Logic Programming and
Deductive Databases

Chapter 5: SLD Resolution

Prof. Dr. Stefan Brass
Martin-Luther-Universitat Halle-Wittenberg
Summer 2024

http://www.informatik.uni-halle.de/~brass/1p24/

5-1/61

http://www.informatik.uni-halle.de/~brass/lp24/

Objectives

After completing this chapter, you should be able to:

@ define most general unifier of two termns or literals.
@ compute a most general unifier of two terms or literals.

@ define the resut of an SLD resolution step for a given
proof goal and applicable rule.

@ develop an SQL-proof tree for a given query and logic
program.

@ understand the Prolog debugger output.

5-2 /61

Unification
°

Contents

© Unification

© SLD Resolution
© Computed Answers
Q@ SLD Trees

© Four-Port Model

5-3 /61

Unification
©0000000000

Unification (1)

@ Unification is used in Prolog for parameter passing:
It matches the actual parameters with the formal
parameters of a predicate. It can fail.

@ It can also be seen as an assignment that is that is

e symmetric: X = a and a = X are both legal and have
the same effect (X is bound to a),

e one-time: Once a variable is bound to a value,
it is always automatically replaced by that value.
It is impossible to assign a new value.

@ Unification does pattern matching of tree-structures
(terms).

5-4 /61

Unification
0®000000000

Unification (2)

Definition (Unifier):

@ A unifier of two literals A and B is a substitution ¢
with A0 = B6.

@ A and B are called unifiable if there is a unifier of A
and B.

@ O is a most general unifier of A and B if for every other
unifier ¢’ of A and B there is a substitution o with
0 =0oo0.

0 o o denotes the composition of ¢ and o, i.e. (0 0 0)(A) = o(0(A)).

5-5/61

Unification
00®00000000

Unification (3)

Examples:

@ p(X,b) and p(a, Y) are unifiable with most general
unifier {X/a, Y /b}.

@ g(a) and g(b) are not unifiable.
@ Consider g(X) and g(Y):

o {X/Y} is a most general unifier of these literals.

e {Y/X} is another most general unifier of these literals.
(It maps both literals to g(X)).

e {X/a,Y/a} is an example for a unifier that is not a
most general unifier.

5-6 /61

Unification
000®0000000

Unification (4)

Lemma:
@ If there is a unifier of A and B, there is also a most
general unifier (MGU).

@ The most general unifier is unique up to variable renamings,
i.e. if ¥ and 0" are both most general unifiers of A and B
there is a substitution o which is a bijective mapping
from variables to variables such that ¢/ = 6o 0.

Notation:

o Let mgu(A, B) be a most general unifier of A and B.

5-7 /61

Unification
0000®000000

Unification (5)

unify(Literal /Term t, u): Substitution 6
if t = u then

0= {};

else if t is a variable that does not occur in u then

0 :={t/u};
else if v is a variable that does not occur in t then
0 :={u/t};
else if tis f(ty,...,t,) and uvis f(uy,...,u,) then
0= {};
for i :=1 to ndo 0 := 0 ounify(t; 6, y; 9);
else /* Different Functors/Constants */
0 := "not unifiable”;

5-8 /61

Unification
00000e00000

Unification (6)

Example:
e p(X,X) and p(a, b) are not unifiable:

o The first argument is unified with X/a.

e However, then one has to unify p(a, a) and p(a, b). That
is not possible.

e p(X,X) and p(Y.f(Y)) are not unifiable:

o First, one unifies X and Y, e.g. with {X/Y'}.

e Then one has to unify p(Y,Y) and p(Y,f(Y)). It is not
possible to bind Y to f(Y'), because Y occurs in f(Y).
{Y/f(Y)} would not make the terms equal.

5-9 /61

Unification
000000e0000

Unification (7)

Example:
P P
7\ 7\
f a f Y
| |
X=—===—=-- - g
7\
b (¢
P P
7\ N
a f Y
| A__ P
7\ 7\
b c b C

5-10 /61

Unification
00000008000

Unification (8)

Example:

P Y
7\ 7\
X X r—>f f
' ' | |

_______ J
Y a

p Y
7\ 7\

f f f f
| | | |
Y Y Y a
e 4

5-11 /61

Unification
00000000800

Unification (9)

Exercises:

@ Compute the most general unifier if possible:
length([1,2, 3], X) and length([],0).
length([1, 2, 3], X) and length([E|R], N1).
append(X,[2,3],[1,2,3]) and append([F|R], L, [F|A]).
p(f(X),Z) and p(Y, a).

p(f(2). g(X)) and p(Y, Y).
o 4(X, Y, h(g(X))) and 4(Z, h(Z), h(Z)).

@ Use Prolog to check the solution.

5-12 /61

Unification
00000000080

Occur Check (1)

@ Suppose that the following to literals are unified:

@ The unifier is
0 = {X1/f(Xo, Xo),
Xo /f(f(Xo, X0), f(Xo,Xp)),

@ The test, whether X, appears in t, (“occur check”) costs
exponential time.

An explicit representation of 6 would cost exponential time, too. But one
normally uses pointers from variables to their values to represent a

substitution internally: Then common subterms are stored only once.

5-13 /61

Unification
0000000000e

Occur Check (2)

@ Unification is the basic step in Prolog evaluation.
It is bad if it can take exponential time.

@ Solutions:

e Unification without occur check: dangerous.

This can give wrong solutions: E.g. consider the program consisting
of p+ q(X,X) and q(Y, f(Y)). Prolog systems without occur
check answer “p” with “yes”. It is also possible that unification or

the printing of terms get into infinite loops.

o With better data structures, the occur check has linear
runtime.

e Static analysis of a Program can show where no occur
check is needed.

5-14 / 61

SLD Resolution
.

Contents

© SLD Resolution

5-15 /61

SLD Resolution
©000000000000000

SLD-Resolution (1)

@ SLD-resolution is the theoretical basis of Prolog execution.

@ It is a theorem proving procedure that is complete for
Horn clauses.

@ SLD stands for “Linear resolution for Definite clauses with
Selection function”.

In resolution, the basic derivation step is to conclude AV C from AV B
and =BV C: l.e. one matches complementary literals (with a unifier) and
composes the rests of the two clauses. It is a refutation proof procedure
that starts with the negation of the proof goal and ends with the empty
clause (the obvious contradiction). In linear resolution, one of the two

clauses is always the result of the previous step.

5-16 / 61

SLD Resolution
0®00000000000000

SLD-Resolution (2)

@ The idea of SLD-resolution is to simplify the query
(i.e. the proof goal) step by step to “true”.

If seen as refutation proof procedure, the current clause is the negation of

the query, and one ends with “false”.

@ Each step makes a literal from the query and a rule head
from the program equal with a unifier.

@ Then literal in the query is replaced by the body of the rule.
This gives a new query (hopefully simpler).

@ Facts are treated as rules with empty body.
Using facts makes the query shorter.

5-17 /61

SLD Resolution
00®0000000000000

SLD-Resolution (3)

Example:

@ Consider the following program:

(1) ancestor(X,Y) < parent(X,Y).
(2) ancestor(X,Z) < parent(X,Y) A ancestor(Y, Z).
(3) parent(X,Y) < mother(X,Y).
(4) parent(X,Y) < father(X,Y).

(5) father(Julla eric).

(6) mother(eric,bianca).

@ Let the query be

ancestor(julia, bianca).

5-18 /61

SLD Resolution
000®000000000000

SLD-Resolution (4)

@ The given query is the first proof goal:

ancestor(julia, bianca).

@ The only literal in the proof goal can be resolved with

(2) ancestor(X,Z) < parent(X,Y) A ancestor(Y, Z).

@ The most general unifier of query literal and rule head is
{X/julia, Z/bianca}.

@ Now the new proof goal is

parent(julia,Y) A ancestor(Y,bianca).

5-19 /61

SLD Resolution
0000®00000000000

SLD-Resolution (5)

@ Prolog always works on the first literal of the proof goal
(this is a special selection function):

parent(julia,Y) A ancestor(Y,bianca).

@ It can be resolved with rule (4):
(4) parent(X,Y) « father(X,Y).
This gives
father(julia,Y) A ancestor(Y,bianca).

@ Then the fact (5) is applied (with unifier {Y/eric}).
(5) father(julia, eric).
This gives the proof goal:
ancestor(eric,bianca).

5-20 /61

SLD Resolution
00000e0000000000

SLD-Resolution (6)

@ For the proof goal
ancestor(eric,bianca),

one can e.g. apply rule (1) ancestor(X,Y) + parent(X,Y).

@ This replaces the proof goal by:
parent(eric,bianca).
@ Now one can apply rule (3) parent(X,Y) < mother(X,Y).
and get the proof goal

mother(eric,bianca).

@ This is given as a fact (line (6) in the program), and one

gets the empty proof goal “[1".

@ Thus, the query indeed follows from the given program,

and the answer “yes” is printed.
5-21 /61

SLD Resolution
000000e000000000

SLD-Resolution (7)

@ A sequence of proof goals that
e starts with a query @ and
e ends in the empty goal

is called a derivation of () from the given program.

@ In the above derivation, the right program rule was

“guessed” in each step. Prolog will try all possibilities
with backtracking.

e If a query contains variables, the answer computed by a
derivation is the composition of all substitutions applied.

5-22 /61

SLD Resolution
0000000e00000000

SLD-Resolution (8)

Definition (Selection Function):

@ A selection function is a mapping that, given a proof
goal A; A--- A A, returns an index / in the range from 1
to n. (l.e. it selects a literal A;.)

Note:

@ Prolog uses the first literal selection rule, i.e. it selects
always A; in A A--- AA,.

@ As we will see, in deductive databases, a good selection
function is an important part of the optimizer.

The Prolog selection function also does not guarantee completeness for the

answer “no”. However, it is easy to implement with a stack.

5-23 /61

SLD Resolution
00000000e0000000

SLD-Resolution (9)

Definition (SLD-Resolution Derivation Step):

o Let Ay A--- ANA, be a proof goal (query).

Suppose the selection function chooses A;.

@ Let B+ B; \--- A B, be a rule from the program.

Replace the variables in the rule by new variables, let the
result be B' <~ B{ A --- N\ B,

@ Let A; and B’ be unifiable, 6 := mgu(A;, B').

(]

Then the result of the SLD-resolution step is
(ALA- - NA L ABI AN ANBLANAGL A NAR)D.

5-24 /61

SLD Resolution
000000000e000000

SLD-Resolution (10)

Definition (Applicable Rule):

@ In the above situation, the rule B < B; A--- A B, is
called applicable to the proof goal A; A --- N A,.

@ l.e. after renaming the variables in the rule, giving
B' < B{ A\ --- A\ Bl the head literal B" unifies with the
selected literal A; in the proof goal.

Note:

@ Several rules in the program can be applicable to the
same proof goal.

This leads to branches in the SLD-tree explained below.

5-25 /61

SLD Resolution
0000000000e00000

SLD-Resolution (11)

@ It is important that the variables of the rule are renamed
such that there is no name clash with a variable in the
proof goal.

Or a previous substitution, see computed answer substitution below.

@ E.g. suppose the proof goal is p(X, a) and the rule to be
applied is p(b, X) «.

@ There is no unifier of p(X, a) and p(b, X).

@ However, variable names in rules are not important. If the
variable in the rule is renamed, e.g. to X;, the MGU is

{X/b, Xi/a}.

5-26 /61

SLD Resolution
00000000000e0000

SLD-Derivations (1)

Definition (SLD-Derivation, Successful SLD-Derivation):

@ Let a logic program P, a query @, and a selection
function be given.

@ An SLD-derivation for @ is a (finite or infinite) sequence
of proof goals (), Q1,...,@,, ... such that

e Qo=@ and

e @ for i > 1 is the result of an SLD-derivation step
from @;_1 and a rule from P.

@ An SQL-derivation is successful iff it is finite and ends in
the empty clause .

5-27 /61

SLD Resolution
000000000000e000

SLD-Derivations (2)

Definition (Failed SLD-Derivation):

@ An SLD-derivation Q.. .., Q, is failed iff it is finite, the
last goal @, is not the empty clause [J, and the given
program does not contain a rule that is applicable to @,.

Summary: Classification of SLD-Derivations:

@ Successful: Finite, ends in .
o Failed: Finite, ends not in (1, no applicable rule.
@ Incomplete: Finite, there is an applicable rule.

@ Infinite.

5-28 /61

SLD Resolution
0000000000000e00

SLD-Derivations (3)

Example (shown also on next page with applied rules):

@ ancestor(julia,bianca).

parent(julia,Y) A ancestor(Y,bianca).

father(julia,Y) A ancestor(Y,bianca).

@ ancestor(eric,bianca).

parent(eric,bianca).

mother(eric,bianca).

o [1.

5-29 /61

SLD Resolution
00000000000000e0

SLD-Derivations (4)

ancestor(julia,bianca).

| ancestor(X,Z) « parent(X,Y) A ancestor(Y, Z). |

parent(julia,Y) A ancestor(Y,bianca).

|parent(X, Y) < father(X,Y). |

father(julia,Y) A ancestor(Y,bianca).

| father(julia,eric). |

ancestor(eric,bianca).

| ancestor(X,Y) < parent(X,Y). |

parent(eric,bianca).

|parent(X, Y) < mother(X,Y). |

mother(eric, bianca).

O

| mother(eric, bianca). |

5-30 /61

SLD Resolution
000000000000000e

SLD-Derivations (5)

Exercise:

@ Let the following logic program be given:
append([], L, L).
append([F|R], L, [F|A]) < append(R, L, A).

@ Give a successful SLD-derivation for
append ([1], [2], [1,2]).

@ What are the applied rules and most general unifiers in
each step?

5-31 /61

Computed Answers
°

Contents

© Computed Answers

5-32 /61

Computed Answers
®0000

Computed Answers (1)

Definition (Computed Answer Substitution):

@ Given a logic program P and a query @, let

Qo =Q, Q1,...,Q,
be a successful SLD-derivation for @, and 0;,...,0, be

the most general unifiers applied in the SLD resolution steps.

@ Let ¢ be the composition ¢/; o - - - o 6, of these unifers,
restricted to the variables that occur in the query Q.

@ Then ¢ is a computed answer substitution for ().

Or: The answer substitution computed by this SLD-derivation.

5-33 /61

Computed Answers
0®000

Computed Answers (2)

Example (For Program on Slide 18):
@ A successful derivation for parent(X,Y) is as follows:

e Goal: parent(X,Y).
Rule: parent(Xj, Y1) < mother(X1,Y1).
MGU: 64 = {X/Xl./ Y/Yl}.

e Goal: mother(Xy,Y1).
Rule: mother(eric,bianca).
MGU: 6, := {X;/eric,Y;/bianca}.

o Goal: 0.
@ 0100, ={X/eric, Y/bianca, X;/eric, Y;/bianca}.
e Computed answer substitution: {X/eric, Y/bianca}.

5-34 /61

Computed Answers
00®00

Computed Answers (3)

Theorem (Correctness of SLD-Resolution):

@ For every program P, query @, and computed answer
substitution ¢: P = Q0.

l.e. the program (set of Horn clauses) logically implies the query
(conjunction of positive literals) after the answer substitution is applied to

the query. As always, variables are treated as universally quantified.

Theorem (Completeness of SLD-Resolution):

@ For every program P, query @, and substitution ¢ with
P = Q0, there is a computed answer substitution ¢, and
a substitution #; such that 6 = 6y o 6.

l.e. for every correct answer substitution, SLD-resolution either computes

it, or it computes a more general substitution.

5-35 /61

Computed Answers
000®0

Computed Answers (4)

Note (On the Completeness):
o E.g. consider the program consisting of the rule
p(f(X)) « .
@ Let the query be p(Y).

@ The substitution ¢ := {Y'/f(a)} is correct, i.e. it satisfies
P = Q0, but SLD-resolution computes the more general
substitution 0y 1= {Y/f(X)}.

@ 0y is more general than ¢, because it can be composed
with 6; := {X/a} to give 0.

5-36 /61

Computed Answers
lelelelol]

Computed Answers (5)

Note (On Prolog):

@ The correctness result holds only if the Prolog system
does the occur check, e.g. try the program F:

p + qX,X).
qX, £(X)).

Prolog systems without occur check answer “p" with
“yes”, but p is not a logical consequence of P.

@ The completeness result holds only if the Prolog system
terminates. Prolog might run into an infinite loop before
it finds all answers.

5-37 /61

SLD Trees
°

Contents

Q@ SLD Trees

5-38 /61

SLD Trees
©0000000000

SLD-Trees (1)

@ There are usually more than one SLD-derivation for a
given query, because for every proof goal, more than one
rule might be applicable.

@ Every successful SLD-derivation computes only one
answer substitution, but a query might have several
distinct correct answer substitutions.

Thus, it is important for the completeness of SLD-resolution, that there

can be several SLD-derivations for the same query.

@ The different SLD-derivations for a given query are
usually displayed in form of a tree, the SLD-tree.

5-39 /61

SLD Trees
0®000000000

SLD-Trees (2)

Definition (SLD-Tree):

@ The SLD-tree for a program P and a query @
(and a given selection function) is constructed as follows:

e Every node of the tree is labelled with a proof goal (query).
The root node is labelled with @.
o Let a node)V be labelled with the proof goal
ALNAN---NA,, n>1.
Then A has a child node for every rule
B+~ B A---ABn,
in P that is applicable to A1 A - A A,.

The child node is labelled with the result of the
corresponding SLD-resolution step.

5-40 / 61

SLD Trees
00®00000000

SLD-Trees (3)

Example:

@ Consider the following program:

)

) (Y) < father(X,Y).
) father(Julla eric).
) mother(julia, fiona).
) father(ian,eric).

) mother(ian, fiona).

@ Let the query be
parent(julia, X).

@ The SLD-Tree is shown on the next page.

5-41 /61

SLD Trees
000®0000000

SLD-Trees (4)

SLD-Tree:
parent(julia,X)
mother(julia, X) father(julia,X)

O O
@ Often, it is also useful to know the applied rules and/or
the computed answers. This information is shown in the
variant on the next page.

5-42 /61

SLD Trees
0000®000000

SLD-Trees (5)

SLD-Tree (with applied rules and computed answers):

parent(julia,X)

parent(X,¥) - mother(x ¥). Nt (X,Y) father(X,¥).

mother(julia, X) father(julia,X)
mother(julia, fiona). ‘ ‘ father(julia,eric).
O O
X/fiona X/eric

5-43 /61

SLD Trees
00000e00000

SLD-Trees (6)

Another Example (Is eric parent of julia?):

parent(julia,eric)

parent(X.¥) mother(LY). "\ gparent(1.Y) fathex(x.V).

mother(julia, eric) father(julia,eric)
Fails. ‘ father(julia,eric).
O
yes.

5-44 / 61

SLD Trees
000000e®0000

SLD-Trees (7)

@ Please note that branching in an SLD-tree happens only
when there are several applicable rules.
There is exactly one child node for each applicable rule, i.e. a rule of which
the head literal is unifiable with the selected literal in the current node.

l.e. the branching is done only for disjunctions (V).

@ If a rule has several body literals, these are added
together to the current goal.

I.e. for conjunctions (/) no branching is done (otherwise the binding of
common variables would become difficult). If there is always only one
applicable rule, the SLD-tree is a single path from root to leaf, even if the
rules have many body literals. In the examples on the slides, the rules have
only a single body literal, because there is little space. On Slide 30 an
SLD-derivation (a single branch in the SLD-tree) is shown in which a rule

has two body literals.

5-45 / 61

SLD Trees
0000000e000

SLD-Trees (8)

Exercise:

@ Consider again the program for list concatenation:
(1) append([], L, L).

(2) append([FIR], L, [F|A]) < append(R, L, A).

@ What is the SLD-tree for
append(X, Y, [1,2]).

@ Which answers do the different paths in the SLD-tree
(i.e. the SLD-derivations) compute?

5-46 /61

SLD Trees
00000000e00

Infinite Paths (1)

@ Consider the following program:

(1) p(X) < p(X).
(2) p(a).

@ The query p(X) has the following SLD-tree:

p(X)
/N
p(X) 0 X/a
RN
p(X) 0 X/a
RN

0 X/a

5-47 / 61

SLD Trees
000000000e0

Infinite Paths (2)

@ Prolog searches the SLD-tree depth first.
It also uses alternative rules always in the order that they are written down

in the program.

@ In this example, Prolog will get into an infinite loop and
will not compute the correct answer substitution {X/a}.
Thus, Prolog is not complete.

@ However, if one would search the SLD-tree breadth-first,
one would find all correct answer substitutions (because
of the completeness of SLD-resolution).

5-48 / 61

SLD Trees
0000000000e

Infinite Paths (3)

@ But depth-first search is much more efficient to implement
(with a stack).

@ One solution is iterative deepening.

First, one searches the SLD-tree depth-first, but e.g. only to depth 5.
Then, one searches the SLD-tree again up to depth 10 (printing only

answers below depth 5). And so on.

@ In the XSB-system, it one can switch on “tabling” for
selected predicates. Then the system detects when the
same selected literal appears again.

Then infinite loops can happen only when more and more complicated
terms are constructed. For programs without function symbols (and

built-in predicates), termination is guaranteed.

5-49 / 61

Four-Port Model
°

Contents

© Four-Port Model

5-50 /61

Four-Port Model
©0000000000

Box Model (1)

@ Prolog uses SLD-resolution with

o the first-literal selection function, and

o depth-first search of the SLD-tree.

@ However, the Prolog debugger does not show the entire
proof goal (node label in the SLD-tree).

@ Instead, it views predicates as nondeterministic procedures
(procedures that can have more than one solution).

@ The four-port debugger model is standard among Prolog
systems.

5-51 /61

Four-Port Model
0®000000000

Box Model (2)

@ Each predicate invocation (selected literal in the SLD-tree)
is represented as a box with four ports:

o CALL A: Call of A, find first solution.
o REDO A: Is there another solution for A?
e EXIT A: A solution was found, A is proven.

o FAIL A: There is no (more) solution for A.

ShlLL = father(X, eric) — EXIT
FAIL =— <~— REDO

5-52 /61

Four-Port Model
00@00000000

Box Model (3)

o E.g. consider the following small program:

father(ian, eric).
father(julia,eric).
father(eric,alan).

@ Debugger output for the query father(X, eric):

e CALL father(X,eric)

e EXIT father(ian,eric)

Note that the proven instance is shown.

e Then the solution X/ian is displayed.

Suppose one presses “;" to get more solutions.

5-53 /61

Four-Port Model
000®0000000

Box Model (4)

@ Example debugger output, continued:

REDO father(X,eric)
EXIT father(julia,eric)

The solution X/julia is displayed. Some systems
already know that there is no further solution.

Otherwise, one can press again “;".
REDO father(X,eric)
FAIL father(X, eric)

The system prints “no".

5-54 /61

Four-Port Model
00008000000

Box Model (5)

@ Suppose the program is extended with the rule
siblings(X,Y) < father(X,Z) A father(Y,Z) A X\=Y.

@ The box model is:

siblings(X,Y)

!
1

CALL —>
FAIL -

> EXIT

father(X, Z) N father(Y,Z)| |X\=Y
—REDO

f
f
)

E.g. when the first or second body literal exists, the next body literal is

called. When the last body literal is proven, siblings exits.

5-55 /61

Four-Port Model
00000®00000

Box Model (6)

Debugger Output for the query siblings(ian,Y):

(1)
(2)
(2)
(3)
(3)
(4)
(4)
(3)
(3)
(5)
(8)
(1)

ORr P PP P REPERRPR P B O

CALL
CALL
EXIT
CALL
*EXIT
CALL
FAIL
REDO
EXIT
CALL
EXIT
EXIT

siblings(ian,Y).
father(ian, Z).
father(ian,eric).
father(Y,eric).
father(ian,eric).
ian\=1ian.
ian\=1ian.
father(Y,eric).
father(julia,eric).
julia\=ian.
julia\=ian.
siblings(ian, julia).

5-56 /61

Four-Port Model
000000@0000

Box Model (7)

Remark:

@ The exact form of the output depends on the Prolog
system.

@ The above output contains a box number in the first
column and a nesting depth (call stack depth) in the
second column.

@ The asterisc “*" before EXIT marks that there are
possibly further solutions (nondeterministic exit).

Otherwise, the box is already removed, and not visited during backtracking
(i.e. no REDO-FAIL will be shown). Because of such optimizations, the

debugger output might violate the pure four-port model.

5-57 /61

Four-Port Model
0000000e000

Box Model (8)

@ Consider now a predicate defined with two rules:

parent(X,Y) < father(X,Y).
parent(X,Y) < mother(X,Y).

@ The box model for parent is shown on the next page.
There, also a port NEXT appears. This is a speciality of ECLiPSe Prolog. It

shows when execution moves to another rule for the same predicate. In
general, different Prolog systems have extended the basic Four-Port Model
in various ways. E.g. SWI-Prolog can display a port “UNIFY” that shows

the called literal after unification with the rule head.

5-58 /61

Four-Port Model
00000000800

Box Model (9)

parent (X, Y)
CALL - +——> EXIT
father (X, Y)
NEXT
mother (X, Y)
FAIL — < REDO

REDO enters the inner box that was last left with EXIT.

5-59 /61

Four-Port Model
00000000080

Using the Debugger (1)

@ The debugger output is switched on by executing the
built-in predicate “trace” (as a query).

It is switched off with “notrace”. In SWI-Prolog, trace means only that

the next query is traced.

@ The debugger then displays a line for every port and waits
for commands after each line.

@ With “Return” one steps to the next port.

@ Other commands are listed in the manual.

Often, they are displayed when one enters “?". The command “a” should

stop execution of the query (“abort”).

5-60 /61

Four-Port Model
0000000000e

Using the Debugger (2)

@ It is possible to produce debugger output only selectively.

@ One can set breakpoints (“spypoints”) on a predicate
with e.g.

spy father/2.

o If instead of “trace”, one uses “debug”, Prolog executes
the program without interruption until it reaches a
predicate with a spypoint set.

Then one can continue debugging as above or “leap” to the next spypoint

(usually with the command “1"). Of course, there are “nodebug” and “nospy".

5-61 /61

	Unification
	Unification

	SLD Resolution
	SLD Resolution

	Computed Answers
	Computed Answer Substitution

	SLD Trees
	SLD Trees

	Four-Port Model
	The Four-Port/Box Model of the Debugger

