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Abstract. We consider microcontroller-programming with a declara-
tive language based on the logic-programming language Datalog. Our
prototype implementation translates a Datalog dialect to C-code for the
Arduino IDE. In order to prove the correctness, one must ensure that the
very limited memory of the microcontroller is sufficient for the derived
facts. In this paper, we propose a class of constraints called “generalized
exclusion constraints” that can be used for this task. Moreover, they are
needed to exclude conflicting commands to the hardware, e.g. different
output values on a pin in the same state. This class of constraints also
generalizes keys and functional dependencies, therefore our results also
help to prove such constraints for derived predicates.

1 Introduction

A microcontroller is a small computer on a single chip. For instance, the Amtel
ATMega328P contains an 8-bit CPU, 32 KByte Flash Memory for the program,
2 KByte static RAM, 1 KByte EEPROM for persistent data, 23 general pur-
pose I/O pins, timers, analog/digital-converters, pulse-width modulators, and
support for serial interfaces. It costs less than 2 dollars and consumes little en-
ergy. Microcontrollers are used in many electronic devices.

For hobbyists, schools, and the simple development of prototypes, the Ar-
duino platform is quite often used. It basically consists of a few variants of boards
with the microcontroller, fitting hardware extension boards (“shields”), and an
IDE with a programming language based on C.

The software for microcontrollers is often developed in Assembler or C. We
believe that declarative programming can be an interesting option even for such
small devices. In [8,9], we proposed a language “Microlog” for programming
Microcontrollers like on the Arduino. The language is based on Datalog, which
is a simple and very pure subset of the logic programming language Prolog. More
specifically, we were inspired by the language Dedalus [1]. Declarative languages
have many advantages:

– Declarative programs are usually shorter than an equivalent program in a
procedural language. This enhances the productivity of the programmers.

– There can be no problems with uninitialized variables or memory leaks.
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– The language is relatively simple, therefore it can be used also by non-experts
(e.g., Arduino boards are a nice device to be used in school).

– The language has a mathematically precise semantics based on logic, which
makes programs easier to verify.

– The simple semantics also permits powerful optimization, e.g. in [9], we
translate a subclass of programs to a finite automaton extended with a fixed
set of variables (i.e. we use “parameterized states”).

– Many programs become easier to understand and more flexible by a data-
driven architecture. E.g., the configuration data for a home-automation sys-
tem used as an example in [9] is basically a small database.

One reason for the current revival of Datalog is that it is used also for applications
that are not database applications, such as static analysis of program code [5],
cloud computing, and semantic web applications.

While classic Datalog is not turing-complete, we use it on an infinite sequence
of states (similar to the language Dedalus [1]). If one ignores technical restrictions
such as the restricted memory and the finite range of integers we could get
from the clock, it would be possible to simulate a turing machine. Therefore,
using Datalog to specify the input-output-behaviour of a microcontroller is not
restricted to toy applications.

We have a prototype implementation that compiles our Datalog-based lan-
guage “Microlog” into C code for the Arduino IDE. In order to be sure that the
program will never stop working, one has to prove that the memory is sufficient
for storing all derived facts for the current and the next state. While restricted
memory is in principle a problem for many programs, the danger of insufficient
memory is quite real on this small hardware. The solution in our paper [9] is
fully automatic, but works only for a restricted set of programs. In this paper, we
follow a different path based on integrity constraints. They have to be specified
manually, but if the set is sufficiently complete, the method presented here may
be able to prove that the constraints hold in all states.

We call class of constraints studied in this paper “generalized exclusion con-
straints”. Each instance expresses that two facts cannot occur together in a
model. This includes key constraints: There, different facts with the same key
value cannot both be true in the same state. Whereas keys are local to one rela-
tion, “generalized exclusion constraints” can be specified also for facts from dif-
ferent relations. Exclusion constraints appear already in [2,6]. They require that
projections of two relations are disjoint: πAi1 ,...,Ain

(R)∩πBj1 ,...,Bjm
(S) = ∅. Of

course, such constraints are also a special case of the constraints studied here.
In Section 2, we define a rule-based language for programming microcon-

trollers and its translation into pure Datalog. In Section 3, we define the type
of constraints that is investigated in this paper, and show how they can be used
for the task at hand. In Section 4, we give the tools to prove that the constraints
are indeed satisfied for a given program. While we focus in this paper on mi-
crocontroller programming, the technique is applicable to any Datalog program.
Therefore, it is an interesting alternative to our previous work on computing
functional dependencies for derived predicates [3].
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2 A Datalog-Variant for Microcontroller Systems

2.1 Standard Datalog

Let us first quickly repeat the definition of standard Datalog. The Datalog di-
alect for Arduino microcontroller systems will be translated to a standard Dat-
alog program in order to define its semantics. Also the generalized exclusion
constraints will be defined for standard Datalog, which makes them applicable
for all applications of Datalog, not only in microcontroller programming.

A Datalog program is a finite set of rules of the form A← B1∧· · ·∧Bn, where
the head literal A and the body literals Bi are atomic formulas p(t1, . . . , tm) with
a predicate p and terms t1, . . . , tm. Terms are constants or variables. Rules must
be range-restricted, i.e. all variables appearing in the head A must also appear in
at least one body literal Bi. This ensures that all variables are bound to a value
when the rule is applied. The requirement will be slightly modified for rules with
built-in predicates, see below. A fact is a rule with an empty body, i.e. it has the
form p(c1, . . . , cm) with constants ci.

In order to work with time, we need some built-in predicates for integers.
Whereas normal predicates are defined by rules (or facts) as above, built-in
predicates have a fixed semantics that is built into the system. They can only
appear in rule bodies and have additional requirements for the range-restriction
so that the rule body is evaluable at least in the sequence from left to right.

– succ(T,S): This returns the next point in time (state) S for a given state T.
Therefore, the variable T must appear in a literal to the left of this literal in
the rule body so that it is bound when this literal is executed. We use lN0

as logical time, and succ(T,S) is true iff S = T + 1 ∧ T ≥ 0.
– t1 < t2, and the same with the other comparison operators =, 6=,≤,>,≥. If

the terms t1 or t2 are variables, the variable must appear already in a body
literal to the left (and therefore be bound to a value).

– t1 + t2 < t3 which ensures that t3 is more than t2 time units (milliseconds)
after t1. Again variables must be bound to the left. The delay t2 must be ≥ 0.

– t1 + t2 ≥ t3 (t3 is not more than t2 milliseconds after t1, possibly before t1).

2.2 Datalog with States

The program on a microcontroller must act in time. It basically runs forever
(until the power is switched off), but the time-dependent inputs lead to some
state change, and outputs depend on the state and also change over time. We
do not assume knowledge about the outside world, but it is of course possible
that the outputs influence future inputs. So it is quite clear that a programming
language for microcontrollers must be able to define a sequence of states.

We borrow from Dedalus0 [1] the idea to add a time (or state) argument
to every predicate. Note that this is logical time, the numbers have no specific
meaning except being a linear order.

Every predicate that looks like having n arguments really has n + 1 argu-
ments with an additional “zeroth” time argument in front. For a literal A of the
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form p(t1, . . . , tn) let Â be p(T, t1, . . . , tn) with a fixed special variable T that
cannot be used directly in the program. For a normal rule A ← B1 ∧ · · · ∧ Bm,
all time arguments are this same variable T, i.e. the rule describes a deduction
within a state. Thus, the rule is an abbreviation for the standard Datalog rule
Â← B̂1 ∧ · · · ∧ B̂m.

In order to define the next state, we also permit rules with the special mark
“@next” in the head literal:

p(t1, . . . , tn)@next← B1 ∧ · · · ∧Bm.

This rule is internally replaced by:

p(S, t1, . . . , tn)← B̂1 ∧ · · · ∧ B̂m ∧ succ(T,S).

Note that @next can only be applied in the head, i.e. we can transfer information
only forward in time. All conditions can only refer to the current point in time.

Facts can be marked with @start, in which case the constant 1 is inserted for
the time argument, i.e. p(c1, . . . , cn)@start is replaced by p(1, c1, . . . , cn). Since
sometimes setup settings must be done before the main program can start, we
also permit @init which uses the time constant 0. This pre-state is also necessary
because the results of calls are only available in the next state. For instance, we
will need the real-time as returned by millis() in every state. However, to be
available in the start state 1, the function must be called in state 0.

Facts without this mark hold in all states (they are time-independent). How-
ever, since all predicates have a time argument, and we want rules to be range-
restriced, we define a predicate always as

always@init. % always(0).
always@next← always. % always(S)← always(T) ∧ succ(T,S).

A fact p(c1, . . . , cm) is replaced by p(T, c1, . . . , cn) ← always(T). (A possible
optimization would be to compute time-independent predicates and remove the
time argument from them.)

The minimal model of such a program is usually infinite (at least with always

or similar predicates), therefore the iteration of the TP -operator to compute
derived facts does not stop. However, this is no real problem, since we actually
compute derived facts state by state. We forbid direct access to the succ-relation
and to the special variables T and S. Therefore, within a state, only finitely many
facts are derivable. After we reached a fixpoint, we apply the rules with @next in
the head to compute facts for the next state. When that is done, we can forget
the facts in the old state, and switch to the new state. Within that state, we can
again apply the normal rules to compute all facts true in that state.

2.3 Interface Predicates

Of course, a Datalog program for a Microcontroller must interface with the
libraries for querying input devices and performing actions on output devices. A
few examples of interface functions are shown in Fig. 1.
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#define HIGH 0x1

#define LOW 0x0

#define INPUT 0x00

#define OUTPUT 0x01

void pinMode(uint8_t pin, uint8_t mode);

void digitalWrite(uint8_t pin, uint8_t val);

int digitalRead(uint8_t pin);

unsigned long millis(void);

Fig. 1. Extract from Arduino.h Header Files

For each function f that can be called, there is a special predicate call f with
a reserved prefix “call ”. The predicate has the same arguments as the function
to be called and of course the standard time argument. E.g. derived facts about
the predicate call digitalWrite(T,Port,Val) lead to the corresponding calls of the
interface faction digitalWrite in state T. The implementation ensures that
duplicate calls are eliminated, i.e. even if there are different ways to deduce the
fact, only one call is done.

The sequence of calls is undefined. If a specific sequence is required, one must
use multiple states. Conflicts between functions (where a different order of calls
has different effects) can be specified by means of our exclusion constraints.

If an interface function f returns a value, there is a second predicate ret f
that contains all parameters of the call and a parameter for the return value.
For instance, for the function digitalRead, there are two predicates:

– call digitalRead(T,Port), and
– ret digitalRead(S,Port,Val).

If the call is done in one state, the result value is available in the next state.
This ensures, e.g., that the occurrence of a call cannot depend on its own result.

Since calls of interface functions usually have side effects and cannot be taken
back, it is important to clearly define which calls are actually done. In contrast,
the evaluation sequence of literals in a rule body can be chosen by the opti-
mizer. Therefore the special call f predicate can be used only in rule heads. We
use the syntax f(t1, . . . , tn)@call, which is translated to call f(ti1 , . . . , tik), where
i1 < i2 < · · · < ik are all arguments that are not the special marker ?. For
instance, a rule that calls digitalRead is written as

digitalRead(Port, ?)@call← . . .

It seems more consistent if the call and the result look like the same predi-
cate with the same number of arguments. Correspondingly, f(t1, . . . , tn)@ret is
replaced by ret f(t1, . . . , tn). It can only appear in rule bodies.

For calls that should occur in the initialization state, the suffixes @call@init
could be used together, but this does not look nice. We use @setup in this case.

Finally, we need also constants from the interface definition. If our Data-
log program contains e.g. #HIGH, this corresponds to the constant HIGH in the
generated C-code.
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2.4 Real Time

So far, we have just a sequence of states. How much time it really takes from
one state to the next depends on the necessary deductions in the state and the
time needed for the interface function calls. Many control programs need real
time. This can be achieved with the interface function millis() that returns
the number of milliseconds since the program was started.

For common patterns of using real time information, we should define ab-
breviations. For instance, delaying a call to a predicate for a certain number of
milliseconds can be written as follows:

p(t1, . . . , tn)@after(Delay)← A1, . . . , Am.

This is internally translated to the following rules:

delayed p(t1, . . . , tn,From,Delay)@next ←
A1 ∧ · · · ∧Am ∧ millis@ret(From).

delayed p(X1, . . . , Xn,From,Delay)@next ←
delayed p(X1, . . . , Xn,From,Delay) ∧
millis@ret(Now) ∧ From + Delay < Now.

p(X1, . . . , Xn)@next ←
delayed p(X1, . . . , Xn,From,Delay) ∧
millis@ret(Now) ∧ From + Delay ≥ Now.

millis(?)@call.

The function millis() is called in every state so that there is always the
current time available. Since we do not exactly know how long the processing for
one state takes, we cannot be sure that we really get every milliseconds value.
Therefore, the comparisons are done with ≤ and > instead of = and 6=.

Example 1. Most Arduino boards have an LED already connected to Port 13.
With the following program we can let this LED blink with 1000 ms on, then
1000 ms off, and so on. The similar program BinkWithoutDelay from the Ar-
duino tutorial has 16 lines of code.

pinMode(13,#OUTPUT)@setup.
turn on@start.

turn off@after(1000) ← turn on.
turn on@after(1000) ← turn off.

digitalWrite(13,#HIGH)@call← turn on.
digitalWrite(13,#LOW)@call ← turn off.

The internal Datalog version (with all abbreviations expanded) of the program
is shown in Fig. 2. ut

3 Generalized Exclusion Constraints

Obviously, it should be excluded that digitalWrite is called in the same state
and for the same port with two different values. Since no specific sequence is

https://www.arduino.cc/en/Tutorial/BlinkWithoutDelay
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(1) call pinMode(0, 13,#OUTPUT).

(2) turn on(1).

(3) delayed turn off(S,From, 1000) ←
turn on(T) ∧ ret millis(T,From) ∧ succ(T, S).

(4) delayed turn off(S,From,Delay) ←
delayed turn off(T,From,Delay) ∧
ret millis(T,Now) ∧ From + Delay < Now ∧ succ(T, S).

(5) turn off(S) ←
delayed turn off(T,From,Delay) ∧
ret millis(T,Now) ∧ From + Delay ≥ Now ∧ succ(T, S).

(6) delayed turn on(S,From, 1000) ←
turn off(T) ∧ ret millis(T,From) ∧ succ(T, S).

(7) delayed turn on(S,From,Delay) ←
delayed turn on(T,From,Delay) ∧
ret millis(T,Now) ∧ From + Delay < Now ∧ succ(T, S).

(8) turn on(S) ←
delayed turn on(T,From,Delay) ∧
ret millis(T,Now) ∧ From + Delay ≥ Now ∧ succ(T, S).

(9) call digitalWrite(T, 13,#HIGH) ←
turn on(T).

(10) call digitalWrite(T, 13,#LOW) ←
turn off(T).

(11) always(0).

(12) always(S)← always(T) ∧ succ(T, S).

(13) call millis(T)← always(T).

Fig. 2. Blink Program from Example 1 with all appreviations expanded

defined for the calls, it is not clear whether the output will remain high or low
(the last call overwrites the value set by the previous call). What is needed
here is a key constraint. In this section, we consider only standard Datalog.
Therefore, we must look at the translated/internal version of the example. There,
the predicate is call digitalWrite(T,Port,Val), and we need that the first two
arguments are a key for all derivable facts. In logic programming and deductive
databases, constraints are often written as rule with an empty head (meaning
“false”). Thus, a constraint rule like the following should never be applicable:

← call digitalWrite(T,Port,Val1) ∧ call digitalWrite(T,Port,Val2) ∧ Val1 6= Val2.

If we look at the program, we see that a violation of this key could only happen
if turn on and turn off would both be true in the same state. Thus, we need also
this constraint:

← turn on(T) ∧ turn off(T).
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The common pattern is that there are conflicts between two literals, such that
the existence of a fact that matches one literal excludes all instances of the other
literal. This leads to the following definition:

Definition 1 (Generalized Exclusion Constraint). A “Generalized Exclu-
sion Constraint” (GEC) is a formula of the form

← p(t1, . . . , tn) ∧ q(u1, . . . , um) ∧ ϕ

and ϕ is either true or a disjunction of inequalities tiν 6= ujν for ν = 1, . . . , k.

The implicit head of the rule is false, so the constraint is satisfied in a Her-
brand interpretation I iff there is no ground substitution θ for the two body
literals such that p(t1, . . . , tn)θ ∈ I and q(u1, . . . , um)θ ∈ I and ϕ is true or
there is ν ∈ {1, . . . , k} with tiνθ 6= ujνθ.

Example 2. The “generalized exclusion constraints” are really a generalization
of the exclusion constraints of [2,6]: For instance, consider relations r(A,B) and
s(A,B,C) and the exclusion constraint πA(r) ∩ πA(s) = ∅. In our formalism,
this would be expressed as ← r(A, ) ∧ s(A, , ) ∧ true.

As in Prolog, every occurence of “ ” denotes a new variable (a placeholder
for unused arguments). It is a violation of the constraint if the same value A
appears as first argument of r and as first argument of S. ut

In the following, when we say simply “exclusion constraint” or even “con-
straint”, we mean “generalized exclusion constraint”. We also allow to drop
“∧ true” in the constraint formula.

Example 3. We already illustrated with digitalWrite above that our constraints
can express keys. We can also express any functional dependency. For instance,
consider r(A,B,C) and the FD B −→ C. This is the same as the generalized
exclusion constraint ← r( , B,C1) ∧ r( , B,C2) ∧ C1 6= C2. ut

Example 4. For the original task, to check that memory is sufficient to represent
all facts in a single state, we need in particular the following constraint:

← delayed turn on(T,From1,Delay1) ∧ delayed turn on(T,From2,Delay2) ∧
(From1 6= From2 ∨ Delay1 6= Delay2).

This is actually a key constraint and means each state contains at most one
delayed turn on-fact. Of course, we need the same for delayed turn off. With that,
the potentially unbounded set of facts in a state already becomes quite small.
The implicit state argument is no problem, because we compute only facts for
the current state and for the next state. Also arguments filled with constants in
the program cannot lead to multiple facts in the state. Furthermore, function
calls have unique results, i.e. the functional property holds. E.g. constraints like
the following for the millis() function can be automatically generated:

← ret millis(T,Now1) ∧ ret millis(T,Now2) ∧ Now1 6= Now2.
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With these constraints, we already know that a state for the Blink program can
contain at most one fact of each predicate. This certainly fits in memory.

The full set of constraints for the Blink program from Example 1 is shown in
Fig. 3. Five of the constraints are keys, but (C) to (H) state that no two of the

(A) ← call digitalWrite(T,Port,Val1) ∧ call digitalWrite(T,Port,Val2) ∧
Val1 6= Val2.

(B) ← call pinMode(T,Port,Mode1) ∧ call pinMode(T,Port,Mode2) ∧
Mode1 6= Mode2.

(C) ← turn on(T) ∧ turn off(T).

(D) ← turn on(T) ∧ delayed turn off(T,From,Delay).

(E) ← turn off(T) ∧ delayed turn on(T,From,Delay).

(F) ← delayed turn on(T,From1,Delay1) ∧ delayed turn off(T,From2,Delay2).

(G) ← turn on(T) ∧ delayed turn on(T,From,Delay).

(H) ← turn off(T) ∧ delayed turn off(T,From,Delay).

(I) ← delayed turn off(T,From1,Delay1) ∧ delayed turn off(T,From2,Delay2) ∧
(From1 6= From2 ∨ Delay1 6= Delay2).

(J) ← delayed turn on(T,From1,Delay1) ∧ delayed turn on(T,From2,Delay2) ∧
(From1 6= From2 ∨ Delay1 6= Delay2).

(K) ← ret millis(T,Now1) ∧ ret millis(T,Now2) ∧ Now1 6= Now2.

Fig. 3. Constraints for the Blink Program

predicates turn on, turn off, delayed turn on, delayed turn off occur in the same
state. There should be an abbreviation for such a constraint set: “For every T,
at most one instance of turn on(T), turn off(T), delayed turn on(T,From,Delay),
delayed turn off(T,From,Delay) is true.” This includes also the keys (I) and (J).
The keys (A) and (B) could come from a library, and keys of type (K) should
be automatic for all ret f predicates. ut

4 Refuting Violation Conditions

4.1 Violation Conditions

A “violation condition” describes the situation where two rule applications lead
to facts that violate a constraint. Our task will be to show that all violation
conditions themselves violate a constraint or are otherwise inconsistent or im-
possible to occur. Basically, we get from a constraint rule to a violation condition
if we do an SLD resolution step (corresponding to unfolding) on each literal:

Definition 2 (Violation Condition). Let a Datalog program P and a gener-
alized exclusion constraint ← A1 ∧A2 ∧ ϕ be given. Let
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– A′
1 ← B1∧· · ·∧Bm (m ≥ 0) be a variant with fresh variables of a rule in P ,

– A′
2 ← C1 ∧ · · · ∧ Cn (n ≥ 0) be a variant with fresh variables of a rule in P

(it might be the same or a different rule), such that
– (A1, A2) is unifiable with (A′

1, A
′
2). Let θ be a most general unifier.

Then the violation condition is:

(B1 ∧ · · · ∧Bm ∧ C1 ∧ · · · ∧ Cn ∧ ϕ)θ.

The “fresh variables” requirement means that the variables are renamed so
that the constraint and the two rules have pairwise disjoint variables.

The disjunction ϕθ can be simplified by removing inequalities ti 6= ui that
are certainly false, because ti and ui are the same variable or the same constant.
If the disjunction becomes empty in this way, it is false, and we do not have
to consider the violation condition futher. If ti and ui are distinct constants for
some i, the inequality and thus the whole disjunction can be simplified to true.

Example 5. Consider constraint (A), the key constraint for call digitalWrite:

← call digitalWrite(T,Port,Val1) ∧ call digitalWrite(T,Port,Val2) ∧ Val1 6= Val2.

The two rules with matching head literals are rules (9) and (10):

call digitalWrite(T, 13,#HIGH)← turn on(T).
call digitalWrite(T, 13,#LOW) ← turn off(T).

We rename the variables of the rules so that the constraint and the two rules
have pairwise disjoint variables (we start with index 3, since 1 and 2 appear in
the constraint):

call digitalWrite(T3, 13,#HIGH)← turn on(T3).
call digitalWrite(T4, 13,#LOW) ← turn off(T4).

Now we do the unification of the head literals with the literals from the con-
straint. A possible most general unifier (MGU) is

{T3/T,T4/T,Port/13,Val1/#HIGH,Val2/#LOW}.

MGUs are unique modulo a variable renaming. Now the violation condition is

turn on(T) ∧ turn off(T) ∧#HIGH 6= #LOW.

Since #HIGH 6= #LOW is true, the violation condition can be simplified to

turn on(T) ∧ turn off(T).

This is what we would expect: It should never happen that turn on and turn off
are true in the same state.

It would also be possible to match the two literals of the constraint with
different variants (with renamed variables) of the same rule, but in this example,
that would give conditions like #HIGH 6= #HIGH, which are false. Such obviously
inconsistent violation conditions do not have to be considered. ut
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Violation conditions express the conditions under which the result of a deriva-
tion step violates an exclusion constraint:

Theorem 1. TP (I) violates an exclusion constraint ← A1 ∧A2 ∧ϕ if and only
if there is a violation condition for P and ← A1 ∧A2 ∧ ϕ which is true in I.

The TP operator, well known in logic programming, yields all facts that can
be derived by a single application of the rules in P , given the facts that are
true in the input interpretation. One starts with the empty set of facts I0 which
certainly satisfies all exclusion constraints. Then one iteratively applies the TP

operator, i.e. Ii+1 := TP (Ii), to get the minimal model Iω :=
⋃

i∈lN Ii, which is
the intended interpretation of P .

Theorem 2. Let P be a Datalog program, C be a set of generalized exclusion
constraints, and H be some set of Herbrand interpretations that includes at least
all interpretations that occur in the iterative computation of the minimal model.
If all violation conditions for P and constraints from C are false in all I ∈ H
that satisfy C, then the minimal Herbrand model Iω of P satisfies C.

Thus, we have to show that the violation conditions are unsatisfiable assum-
ing the constraints. However, it turns out that this does not work well in the
initialization state 0 and the start state 1. Therefore, the theorem permits to
throw in additional knowledge formalized as some set of Herbrand interpreta-
tionsH that is a superset of the relevant interpretations. In the example, we need
that ret f-predicates cannot occur in state 0: This is obvious, because there is
no previous state that might contain a call. One could also precompute all pred-
icates that might occur in state 0 and 1 and use this knowledge to restrict H.

4.2 Proving Violation Conditions Inconsistent

The consistency check for the violation conditions is done by transforming the
task to a formula that can be checked by a constraint solver for linear arithmetic
constraints [7,4]. Since we assume that all constraints were satisfied before the
derivation step that is described by the violation condition, we can exclude any
match of two literals A1 and A2 from the violation condition with a constraint:

Definition 3 (Match Condition). Let two literals A1 and A2 and an exclu-
sion constraint ← C1 ∧ C2 ∧ γ be given. Let ← C ′

1 ∧ C ′
2 ∧ γ′ be a variant of

the constraint with fresh variables (not occurring in A1 and A2). If (A1, A2)
are unifiable with (C ′

1, C
′
2) there is a match condition for (A1, A2) and this con-

straint, computed as follows:

– Let θ be a most general unifier without variable-to-variable bindings from
variables of (A1, A2) to variables of (C ′

1, C
′
2) (since the direction of variable-

to-variable bindings is arbitrary, this is always possible).
– Let A1 be p(t1, . . . , tn) and A2 be q(u1, . . . , um).
– Then the match condition is

t1 = t1θ ∧ · · · ∧ tn = tnθ ∧ u1 = u1θ ∧ · · · ∧ um = umθ ∧ γ′θ.
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The requirement on the direction of variable-to-variable bindings ensures that
the match condition contains only variables that also occur in A1 or A2.

Again, some parts of the condition can be immediately evaluated. The for-
mula basically corresponds to the unification (plus the formula from the con-
straint). Most conditions will have the form X = X and can be eliminated.
However, if the literals from the constraint contain constants or equal variables,
the condition becomes interesting. Note that we cannot simply apply the uni-
fication as in Definition 2, because we finally need to negate the condition: We
are interested in values for the variables that are possible without violating the
exclusion constraint.

Definition 4 (Violation Formula). Let a violation condition

A1 ∧ · · · ∧Am ∧B1 ∧ · · · ∧Bn ∧ ϕ

be given, where A1, . . . , Am have user-defined predicates and B1, . . . , Bm have
built-in predicates. The violation formula for this violation condition is a con-
junction (∧) of the following parts:

– ϕ
– For each Bi its logical definition. If Bi has the form succ(t1, t2), the logical

definition is t2 = t1 + 1 ∧ t1 ≥ 0. For t1 + t2 ≥ t3 and t1 + t2 < t3, we take
that and add t2 ≥ 0. For other built-in predicates, it is Bi itself.

– For all possible match conditions µ of a constraint ← C1 ∧ C2 ∧ γ with two
literals Ai and Aj, the negation ¬µ.

Example 6. This example continues Example 5 with the violation condition:

turn on(T) ∧ turn off(T).

We use constraint (C): ← turn on(T)∧ turn off(T). Formally, we have to rename
the variable in the constraint, e.g. to T1, and then compute the unifier T1/T
of the constraint literals with the literals in the violation condition. The match
condition is T = T ∧ T = T, which can be simplified to true. Since there is
no other matching constraint, the violation formula, which requires that the
violation condition does not violate the constraint, is ¬true, i.e. false. Therefore,
the violation condition cannot be satisfied. Of course, as soon as we know that
the violation formula is unsatisfiable, we can stop. Thus, even if there were other
matching constraints, we would not have to consider them. ut

Example 7. For a more complex case, let us consider Constraint (J) which en-
sures that there can be only one fact about delayed turn on in each state:

← delayed turn on(T,From1,Delay1) ∧ delayed turn on(T,From2,Delay2) ∧
(From1 6= From2 ∨ Delay1 6= Delay2).

In order to generate violation conditions, all possibilities for matching rule heads
with the two literals of the constraint must be considered. In this case, facts that
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might violate the constraint can be derived by applying Rule (6) and Rule (7)
(see Fig. 2). For space reasons, we consider only the violation condition that
corresponds to the case that both constraint literals are derived with different
instances of Rule (6): We rename the variables once to S3,From3,T3 and once
to S4,From4,T4. An MGU is

{S3/T,From3/From1,Delay1/1000,S4/T,From4/From2,Delay2/1000}.

Thus, the resulting violation condition is:

turn off(T3) ∧ ret millis(T3,From1) ∧ succ(T3,T) ∧
turn off(T4) ∧ ret millis(T4,From2) ∧ succ(T4,T) ∧
(From1 6= From2 ∨ 1000 6= 1000)

Of course, 1000 6= 1000 is false and can be removed. Now we want to compute
the violation formula. The easy parts are:

– The formula part of the violation condition: From1 6= From2.
– The definition of the built-in succ-literals:

T = T3 + 1 ∧ T3 ≥ 0 ∧ T4 = T + 1 ∧ T4 ≥ 0.

Note that T3 = T4 can be derived from this.

Furthermore, we have to add the negation of all possible match conditions for
constraints matching two literals in the violation condition (we might stop early
as soon as we have detected the inconsistency). In this case, there is only one
possible constraint, namely (K). A variant with fresh variables is:

← ret millis(T5,Now5) ∧ ret millis(T5,Now6) ∧ (Now5 6= Now6)

An MGU with variable-to-variable bindings directed towards the violation con-
dition is {T5/T3,Now5/From1,T4/T3,Now6/From2}. This gives the following
match condition:

T3 = T3 ∧ From1 = From1 ∧ T4 = T3 ∧ From2 = From2 ∧ From1 6= From2.

With the trivial equalities removed, this is T4 = T3 ∧ From1 6= From2. The
negation is added to the violation formula. Thus the total violation formula is:

From1 6= From2 ∧
T = T3 + 1 ∧ T3 ≥ 0 ∧ T4 = T + 1 ∧ T4 ≥ 0 ∧
¬(T4 = T3 ∧ From1 6= From2).

This is easily discovered to be inconsistent. Thus, Constraint (J) cannot be
violated if both literals are derived with Rule (6). The other cases can be handled
in a similar way. ut
Theorem 3. Let A1 ∧ · · · ∧ Am ∧ B1 ∧ · · · ∧ Bm ∧ ϕ be a violation condition
and ψ be its violation formula with respect to constraints C. There is a variable
assignment A that makes ψ true in the standard interpretation of arithmetics if
and only if there is a Herbrand interpretation I satisfying C with the standard
interpretation of the built-in predicates such that the violation condition is true
in I for some extension of A (not all variables of the violation condition might
be in ψ).
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5 Conclusions

We are investigating the programming of microcontrollers in Datalog. We have
discussed an interesting class of constraints which we called “generalized exclu-
sion constraints”. They contain keys, but can specify uniqueness of facts also
between different relations. In particular, the constraints can be used to ensure
that each state does not contain “too many” facts, e.g. more than what fits in
the restricted memory of a microcontroller. But they also can express conflicts
between different interface functions that cannot be called in the same state.

This class of constraints is also interesting, because for the most part, they are
able to reproduce themselves during deduction. We have introduced the notion
of a “violation condition” as a tool for checking this. Violation conditions can be
reduced to a “violation formula” that can be checked for consistency by a con-
straint solver for linear arithmetics. If the violation formula should be consistent,
the violation condition can be shown to the user who might then add a constraint
to prove that the violation can never occur. A prototype implementation is avail-
able at: https://users.informatik.uni-halle.de/~brass/micrologS/.
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