
Declarative Output by Ordering Text Pieces 1

Declarative Output by

Ordering Text Pieces

Stefan Brass
University of Halle, Germany

Stefan Brass ICLP 2011

Declarative Output by Ordering Text Pieces 2

Motivation (1)

Is declarative output necessary?

• Declarativity is an important principle of logic pro-

gramming and of databases.

• Among other things, it simplifies optimizations.

• Maybe declarative output is not essential if

� 99% of the program is a complex calculation and

� only a very small part of the program outputs

the result at the end.

• But database applications are different: Here out-

put is a large and important part.

Stefan Brass ICLP 2011

Declarative Output by Ordering Text Pieces 3

Motivation (2)

Aren’t there good solutions?

• A typical declarative solution is to use an IO state

argument (accumulator pair):

main(IOState_in, IOState_out) :-

io.write_string("Hello, ", IOState_in,

IOState_1),

io.write_string("World!", IOState_1,

IOState_2),

io.nl(IOState_2, IOState_out).

This is from the Mecury Tutorial. Mecury has a special syntax that
simplyfies this a bit, and also checks for determinismn (one cannot
backtrack over IO).

Stefan Brass ICLP 2011

Declarative Output by Ordering Text Pieces 4

Motivation (3)

Problems with the standard solution:

• Even printing a simple table represented as facts

needs findall, lists, and recursion.

• It does not fit the bottom-up way of thinking about

rules (from right to left, direction of ←), usual in

deductive databases.

• The program must be written in a way that back-

tracking over output can never occur.

The programmer has to assure this, maybe in a way that the system
can check it.

Stefan Brass ICLP 2011

Declarative Output by Ordering Text Pieces 5

A Simple Solution (1)

• Output is done by deriving facts about a predicate

“output” with two arguments:

� The first argument defines the output position.

� The second one is a piece of the generated text.

• The derived facts are sorted by the first argument,

then the second argument is printed in that order.

output(1, "Hello, ").

output(2, Name) ← user(Name).

output(3, "!\n").

user("Nina").

Stefan Brass ICLP 2011

Declarative Output by Ordering Text Pieces 6

A Simple Solution (2)

• In order to support hierarchically structured docu-

ments, lists are permitted as first argument.

With the standard lexicographic order, i.e. the list first element, which
is not considered equivalent (such as two strings that differ only in
lower/uppercase) decides. In the paper, nested lists and other terms
are not considered, but that might open interesting possibilities (e.g.
terms that order their arguments backwards).

• By using data values inside the list, one gets the

possibility to sort the text pieces by data values.

One can have several sorting criteria of different priority.

Stefan Brass ICLP 2011

Declarative Output by Ordering Text Pieces 7

A Simple Solution (3)

Homework Results as HTML ordered by Points, Name:

output([1], "<table>").

output([2], "<tr><th>Points</th><th>Name</th></tr>").

output([3,P,N,1], "<tr><td>") ← homework(N, P).

output([3,P,N,2], P) ← homework(N, P).

output([3,P,N,3], "</td><td>") ← homework(N, P).

output([3,P,N,4], N) ← homework(N, P).

output([3,P,N,5], "</td></tr>") ← homework(N, P).

output([4], "</table>").

homework("Ann", 5).

homework("Bob", 10).

homework("Chris", 10).

Stefan Brass ICLP 2011

Declarative Output by Ordering Text Pieces 8

Important Notice

• While the above approach can be used to give a

declarative semantics to output, and theoretically

investigate the possibilities,

� the syntax is too complicated for actual usage,

� sorting is a relatively expensive operation, so a

direct implementation might be inefficient.

• Both problems can be solved.

Stefan Brass ICLP 2011

Declarative Output by Ordering Text Pieces 9

Syntax Improvement (1)

• New syntax with “output patterns”:

homeworks_table(#

<table>

<tr><th>Points</th><th>Student</th></tr>

<#homeworks_row>

</table>

#).

• This is automatically translated to:

homeworks_table([1], "<table>\n").

homeworks_table([2], "<tr><th>Points</th>...").

homeworks_table([3|X], Y) ← homeworks_row(X, Y).

homeworks_table([4], "</table>").

Stefan Brass ICLP 2011

Declarative Output by Ordering Text Pieces 10

Syntax Improvement (2)

• Second part (table rows, sorted):

homeworks_row([Points, Name]#

<tr><td><$Points></td><td><$Name></td></tr>

#) ← homeworks(Name, Points).

• This makes it possible to instantiate a pattern se-

veral times with different data values and specify

the order of the result. Corresponding rules:

homeworks_row([Points, Name, 1], "<tr><td>").

homeworks_row([Points, Name, 2], Points).

homeworks_row([Points, Name, 3], "</td><td>").

homeworks_row([Points, Name, 4], Name).

homeworks_row([Points, Name, 5], "</td></tr>").

Stefan Brass ICLP 2011

Declarative Output by Ordering Text Pieces 11

Syntax Improvement (3)

• Of course, pattern syntax can also be used for the

predicate “output”.

• This is the “main” predicate, which defines the en-

tire output / web page generated by the program:

output(#

<html>

<head><title>Homework Results</title></head>

<body><h1>Homework Results</h1>

<#homeworks_table>

</body></html>

#).

Stefan Brass ICLP 2011

Declarative Output by Ordering Text Pieces 12

Efficient Evaluation (1)

• A tuple stream (cursor/iterator) interface for pre-

dicates/relations is used.
As usual, we try not to materialize intermediate relations in order to
save memory (unless the same relation is used several times and it is
cheaper to store it than to recompute it, or we need explicit sorting).

• A tuple stream can be ordered by given arguments.

• I.e. the task is to translate the given rules for a pre-

dicate into e.g. C++-code for iterators that produce

the tuples in the required order.
In the end, one wants the output-tuples ordered by first argument,
but it helps if the predicates used in the output-rules can be fetched
in a specific order.

Stefan Brass ICLP 2011

Declarative Output by Ordering Text Pieces 13

Efficient Evaluation (2)

• For several rules about one predicate, it is often

obvious that all tuples produced by one rule come

before all tuples produced by another rule.

homeworks_table([1], "<table>\n").

homeworks_table([2], "<tr><th>Points</th>...").

homeworks_table([3|X], Y) ← homeworks_row(X, Y).

homeworks_table([4], "</table>").

• So we choose the rule evaluation sequence corre-

spondingly (avoids work at runtime).

• Otherwise ordered tuple streams for the single rules

can be efficiently merged.

Stefan Brass ICLP 2011

Declarative Output by Ordering Text Pieces 14

Efficient Evaluation (3)

• Also the nested loop join preserves certain orders.

The full version of the paper contains an unconventional variant that
does the sorting in groups, and helps to preserve more order.

• Base tables might have indexes or be stored in sor-

ted order (e.g., as a b-tree), then tuples can be

accessed in certain sorted orders.

• Sometimes, explicit sorting is unavoidable, and it is

an optimization task to find the optimal place(s).

It does not necessarily have to be at the very end. Sorting also helps
with merge joins.

Stefan Brass ICLP 2011

Declarative Output by Ordering Text Pieces 15

Conclusion

• For me, the main promise of deductive databases

is that a single declarative language is used for

� database queries, and

� all usual programming tasks including output.

Maybe seldom additional built-in predicates can be written in ano-
ther language like C++.

• Our goal is to write a deductive database system

mainly in Datalog, and to do this by a transforma-

tion from Datalog to C++.

Thus output (for the generated code) is important for the system
implementation itself.

Stefan Brass ICLP 2011

