programs), and the elim-
ination of tautologies, any (ground) program can be equivalently transformed
into a set of conditional facts. If we also permit the evaluation of negative body
literals in obvious cases, we can compute a unique normal form of the program,
called the “residual program”. From this, one can directly read the well-founded
model: If A is given as (unconditional) fact, it is true, if there is no rule with A in
the head, it is false, and in all other cases, it is undefined. The residual program
is also equivalent to the original program under the stable model semantics.

Because the residual program can grow to exponential size in rare cases, we
restricted unfolding and “delayed” also positive body literals until their truth
value became obvious (as for the negative body literals before) [6]. Combined
with magic sets, this resulted in a competitive evaluation procedure for WFS. But
there is further optimization potential if we use ideas from SLDMagic. It is also
nice if the framework is based entirely on elementary program transformations.

This paper contains only some preliminary ideas (it is a “short paper” about
work in progress). A more complete version is being prepared. Progress will be
reported at: http://www.informatik.uni-halle.de/~brass/negeval/.
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There are some obvious similarities to SLG-resolution [8, 13]. However, when
a tail-recursive predicate is tabled in order to ensure termination, SLG-resolution
has the same problem as magic sets. Furthermore, our approach is explained
based only on rules, whereas SLG-resolution needs more complex data structures.
But much more work has been done on the efficient implementation of SLG-
resolution in the XSB system, whereas our approach is still at the beginning.

2 Goal-Directed Query Evaluation Based on Program
Transformations

We assume that the query is given as a rule answer(X1, . . . ,Xm)← B1∧· · ·∧Bn,
where the special predicate answer does not otherwise appear in the program.
The body of this query (rule) is the classical query. In this way, we do not have
to track substitutions for the variables from the query while the proof proceeds.
This is automatically done if we compute the instances of the special predicate
answer which are derivable from the program plus this rule.

The method generates rules which must be considered (starting with this
query rule). The rule body is a goal, as would appear in an SLD-tree. The rule
head is the literal which has to be proven. First this is answer(X1, . . . ,Xm), but
as the proof progresses, the answer variables Xi are instantiated. Furthermore,
negative body literals and call-literals cause subqueries to appear.

The occurring rules can be seen as being generated from the given program
(extended by the query rule) using elementary transformations. However, in
contrast to our earlier work, there are two important differences:

– The occurring rules are often not ground. In the theoretical part of our work
on negation semantics, we started with the full ground instantiation of the
given program. Of course, if we now want to use program transformations
as a practical means of computation, we must work with non-ground rules.
They can be understood as a compact representation of the set of their
ground instances. Most modern semantics including WFS do not distinguish
between a rule with variables and its set of ground instances.

– For goal-directed query evaluation, we do not want to consider the entire
program. The “relevance” property of a nonmonotonic semantics [9] ensures
that it is sufficient to look only at ground literals which are reachable from the
query via the call-graph. WFS has the relevance property, the stable model
semantics does not, but see [11]. Note that relevance is applied repeatedly
during the evaluation. When we found that a rule instance is not applicable,
it vanishes from the call graph and might remove large parts of the program.

Of course, we do not first take the entire program, and then delete non-relevant
parts. Instead, we have a “working set” of rules we consider. We apply transfor-
mations on this set until a normal form is reached, i.e. until no further trans-
formation is applicable. We only have to ensure that as long as there still is a
relevant rule instance in the given program, it is considered, i.e. a transformation
remains applicable.
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In order to improve termination, we need to avoid the generation of rules
which differ from an already generated rule only by a renaming of variables.

Definition 1 (Variable Normalization). Let an infinite sequence V1,V2, . . .
of variables be given. A rule A← B1 ∧ · · · ∧ Bn is variable-normalized iff it only
contains variables from the set {V1,V2, . . .} and for each occurrence of Vi, all
variables V1, . . . ,Vi−1 occur to the left. The function std renames the variables
of a rule to V1,V2, . . . in the order of occurrence, i.e. produces a variant of the
given rule which is variable-normalized.

Our method works with a set of rules which is initialized with the query. We
write R for the current rule set to distinguish it from the given logic program P.
We use a second set D of rules for the “deleted” rules. In this way, both sets
R and D can only grow monotonically during the computation, which improves
termination: It is not possible that a rule is added, deleted, and then added again.
However, only the non-deleted rules in R really participate in the computation.

Definition 2 (Computation State). A computation state is a pair (R,D) of
sets of variable-normalized rules such that D ⊆ R. A rule in R − D is called
active, a rule in D is called deleted.

Let the query Q be answer(X1, . . . ,Xm) ← B1 ∧ · · · ∧ Bn. The initial compu-
tation state is (R0,D0) with R0 := {std(Q)} and D0 := ∅.

2.1 Positive Body Literals

In the following, we use the term “positive body literal” for a body literal without
negation and without “call”. Literals with “call” are “call-literals” (they are never
negated because negation already implies a subproof like “call” does).

Positive body literals are solved with unfolding (an SLD resolution step). If a
rule contains several positive body literals, a selection function restricts unfold-
ing to one of these. We require that a recursive positive body literal can only be
selected last (when there are no other positive body literals). This implies that
there can be only one recursive positive body literal, but this is no restriction:
Other such literals can be made call-literals. The purpose of this condition is to
make the length of the occurring rules bounded (to ensure termination). Neg-
ative body literals which are added during the tail-recursion are no problem if
we eliminate duplicates: They are ground, so the total number is still bounded
(although the bound depends on the data, whereas the bound for the positive
body literals depends only on the program rules). Non-ground call-literals which
are added during the repeated unfolding of a tail-recursive rule cannot be per-
mitted. But again, this is no restriction because we can make the tail-recursive
literal a call-literal, too (at the cost of losing the tail-recursion optimization).

The selection function only restricts the unfolding of positive body literals.
Work on negative body literals and call-literals is not restricted, although an
implementation is free to decide in each step which of several applicable trans-
formations it uses. The reason why we cannot prescribe a single “active” literal
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in each rule is that because of rules like p ← ¬p, the evaluation of a negative
body literal (in this case, ¬p) can “block”. But there might be another body
literal which would fail (this is similar to the “fairness” requirement of SLD
resolution). The same can happen with call-literals.

The computation steps are relations between computation states. An imple-
mentation can follow any path until no further transformation is possible.

Definition 3 (Unfolding). Let A← B1∧· · ·∧Bn be a rule in R−D, where Bi is
a positive literal selected by the selection function. Let further A′ ← B′1∧· · ·∧B′m
be a variant of a rule in P with fresh variables (i.e. the variables renamed such
that they are disjoint from those occurring in A ← B1 ∧ · · · ∧ Bn), such that Bi

and A′ are unifiable with most general unifier θ. Let

R′ := R ∪ {std(θ(A← B1 ∧ · · · ∧ Bi−1 ∧ B′1 ∧ · · · ∧ B′m ∧ Bi+1 ∧ · · · ∧ Bn))}

If R′ 6= R, we write (R,D) 7→U (R′,D).

Note that because R is a set, unfolding with a rule like p(X)← p(X) does not
result in a new rule and therefore cannot lead to non-termination. We need to
assume that the negation semantics permits the deletion of tautologies.

Definition 4 (Deletion After Complete Unfolding). Let A← B1∧· · ·∧Bn

be a rule in R − D, where Bi is a positive literal selected by the selection func-
tion. Let all rules which can be generated from the given rule by unfolding be
already contained in R, and let D′ := D ∪ {A ← B1 ∧ · · · ∧ Bn}. If D′ 6= D, the
transformation step (R,D) 7→D (R,D′) is permitted.

If there is only a single matching rule, or one immediately unfolds with all
matching rules (e.g. in case of set-oriented evaluation with a database predicate),
one can “delete” the rule with the unfolded call immediately. But by separating
the two steps, other evaluation orders are possible, e.g. doing a depth-first search.

2.2 Negative Body Literals

Definition 5 (Complement Call). Let A← B1 ∧ · · · ∧Bn be a rule in R−D,
and Bi be a negative ground literal. Let A′ be the corresponding positive literal,
i.e. Bi = ¬A′. Let R′ := R ∪ {A′ ← A′}. If R′ 6= R, we write (R,D) 7→C (R′,D).

Of course, A′ ← A′ is a tautology. But it is important because it sets up a
new query. So when we want to work on a negative literal, we try to prove the
corresponding positive literal. This is the same as SLDNF-resolution would do.

The next transformation handles the case where a negative literal is proven
by failure to prove the corresponding positive literal.

Definition 6 (Positive Reduction). Let A← B1∧· · ·∧Bn be a rule in R−D,
where Bi is a negative ground literal. Let A′ be the corresponding positive literal,
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i.e. Bi = ¬A′. If R contains A′ ← A′, but R− D does not contain any rule with
head A′, then (R,D) 7→P (R′,D′) with

R′ := R ∪ {A← B1 ∧ · · · ∧ Bi−1 ∧ Bi+1 ∧ · · · ∧ Bn}
D′ := D ∪ {A← B1 ∧ · · · ∧ Bn}.

(The new rule is variable-normalized since Bi was ground.)

The next transformation handles the case that the selected negative body
literal is obviously false, because the corresponding positive literal was proven:

Definition 7 (Negative Reduction). Let A← B1∧· · ·∧Bn be a rule in R−D,
where Bi is a negative ground literal. Let A′ be the corresponding positive literal,
i.e. Bi = ¬A′. If R contains A′ (as a rule with empty body, i.e. a fact), then
(R,D) 7→N (R,D′) with D′ := D ∪ {A← B1 ∧ · · · ∧ Bn}.

2.3 Call Literals

The specially marked call-literals are semantically positive literals, but they are
not solved by unfolding. Instead, a subproof is set up (as for negative literals):

Definition 8 (Start of Subproof). Let A← B1 ∧ · · · ∧Bn be a rule in R−D,
and the literal Bi be of the form call(A′). Let R′ := R∪ {A′ ← A′}. If R′ 6= R, we
write (R,D) 7→S (R′,D).

The following transformation is similar to positive reduction combined with a
very special case of unfolding:

Definition 9 (Return). Let A← B1∧· · ·∧Bn be a rule in R−D, and the literal
Bi be of the form call(A′). Suppose further that there is a rule A′′ ← B′1∧· · ·∧B′m
where all body literals are negative (i.e. a conditional fact), such that A′ and A′′

are unifiable with most general unifier θ. Let

R′ := R ∪ {std(θ(A← B1 ∧ · · · ∧ Bi−1 ∧ B′1 ∧ · · · ∧ B′m ∧ Bi+1 ∧ · · · ∧ Bn))}

If R′ 6= R, we write (R,D) 7→R (R′,D).

A call is complete when a kind of small fixpoint is reached in the larger set of
rules constructed. Negative literals can be evaluated later, but for positive body
literals and call-literals, all possible derivations must be done:

Definition 10 (End of Subproof). Let R0 ⊆ R1 ⊆ R be rule sets, such that

– Each rule in R0 has a call-literal as selected literal,
– the transformations 7→U (Unfolding), 7→S (Start of Subproof), 7→R (Return)

are not applicable in R1 (i.e. everything derivable is already contained in R1).

If R0 6⊆ D, the “End of Subproof” transformation is applicable:

(R,D) 7→E (R,D ∪ R0).
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This transformation is relatively complicated because it includes a kind of loop
detection. It must be able to handle cases like:

p(X)← call(q(X)).
q(X)← call(p(X)).

An alternative for the “return” operation is not to unfold, but just ground the
call if it matches the head of an “extended conditional fact”, which is a ground
rule with only negative and call-literals in the body. The call-literal would be
removed only if it matches a fact (without condition). This operation “success”
of [6] (and the converse “failure”) help to avoid a possible exponential blowup.
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