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Abstract. The Push Method for Bottom-Up Evaluation in deductive
databases was previously defined as a translation from Datalog to C++.
Performance tests on some benchmarks from the OpenRuleBench collec-
tion gave very encouraging results. However, most of the systems used
for comparison compile the query into code of an abstract machine and
then use an emulator for this code. Therefore, runtimes cannot be directly
compared. In this paper, we propose an abstract machine for bottom-up
evaluation of Datalog based on the Push Method. This also helps to clar-
ify some optimizations we previously expected from the C++ compiler.
Since the interpreted code of the abstract machine must do something
useful “standalone”, we also consider declarative output with templates.

1 Introduction

The database language SQL is a very successful declarative language, but usually
only parts of applications are developed in SQL, the rest is written in a standard
language like Java or PHP. The purpose of deductive databases is to increase
the declaratively specified part of an application (ideally to 100% for many
applications). Declarative languages have important advantages:

– Programs are compact (shorter than equivalent programs in classical lan-
guages), thus program development is faster.

– The language is relatively simple, therefore it can be used also by non-experts
(e.g., not everybody using SQL is a professional programmer).

– The language has a mathematical precise semantics (usually based on logic),
which makes programs easier to verify.

– The language is not tied to a specific execution model, thus it is easier
to execute on new computing platforms, such as multicore processors or
massively parallel clouds.

One reason for the current revival of Datalog is that it is used also for applica-
tions which are not traditional database applications, such as static analysis of
program code [14], cloud computing [10,16] and semantic web applications [7,13].
The commercial deductive database system LogicBlox [1] is successful probably
because it offers many functions in an integrated system with only one language.
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Heike Stephan and the author have developed the “Push” method for bottom-
up evaluation of Datalog [3,5,6]. It applies the rules from body to head (right
to left) as any form of bottom-up evaluation, but it immediately “pushes” a
derived fact to other rules with matching body literals. In this way, the derived
facts often do not have to be materialized, and temporary storage can be saved.
It can be seen as an extreme form of seminaive evaluation that dates back to
the PhD thesis of Heribert Schütz [15], see also [17]. However, we use partial
evaluation and treat database predicates specially, and did performance evalu-
ations with very promising results. In the last time, “pushing” tuples through
relational algebra expressions has also become an attractive technique for stan-
dard databases [12]. It seems well suited for modern hardware because it keeps
the actively used set of data small.

The Push Method was defined as a translation from Datalog to C++. Perfor-
mance tests on some benchmarks from the OpenRuleBench collection [11] gave
encouraging results. However, most of the systems used for comparison (XSB,
YAP, DLV, HSQLDB) compile the query into code of an abstract machine (an
extension of the WAM) and then use an emulator for this virtual machine. Since
we compiled to native code, runtimes were not directly comparable. Experiences
with compiling Prolog to machine code [8] suggest that this gives approximately
a factor of 3 (the range in that paper was between 1.3 and 5.6). In a first test
of an early prototype, our abstract machine was only 1.5 times worse than the
compiler-based approach. This strengthens our previous performance claims.

Our performance comparison also did not contain the runtime of the C++
compiler (because the compilation result can be executed many times on differ-
ent database states). For large benchmark programs such as the wine ontology,
the compilation runtime is quite substantial. In general, during program devel-
opment, when the program changes often and is executed only on small test
data, it is preferable to reduce the compilation overhead.

Another advantage of the program execution with an abstract machine is
that the user does not need to install a C++ compiler. In this way, also the
interfacing with prossibly different compilers is avoided.

Furthermore, in the last version of the Push Method with procedures [6],
many optimizations were delegated to the C++ compiler. While this makes the
method easy to understand and produces quite readable code, it reduces the
understanding of the lower-level execution which contributes to the good perfor-
mance results. Going down to the level of an abstract machine can help here.

The abstract machine could also be a step towards a direct translation to
machine code based on the LLVM compiler infrastructure (in [12], performance
improvements were noticed by compilation to LLVM code instead of C++).

So far we were concerned mainly with the computation of derived data (query
results). We expected that the generated C++ program can be linked with a
manually created main program that uses the computed data. If one uses an
emulator for an abstract machine, however, it must be sufficiently self-contained
to do something useful with the computed data. In this paper, we consider
declarative output based on templates that we introduced in [4].
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2 Input Language: An Example

The input language is basic Datalog, i.e. pure Prolog (Horn clauses) with only
constants and variables, but no function symbols. Obviously, the language should
be extended later (e.g., by adding negation, aggregation and arithmetic compu-
tations). But for the first performance tests to check the approach, this very basic
language is sufficient. As an example, consider the well-known transitive closure
program, which is one benchmark from the OpenRuleBench collection [11]:

tc(X, Y) :- par(X, Y).

tc(X, Z) :- par(X, Y), tc(Y, Z).

The query is tc(X,Y), i.e. all derivable facts should be computed. Other bench-
marks check goal-directed computation, and we have also good results for the
query tc(1,X) by applying our SLDMagic transformation [2], but the focus in
this paper is on pure bottom-up evaluation.

The predicate par is a database predicate. The benchmark contains files with
e.g. 50 000 facts for this “parent” relation, such as par(1,2). In our approach
such predicates must be declared with argument types:

db par(int, int) facts ’par.dl’.

For our compiler-based approach, we have implemented a data loader for Datalog
facts. We plan to develop additional loaders for different file formats (e.g., CSV,
JSON, XML). The input to the program is made available by reading the data
files into main memory relations for the database predicates. Also command line
arguments or the data of an HTTP request could be represented in this form.

We use main-memory relations matching the required access patterns in the
rules. Therefore, in the example, the edge facts are stored two times:

– In a list par_ff that permits to iterate over all facts for the first rule (ff is
the corresponding binding pattern: “free, free”).

– In a multi-map (e.g. a hash table) par_fb for the literal par(X, Y) in the
second rule. This data structure permits to iterate over all X-values given a
value for Y (binding pattern “free, bound”). The Push Method will activate
the second rule when a new fact for the body literal tc(Y, Z) is found,
therefore we know a value for Y when we access par here.

This corresponds to a relation in a classical database with an index over the
second column (however, the index usually contains ROWIDs, which are pointers
into the main heap file for the relation, in our case it directly contains the data).

Output is defined by a series of “templates”. The idea is that one first com-
putes the necessary data by means of Datalog rules and then instantiates tem-
plates with parameters to actually generate the output. One can also understand
the templates as special procedures that contain only printing commands, calls
to other templates, and accesses to data from the computed “answer predicates”.

A template definition starts with the name of the template and an optional
parameter list. This “template head” looks like a Prolog/Datalog literal with
only variables as arguments. It is followed by the “template body”, which is
written in “[...]”. This is a list consisting of
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– Text pieces written in ’...’ (string constants),
– parameters of the template,
– calls to other templates possibly with values for the parameters in (...),
– calls to other templates with an iterator query in the following form

template(Args)<Sort>+Sep :- Lit.

This means that template(Args) is called once for each answer to the Dat-
alog literal Lit. The literal can contain the template parameters, new vari-
ables, and constants. The variables can be used as arguments to the tem-
plate call (in Args), and in the specification of the sort order of the template
calls (Sort). This is a comma-separated list of sort criteria (similar to the
ORDER BY clause of SQL). One can also optionally specify a separator string
Sep that is inserted between each two instantiations of the template.

In the example, output is specified as follows (generation starts from “main”):

main: [

html_begin(’All Derivable tc-Facts’)

ul_begin

result_item(X, Y)<X, Y> :- tc(X, Y).

ul_end

html_end

].

result_item(X, Y): [

li_begin

X ’, ’ Y

li_end

].

It contains calls to six templates of a small HTML library (see below). The third
call contains the loop over the answers and produces a sorted list.

There is also a “verbatim mode”, that starts and ends with “|”. In this mode,
all characters except “|” and “[” (and a newline immediately after the opening
“|”) are copied literally to output. With “[” one can nest the interpreted “code
mode” within the verbatim mode (e.g., for inserting a parameter value).

html_begin(Title): [|

<html>

<head>

<title>[Title]</title>

</head>

<body>

<h1>[Title]</h1>

|].

html_end: [|

</body>

</html>

|].

ul_begin: [|

<ul>

|].

ul_end: [|

</ul>

|].

li_begin: [|

<li>|].

li_end: [|</li>

|].
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3 The Push Method: Explanation with Procedures

The idea of the Push Method is that the producer of derived facts has the
control and actively “pushes” these facts to the consumer (rules in which the
produced facts match body literals). In [3], we contrasted it with the “Pull”
method where the consumer fetches the next fact when needed. This open-next-
close interface of the query plan operators is also known as “Vulcano-style” [9]
and is very common in relational database systems. However, in the last time,
push methods have also been used successfully in standard databases [12].

In [3,5], we defined the Push Method for bottom-up evaluation of Datalog
relatively low-level, managed our own stack and used C++ basically as a portable
assembler. Then it turned out that a high-level version with procedures worked
more or less equally fast for several tested benchmarks [6]. Current compilers are
able to do many of the optimizations that were explicit in the low-level version.
The version with procedures is actually very similar to an approach proposed
by Heribert Schütz in his PhD thesis [15]. However, at that time, the results of
first performance tests were not very encouraging. The approaches differ also in
the details, for instance, we treat the database predicates specially.

The idea of the method is quite simple: One creates a procedure for each
derived predicate p that is called whenever a fact p(c1, . . . , cn) is derived. The
task of the procedure call is to make sure that all rule instances with p(c1, . . . , cn)
in the body are eventually applied. This is simple for rules that contain only a
single body literal with a derived predicate (“linear rules”). Since the complete
relations for the other (database) body literals are known, the necessary joins,
selections and projections can be immediately done in order to perform the
procedure calls corresponding to the head of the rule. For instance, the procedure
for the “transitive closure” program from Section 2, looks as follows:

void tc(int c1, int c2) {

// Is this fact a duplicate?

if(!tc_bb.insert(c1, c2)) // Set data structure

return;

// This is the query predicate, store answer:

tc_ff.insert(c1, c2); // List data structure

// Rule tc(X, Z) :- par(X, Y), tc(Y, Z):

int Y = c1;

int Z = c2;

cur_1_1_c lit_1(&par_fb); // iterator over multimap

lit_1.open(Y);

while(lit_1.fetch()) { // Loop over all X with par(X,Y)

int X = lit_1.out_1(); // First&only output column

tc(X, Z);

}

}
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cur_1_1_c is a class for cursors/iterators over the result of a lookup in multimaps
from rows with one column to rows with one column, generated from a template
class for general multimap cursors.

The procedure for a predicate p contains one code block for each rule that
contains the predicate p in the body (in this case, it is only one rule).

For “complex rules” that have more than one body literal with a derived
predicate, temporary storage of derived facts seems unavoidable. While for spe-
cial cases, optimizations are possible, in general one creates a temporary table
for each body literal with a derived fact. When a rule is activated for a new
fact for a specific body literal, one applies all rule instances with this fact and
the previously derived facts stored in the temporary tables for the other body
literals. As explained in [15], this can be seen as an extreme form of seminaive
evaluation, where the “delta” consists of a single fact.

Finally, a procedure “start” applies all rules without derived predicates in
the body. Note that the database predicates already have been loaded:

void start() {

// Rule tc(X, Y) :- par(X, Y):

cur_2_c lit_1(&par_ff); // iterator over par-list

lit_1.open();

while(lit_1.fetch()) { // Loop over (X,Y) with par(X,Y)

int X = lit_1.col_1(); // First column of current row

int Y = lit_1.col_2(); // Second column

tc(X, Y);

}

lit_1.close();

}

4 Memory Areas of the Bottom-Up Abstract Machine

Now we present an abstract machine that has instructions for the building blocks
of the previous generated C++ code. Let us start with memory.

4.1 String Memory

Names of relations, output texts, and string constants in the given rules must
be stored. All arguments of machine instructions are integers, therefore string
constants are mapped to unique integers. When facts for the database predi-
cates are loaded, these mappings are used and extended. One can define several
domains, and assign each column of a database predicate to one domain. This
leads to small, sequential numbers for each domain.

There is a different map data structure for each string domain. For large
domains, we use an efficient implementation of a radix tree, for small domains, a
simple fixed-size hash table. Of course, the inverse mapping (from integers back
to strings) must also be supported, so that query results can be printed.

There is also a system string table for texts to be printed, where uniqueness
is not important. This supports only the mapping from numbers to strings.
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4.2 Relations

As explained above, relations are used for storing extensions of database pred-
icates. Currently, all columns have type int, strings are mapped to integers as
explained above. Later, we will have to add float or double values. Also 8-bit
and 16-bit integers could lead to more compact data. But in this first version,
all data are standard int values.

Each relation data structure supports a specific binding pattern (bound/free,
i.e. input/output arguments). For instance, lists correspond to “all arguments
free” binding pattern and support only a “full table scan”. Sets correspond to
the “all arguments bound” binding pattern and support only an element test.
Multimaps have bound and free arguments: One can loop over values for the
free arguments given values for the bound arguments (we do not have keys yet,
otherwise we might know that there is only a single tuple for given values of the
input arguments).

We assume that the user specifies for which derived predicates duplicates
should be detected (similar to requesting tabling for a predicate, e.g. in XSB).
This must be done at least once in each recursive cycle in order to guarantee
termination. There is a set data structure for each selected predicate.

Finally, the query predicate or the predicates used in output templates must
also be stored in relations. While for a classical query predicate, a list data
structure suffices, output templates can use a specific binding pattern, and might
also require sorted output of the selected rows. Our plan is to use tree data
structures for these output predicates, so that the tuples are already stored in
the order in which they are required. This might also be useful for doing merge
joins. Currently we only have index joins.

Note that the same predicate with the same extension can be stored in dif-
ferent relation data structures, if there are body literals that require different
access structures.

Relations are identified in the program by relation IDs (small numbers).

4.3 Load Specifications

We have implemented a loader for data files formatted as Datalog facts. The
loader needs the file names and the set of predicates to be expected in each
file. For predicates, the list of argument types is needed, and the domain (string
table) to be used if the argument is of type string.

Furthermore, each predicate is linked to a set of relation data structures, in
which the loaded tuples are inserted. For each such relation, an extended binding
pattern is specified, which defines the mapping of the loaded data tuple to an
entry in the relation. There are five options for each argument i, most of which
have an integer parameter value j:

– Store argument i of the loaded fact in input column j of the relation data
structure (this corresponds to the “bound” case).

– Store argument i of the loaded fact in output column j of the relation data
structure (this corresponds to the “free” case”).
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– Check that argument i of the loaded fact has value j. Otherwise, the fact is
not stored. This corresponds to the case that the body literal to be supported
by the relation contains constant j (or a string mapped to j). Thus, it is
possible to do the selection already when the data is loaded. For instance,
in the DBLP benchmark [11], this is a very useful feature.

– Check that argument i of the loaded fact has the same value as argument j.
Otherwise, the fact is not stored. This corresponds to multiple occurrences
of the same variable in a body literal.

– Do nothing with argument i. This corresponds to an anonymous variable.

In the transitive closure example, loaded par-facts are stored

– once in a list par_ff (lists have only output columns: argument 1 is stored
in output column 1, argument 2 stored in output column 2), and

– once in a multimap par_fb (with argument 1 stored in output column 1,
and argument 2 stored in input column 1).

4.4 Variables/Registers

Data values during the computation are stored in variables (registers of the
abstract machine). Each variable can store a single int value. Also arguments
of procedures are passed in these variables. Variables are identified by a single
(quite small) integer value. In the transitive closure example, only two variables
are used (for the two arguments of the tc procedure). A program must define
how many variables it is going to use.

4.5 Cursors

Cursors are data structures used for iterating over the result of a relation access.
If the relation is a list, the cursor supports a loop over all elements of the list.
If the relation is a multimap, the cursor supports to loop over the result values
for a given tuple of input values.

4.6 Stack

Values of type int can be pushed on the stack of the abstract machine. The
stack is used for saving the following data:

– Return addresses for procedure calls. In this case, the int value is an address
in the code area (the next instruction to be executed after the procedure call).

– Saved values of variables: For recursive procedure calls, it might be necessary
to save the value of a variable, and restore the old value later from the stack.

– Saved positions of cursors: For recursive procedure calls, it might be neces-
sary to save the current state of a cursor on the stack, and restore the cursor
after the procedure call to that state. This is not always a single integer (the
position in the list), e.g. it might also include the number of elements in the
list: If the cursor is used for looping over a set of derived facts for a complex
rule, it is required that insertions do not change the set of tuples over which
the cursor runs.
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4.7 Code (Machine Instructions)

Of course, the abstract machine also contains a storage area for machine instruc-
tions. In the current prototype, this is an array of type unsigned char. We try
to keep the code compact, therefore the instruction length is not a multiple of
32-bit integers. Each instruction has an 8-bit opcode, and then arguments as
needed for the instruction. In the current (very first, experimental) prototype,
the longest instruction contains an 8-bit cursor ID, a 16-bit address, and an 8-bit
variable number. It is clear that this will not be sufficient for larger programs.
However, in the interest of compact code (which is more cache-friendly), there
probably will be short and long forms of instructions.

4.8 Instruction Pointer

As any CPU, the abstract machine has an instruction pointer (program counter)
that contains the address of the next instruction to execute.

4.9 Error Indicator

There is a boolean variable (a flag) that is set when an error is detected, e.g. a
stack overflow or a failed insertion into a relation due to insufficient memory. In
this case, program execution terminates at the next instruction.

5 Instructions of the Bottom-Up Abstract Machine

5.1 NULL

There is a NULL (no op) instruction that does nothing. It could be used to fill
space in the code area when alignment of arguments, e.g. on 32-bit boundaries,
becomes interesting.

5.2 HALT

The HALT instruction finishes program execution. It is written at the end of the
main program (procedure start).

5.3 Procedure Calls: CALL and RETURN

The instruction CALL has an argument for the address of the called procedure. It
pushes the instruction pointer on the stack (which has already been incremented
to point to the next instruction after the CALL), and jumps to the given address
(by setting the instruction pointer).

RETURN sets the instruction pointer to the address on top of the stack (and
pops that address).
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5.4 Duplicate Check

The DUPCHECK instruction has two arguments: A set ID s and a variable num-
ber v. The set data structure has a method for getting the number of columns n.
Then the tuple stored in variables v, v + 1, . . . , v + n − 1 is inserted into the
set. If this insertion fails, because the tuple is already contained in the set, the
machine implicitly performs a RETURN, i.e. jumps to the topmost address on the
stack. We try to keep the code compact, so a single instruction corresponds to
the following code from the tc-procedure shown above:

// Is this fact a duplicate?

if(!tc_bb.insert(c1, c2)) // Set data structure

return;

The larger the granularity of the single instructions, the smaller is the overhead
for interpretation.

We also added special instructions for small numbers of columns (currently
1 and 2). This permits to have the constants compiled into the code and use a
series of instructions instead of a loop (“loop unrolling”).

Requiring that the argument values are stored in consecutive variables means
that it might be necessary to copy values from variables at non-consecutive
numbers to a fresh set of variables. The compiler can of course try to pass
arguments to predicate procedures in consecutive variables, but this is not always
possible without copying values (which we want to avoid). Therefore, we will
add a DUPCHECK instruction with a list of variable numbers (corresponding to
the number of columns in the set). While the copying to an internal array must
still be done (to construct the tuple for the insert operation), the code is more
compact than with a series of copy operations. Furthermore, the intention of the
instruction in the assembler program is clearer.

If we later do inlining of procedures, a duplicate check instruction will be
needed that does a jump instead of the procedure return.

5.5 Saving and Restoring Values of Variables

Arguments are passed to procedures in variables (which are global storage loca-
tions), not on the stack. With the methods explained in [5], one can save a lot
of copying in this way. However, sometimes one has to choose between copying
or generating several procedures for the same predicate with different variables
for the arguments. We did a partial evaluation that also handles the case that
sometimes constants are known for arguments. Compilers that do inlining of
procedure calls and copy propagation also might generate code for the same
procedure with arguments in different storage locations.

If a procedure uses a variable that might contain a value that is still needed
by the caller (or possibly an indirect caller), the variable must be saved and
later restored. Variables can be assigned in such a way that this happens only
in recursive procedures. Because not all arguments necessarily change from one
recursive call to the next, it is better to save only what is actually needed than
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to allocate everything on the stack. E.g., in the transitive closure example, the
second argument of tc is not changed from the body to the head. It might be
helpful to write the recursive rule as

tc(X_new, Y) :- par(X_new, X), tc(X, Y).

Therefore, no copying is done for the variable corresponding to the second ar-
gument (in this example, the tail recursion optimization of standard Prolog
implementations would basically to the same, although the rule is applied in the
opposite direction).

The instruction SAVE_VAR pushes the value of a variable on the stack, and the
instruction RESTORE_VAR pops it again into the variable. Both have a variable
number as argument.

5.6 Saving and Restoring Cursor States

In the same way, the current state of a cursor must be saved before it is opened if
it might already be open in a procedure invocation somewhere up in the call tree.
It seemed better to use a global cursor and push only its position on the stack,
because cursors can be quite big objects that contain parts that do not depend
on the current position (the link to the relation) and parts that are redundant
for speeding up access (derived from the current position).

We use different instructions for different cursor types. E.g. SAVE_MMAP_1_1
calls the push-method of a cursor class for multimaps from one column to one col-
umn (remember that we treat common cases specially). We try to avoid virtual
methods because of their overhead. However, there will also be a SAVE_CURSOR

instruction that looks up the type of the cursor at runtime and does the corre-
sponding type cast. In any case, the current position of the cursor is pushed on
the stack (plus other state-dependent data, like the current length of the list).
The corresponding instruction RESTORE_* restores the cursor to the previously
saved state. All these instructions have a single parameter for the cursor ID.

5.7 Instructions for Loops Over Cursors

A very common operation is to loop over tuples of a relation with a cursor.
E.g., for the first rule tc(X,Y) :- par(X,Y) in the example, we must loop over
all tuples in the par_ff relation. Such loops have a LOOP_* instruction at the
beginning, and an END_LOOP_* instruction at the end. We use again specific in-
structions for common cases, so in the example the instructions are LOOP_LIST_2
and END_LOOP_LIST_2 (the relation is a list of tuples with two columns). These
instructions have two parameters: An ID of the cursor (which is already linked
to the relation) and a code address.

The instruction at the start of the loop opens the cursor and fetches the first
tuple. If there is none, it closes the cursor, and jumps to the address, which
should be the instruction just after the loop.

The instruction at the end of the loop fetches the next tuple. If this is suc-
cessful, it jumps to the given address, which should be the first instruction of
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the loop body. If there is no further tuple, the instruction closes the cursor, and
control passes to the next instruction (after the loop). We try to do the entire
loop control in one instruction to reduce the interpretation overhead.

The loop opening instructions for multimaps have an additional parameter
for the input value (see the discussion about input tuples in Subsection 5.4).

As a possible alternative, we think about a stack of pointers to cursors. The
loop instructions would then use implicitly always the top cursor.

5.8 Instructions for Accessing Values from Cursors

In the body of a loop controlled by a cursor, one obviously needs to get data
values of the current tuple. This is done by means of GET_* instructions. There
are again specialized instructions for common cases, e.g. GET_LIST_2_COL_1 to
access the value of the first column of a cursor over a list with two columns.
This instruction has two parameters: The ID of the cursor and the number of
the variable into which the value should be stored.

There is also a general GET instruction that can be applied to any type of
cursor and has an additional parameter for the column number.

5.9 Conditions, Jumps

The body literal that is matched with the derived literal of the procedure invo-
cation might contain constants or the same variable in different arguments. In
these cases, we must check whether the rule can be applied to the derived literal.
For this purpose, IF-instructions (conditional jumps) are needed.

The instruction IF_VAR_IS has three arguments: the number v of a variable,
a code address a, and a data value n. If variable v contains value n, execution
continues normally with the next instruction. Otherwise, control jumps to the
instruction at address a.

The instruction IF_VAR_EQ is similar, but compares the values of two vari-
ables. The jump is done if they are distinct (i.e. the following code block is
executed if they are equal).

There is also a GOTO instruction for an unconditional jump.

5.10 Copying Variables and Assigning Values to Variables

The head literal of a rule might contain constants. If the corresponding procedure
has a parameter for the argument, we need to assign this constant value to the
corresponding variable. This is done by the ASSIGN instruction, which has a
parameter for the variable and a parameter for an integer constant. Note that
it is possible to create a specialized procedure for a predicate that handles only
the case with this specific constant for the selected predicate argument. We
formalized this kind of partial evaluation with the notion of “fact types” in [5]:
A fact type consists of a predicate and for each argument either a storage location
(i.e. variable/register number in our case), or a constant.

The instruction COPY copies the value of one variable to another variable.
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5.11 Inserting Tuples Into Relations

In order to store tuples in result relations or temporary tables for complex rules,
there is an INSERT instruction. Again, there are different variants for special
cases, e.g. INSERT_LIST_2 inserts a tuple into a list of tuples with two columns.
The relation (in this case, a list) is specified with a relation ID as first parameter.
The second parameter is the number of the variable with the value for the
first column, the second column value must be in the following variable. See
Subsection 5.4 for a discussion of alternatives for the specification of tuples.

5.12 Output

Templates are translated to special procedures that contain output instructions,
calls to other templates, and loops over result relations. A minimal set of output
instructions is:

– PRINT_TEXT(n): This prints string n from the first (system) string table.
– PRINT_STR(s,v): This prints a string from domain (string table) with ID s,

where the string number is stored in variable v.
– PRINT_INT(v): This prints the value of variable v as an integer.

6 Example

In this section, we show the instructions of the abstract machine for the transitive
closure example from Section 2:

tc(X, Y) :- par(X, Y).

tc(X, Z) :- par(X, Y), tc(Y, Z).

The shown instructions run in our first (still experimental and not quite fin-
ished) prototype. This prototype does not have output templates yet, therefore
we show a variant that simply inserts the derived tuples into a list (as we already
did in Section 3). This also makes the runtime more comparable with the Open-
RuleBench TCFF benchmark, which does not contain output. The example uses
the following relations:

ID Relation Comment
0 par_ff Use of par in first rule
1 par_fb Use of par in second rule
2 tc_bb For duplicate check
3 tc_ff Result

Two cursors are used (in general, there might be several cursors over the same re-
lation, but in this example, there is only one cursor for each of the par-relations):

ID Relation Comment
0 par_ff par(X,Y) in first rule
1 par_fb par(X,Y) in second rule
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The program for the tc example consists of 17 instructions stored in 48 bytes:

// Procedure start: tc(X, Y) :- par(X, Y).

0: LOOP_LIST_2(0, 17) // Loop over par_ff, if empty goto 17

4: GET_LIST_2_COL_1(0, 0) // Var[0] = X from par cursor (ID 0)

7: GET_LIST_2_COL_2(0, 1) // Var[1] = Y value from par cursor

10: CALL(18) // Call tc(Var[0],Var[1])

13: END_LOOP_LIST_2(0, 4) // If next par-tuple exists goto 4

17: HALT // End of "main" procedure start

// Procedure tc(Var[0],Var[1]): tc(X, Z) :- par(X, Y), tc(Y, Z).

18: DUPCHECK_2(2, 0) // If (Var[0],Var[1]) in tc_bb: return

21: INSERT_LIST_2(3, 0) // Store result tuple in tc_ff (ID 3)

24: SAVE_VAR(0) // This invocation will change Var[0]

26: SAVE_MMAP_1_1_CUR(1) // Cursor 1 will be used here

28: LOOP_MMAP_1_1(1, 43, 0) // Loop over par(X,Y) given Y=Var[0]

33: GET_MMAP_1_1_OUT_1(1, 0) // Store X with par(X,Y) in Var[0]

36: CALL(18) // Recursive call: tc(Var[0],Var[1])

39: END_LOOP_MMAP_1_1(1, 33) // If next tuple exists: goto 33

43: RESTORE_MMAP_1_1_CUR(1) // Restore used cursor

45: RESTORE_VAR(0) // Restore changed variable

47: RETURN // End of procedure tc

7 Performance

In our previous performance comparisons of the Push Method with benchmarks
from the from the OpenRuleBench suite [11], we have assumed that a factor of 3
must be attributed to the compilation to machine code. The results were still
encouraging. Now the important question was of course whether an interpreted
version of abstract machine code is not worse. Fortunately, the first benchmark
we were able to execute with our still incomplete prototype, namely the transitive
closure example, is only 1.5 times slower than the machine code version:

System Load Execution Total time Factor Memory

Push (Switch) 0.004s 1.145s 1.147s 1.0 23.535 MB
Push (Proc.) 0.004s 1.176s 1.177s 1.0 31.392 MB
Push (Abstr.M.) 0.004s 1.714s 1.713s 1.5 31.397 MB
Seminäıve 0.004s 2.225s 2.227s 1.9 31.360 MB
XSB 0.239s 4.668s 5.103s 4.4 135.693 MB
YAP 0.240s 10.432s 10.840s 9.5 147.544 MB
DLV (0.373s) — 51.660s 45.0 513.748 MB
Soufflé (SQlite) (0.113s) — 11.240s 9.8 43.083 MB

(compiled) (0.030s) — 0.797s 0.7 3.867 MB

Transitive Closure Benchmark tc( , ), 50 000 par-facts (cyclic) [11]

Our current prototype can also execute the Join1 benchmark of [11], with the
same factor 1.5 compared to the native code version (which even beats single
core compiled Soufflé, probably due to a bitmap duplicate check).
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8 Conclusion

Both, the translation of Datalog to C++ (and possibly other languages in future),
and the translation to code of an abstract machine, have advantages of their own.

For instance, a Datalog system with an abstract machine can work stan-
dalone, and does not need a C++ compiler. Lower level optimizations can be
studied better with the abstract machine than with a generation of readable
C++ code and relying on optimizations of the compiler for that language. Distri-
bution of applications as abstract machine code is simpler. If a user trusts the
abstract machine, he/she does not need to trust the code for a specific applica-
tion, whereas binary code is inherently more dangerous.

Program execution with an abstract machine is slower than execution of
native machine code. In order to keep the overhead small, we did the following:

– Arguments to procedures are passed in variables/registers, and not on the
stack. Several versions of a procedure can be generated where the arguments
are contained in different variables, or are known constants (in particular,
there is no fixed register for the n-th argument). In this way, copying of
values is reduced, which is an important characteristic of our Push Method.

– We tried to make the granularity of the instructions large, i.e. let a single
instruction of the abstract machine do a lot of things to reduce the overhead
of interpretation.

– We also introduced specialized versions of instructions for common cases.
(We still have to check how much runtime is really gained in this way.)

– We tried to make the code of the abstract machine compact in order to
better utilize the cache.

The current state of the project is reported at the following web address:

[http://www.informatik.uni-halle.de/~brass/push]
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