
Logic Programming and
Deductive Databases

Chapter 7: Practical Prolog
Programming

Prof. Dr. Stefan Brass
Martin-Luther-Universität Halle-Wittenberg

Summer 2024

http://www.informatik.uni-halle.de/˜brass/lp24/

7. Practical Programming 7-1 / 62

http://www.informatik.uni-halle.de/~brass/lp24/

Objectives

After completing this chapter, you should be able to:
explain the effect of the cut.

enumerate some applications of the cut.

explain why the cut is somewhat dangerous.
Give an example of an unexpected behaviour.

decide whether a recursive predicate is tail recursive.

explain how to translate loops from imperative programs
to Prolog code.

explain different ways to represent arrays in Prolog.

write Prolog programs for practical applications.
7. Practical Programming 7-2 / 62

Contents

1 The Cut

2 Performance Improvements

3 Further Applications

4 Dangers

5 Prolog vs. Pascal

7. Practical Programming 7-3 / 62

The Cut: Effect (1)

The cut, written “!” in Prolog, removes alternatives that
otherwise would have been tried during backtracking.
E.g. consider this rule:

p(t1, . . . , tk) :- A1, ..., Am, !, B1, ..., Bn.

Until the cut is executed, processing is as usual.

When the cut is reached, all previous alternatives for this
call to the predicate p are removed:

No other rule about p will be tried.

No other solutions to the literals A, . . . , Am will be
considered.

7. Practical Programming 7-4 / 62

The Cut: Effect (2)

Example:
p(X) :- q(X), !, r(X).
p(X) :- s(X).
q(a).
q(b).
r(X).
s(c).

With the cut, the query p(X) returns only X=a.

Without the cut, the solutions are X=a, X=b, X=c.

Exercise: Can the second rule about p ever be used?

7. Practical Programming 7-5 / 62

The Cut: Effect (3)

Four-Port Model without Cut:

p(X)

CALL
q(X) r(X)

EXIT

FAIL
s(X)

REDO

7. Practical Programming 7-6 / 62

The Cut: Effect (4)

Four-Port Model with Cut:

p(X)

CALL
q(X) ! r(X)

EXIT

FAIL
s(X)

REDO

7. Practical Programming 7-7 / 62

The Cut: Effect (5)

A call to the cut immediately succeeds (like true).

Any try to redo the cut not only fails, but immediately
fails the entire predicate call.

In the SLD-tree, the cut “cuts away” all still open
branches between

the node where the cut was introduced (i.e. the child of
which contains the cut), and

the node where the cut is the selected literal.

7. Practical Programming 7-8 / 62

The Cut: Effect (6)

p(X)

q(X),!,r(X) s(X)
. . .

!,r(a) !,r(b)
. . .

r(a)

7. Practical Programming 7-9 / 62

The Cut: Effect (7)

Before and after the cut, the backtracking is normal
(only not through the cut):

p(X,Y) :- q1(X), q2(X,Y).
p(X,Y) :- r1(X), r2(X), !, r3(X,Y), r4(Y).
p(X,Y) :- s(X,Y).
q1(a).
q1(b). q2(b,c).
r1(d).
r1(e). r2(e).
r1(f). r2(f).
r3(e,g).
r3(e,h). r4(h).
r3(f,i). r4(i).
s(j,k).

The query p(X,Y) has solutions X=b,Y=c and X=e,Y=h.
7. Practical Programming 7-10 / 62

Contents

1 The Cut

2 Performance Improvements

3 Further Applications

4 Dangers

5 Prolog vs. Pascal

7. Practical Programming 7-11 / 62

Cut: Improving Runtime (1)

One application of the cut is to improve the runtime of a
program by eliminating parts of the proof tree that cannot
yield solutions or at least cannot yield any new solutions.

Consider the predicate abs that computes the absolute
value of a number:

abs(X,X) :- X >= 0.
abs(X,Y) :- X =< 0, Y is -X.

When the first rule is successful, it is clear that the
second rule does not have to be tried.

7. Practical Programming 7-12 / 62

Cut: Improving Runtime (2)

Consider now the goal
p(X), abs(X,Y), Y > 5

with the facts p(3), p(0), p(-7).

First p(X) succeeds with X bound to 3, then abs(3,Y)
succeeds for Y=3, but then 3 > 5 fails.

Now backtracking would normally first try to find an
alternative solution for abs(3,Y), since there is another
rule about abs that has not yet been tried.

This is obviously useless, and the runtime can be
improved by immediately backtracking to p(X).

7. Practical Programming 7-13 / 62

Cut: Improving Runtime (3)

With the cut, one can tell the Prolog system that when
the first rule succeeds, the second rule cannot give
anything new:

abs(X,X) :- X >= 0, !.
abs(X,Y) :- X =< 0, Y is -X.

Of course, one could have (should have) written the
condition in the second rule X < 0.

Then some (but not all) Prolog systems are able to
discover themselves that the rules are mutually exclusive.

7. Practical Programming 7-14 / 62

Cut: Improving Space (1)

Making clear that a predicate has no other solution
improves also the space (memory) efficiency.

The Prolog system must keep a record (“choicepoint”)
for each predicate call that is not yet complete
(for backtracking into the predicate call later).

Even worse, certain data structures within the Prolog
system must be “frozen” when it is necessary to support
later backtracking to this state.

Then e.g. variable bindings must be logged (on the “trail”)
so that they can later be undone.

7. Practical Programming 7-15 / 62

Cut: Improving Space (2)

In imperative languages, when a procedure call returns,
its stack frame (containing local variables and other
information) can be reused.

In Prolog, this is not always the case, because it might be
necessary to reactivate the procedure call and search for
another solution.

E.g. consider the following program:

p(X) :- q(X), r(X).
q(X) :- s(X), t(X).
s(a). s(b). t(a). t(b). r(b).

7. Practical Programming 7-16 / 62

Cut: Improving Space (3)

The call q(X) first exits with X=a, but then r(a) fails,
thus the call q(X) is entered again, which in turn
reactives s(X).

Upon backtracking, also the binding of X must be undone.

In the above example, not much can be improved,
because there really are alternative solutions.

However, when a predicate call has only one solution, it
should be executed like a procedure call in an imperative
language.

7. Practical Programming 7-17 / 62

Cut: Improving Space (4)

Predicate calls that can have at most one solution are
called deterministic.

Sometimes one calls the predicate itself deterministic, but then one usually
has a specific binding pattern in mind. E.g. append is deterministic for the
binding pattern bbf, but it is not deterministic for ffb.

For efficient execution, it is important that the Prolog
system understands that a predicate call is deterministic.
Here a cut can help.

Actually, the cut in the definition of abs makes the predicate deterministic.
In general, it might be important that abs(0,X) succeeds “two times”,
Prolog is not allowed to automatically remove one solution. Deductive
databases are set-oriented, there more powerful optimizers are possible.

7. Practical Programming 7-18 / 62

Cut: Improving Space (5)

Consider abs applied to a list:
abs_list([], []).
abs_list([X|R], [Y|S]) :- abs(X, Y),

abs_list(R, S).

When the Prolog system thinks that abs is
nondeterministic, it will keep the stackframe for each call
to abs (and for the calls to abs_list).

When a predicate calls a nondeterministic predicate, it
automatically becomes nondeterministic, too.

Only for the last body literal of the last rule about a predicate, the stack
frame of the predicate is reused (under certain conditions), and thus does
not remain, even when this body literal is non-deterministic.

7. Practical Programming 7-19 / 62

Cut: Improving Space (6)

In the above example, making abs deterministic (by
means of a cut) is a big improvement.

Then most Prolog systems will automatically deduce that
also abs_list is deterministic.

For the only possible binding patterns bf and bb.

Usually, the outermost functor of the first argument is
considered: Since it is “[]” for the first rule, and “.” for
the second, always only one of the two rules is applicable
(if the first argument is bound).

7. Practical Programming 7-20 / 62

Cut: Improving Space (7)

It is also possible to remove unnecessary stack frames at
a later point.

E.g. suppose that abs (and thus abs_list) remain
nondeterministic, and consider the goal:

abs_list([-3,7,-4], X), !, p(X).

The call to abs_list will leave many stack frames
behind, but these are deleted by the cut.

It is probably better style to avoid the nondeterminism at the place where
it occurs. However, one should not use too many cuts, and it might be
easier to clean up the stack only at a few places.

7. Practical Programming 7-21 / 62

Contents

1 The Cut

2 Performance Improvements

3 Further Applications

4 Dangers

5 Prolog vs. Pascal

7. Practical Programming 7-22 / 62

Cut: If-Then-Else (1)

The cut is also used to encode an “if then else”.

Consider the following predicate:
p(X, Y) :- q1(X), !, r1(X, Y).
p(X, Y) :- q2(X), !, r2(X, Y).
p(X, Y) :- r3(X, Y).

This is equivalent to (assuming that q1 and q2 are
deterministic):

p(X, Y) :- q1(X), r1(X, Y).
p(X, Y) :- \+ q1(X), q2(X), r2(X, Y).
p(X, Y) :- \+ q1(X), \+ q2(X), r3(X, Y).

7. Practical Programming 7-23 / 62

Cut: If-Then-Else (2)

The formulation with the cut is a bit shorter.
The difference becomes the bigger, the more cases there are.

Furthermore, the runtime is shorter: In the version
without the cut, q1(X) is computed up to three times.

But removing the cut in first version would completely
change the semantics of the program.

The cut is no longer only an “optimizer hint”.

7. Practical Programming 7-24 / 62

Cut: If-Then-Else (3)

The logical semantics of programs with negation as
failure (“\+”) has be extensively studied and there are
good proposals.

I do not know of successful tries to give the cut a clear
logical (declarative) semantics.

The cut can basically be understood only operationally. One problem is
that the cut is used for many different purposes, and it might be difficult
to automatically discover for which one.

Pure logic programmers try to avoid the cut, at least
when it affects the logic of the program.

7. Practical Programming 7-25 / 62

Cut: If-Then-Else (4)

Prolog has an “if-then” operator -> that can be used to
have the advantages of the cut, while making the logical
intention clear.

E.g. one could write the above procedure as
p(X, Y) :- q1(X) -> r1(X,Y);

q2(X) -> r2(X,Y);
r3(X,Y).

A -> B has basically the same effect as A, !, B.
However, if there should be further rules about p, this cut does not remove
the possibility to try these rules. It does remove alternative solutions for A,
and it does remove the possibility to try the disjunctive alternatives within
the rule.

7. Practical Programming 7-26 / 62

Cut: Negation

Conversely, one can implement negation as failure with
the cut (not is only another name for \+):

not(A) :- call(A), !, fail.
not(_).

The first rule ensures that if A succeeds, not(A) fails.

The second rule makes not(A) true in all other cases
(i.e. when A fails).

Of course, if A should run into an infinite loop, also not(A) does not
terminate.

7. Practical Programming 7-27 / 62

Cut: One Solution (1)

Suppose that email addresses of professors are stored as
facts, and that the same person can have several email
addresses:

prof_email(brass, ’sbrass@sis.pitt.edu’).
prof_email(brass, ’brass@acm.org’).
prof_email(spring, ’mspring@sis.pitt.edu’).
...

The cut can be used to select a single address of a given
professor:

prof_email(brass, E), !, send_email(E).

7. Practical Programming 7-28 / 62

Cut: One Solution (2)

Prolog has a built-in predicate once that can be used
instead of the cut:

once(prof_email(brass, E)), send_email(E).

once is defined as:
once(A) :- call(A), !.

In the example, the following is equivalent:
prof_email(brass, E) -> send_email(E).

However, the solution with once makes the intention
clearer.

7. Practical Programming 7-29 / 62

Contents

1 The Cut

2 Performance Improvements

3 Further Applications

4 Dangers

5 Prolog vs. Pascal

7. Practical Programming 7-30 / 62

Cut: Dangers (1)

The cut can make programs wrong if predicates are called
with unexpected binding patterns.

E.g. the predicate for the absolute value can also be written
as follows (using the cut as in the if-then-else pattern):

abs(X,X) :- X >=0, !.
abs(X,Y) :- Y is -X.

Since the second rule is executed only when the first rule
is not applicable, it might seem that the test X =< 0
used earlier is superfluous.

7. Practical Programming 7-31 / 62

Cut: Dangers (2)

This is indeed true for the binding pattern bf, but
consider now the call abs(3,-3)!

In general, the rule is that the cut must be exactly at the
point where it is clear that this is the right rule: Not too
early and not too late.

Here the unification must happen after the cut:
abs(X,Y) :- X >= 0, !, X = Y.
abs(X,Y) :- Y is -X.

This would work also with binding pattern bb.

7. Practical Programming 7-32 / 62

Cut: Dangers (3)

Consider this predicate:

person(X, male) :- man(X), !.
person(X, female) :- woman(X).

Since man and woman are disjoint, the cut was only added
to improve the efficiency.

It works if person is called with binding pattern bf or bb.
However, consider what happens if person is called with
binding pattern ff!

It is interesting that here the more general binding pattern poses a
problem, whereas in the abs example, the more specific binding pattern is
not handled.

7. Practical Programming 7-33 / 62

Types of Cuts

Cuts in Prolog programs are usually classified into

Green Cuts: Do not modify the logical meaning of the
program, only improve the runtime/space efficiency.

Some authors also distinguish blue cuts: In this case, a good Prolog
system should be able to determine itself that there are no further
solutions. Blue cuts are intended only for very simple Prolog
systems. “Grue Cuts”: Green or blue cuts.

Red cuts: Modify the declarative meaning of the
program.

Good Prolog programmers try to use red cuts only very seldom.

7. Practical Programming 7-34 / 62

Cut: Summary, Outlook

The cut is necessary for efficient Prolog programming,
but it destroys the declarative meaning of the programs
and can have unexpected consequences.

The better Prolog implementations get, the less
important will be the cut.

Newer logic programming languages usually try to replace
the cut by other constructs that have a more declarative
meaning.

If possible, use ->, \+, once instead.

Use the cut only as last resort.

7. Practical Programming 7-35 / 62

Contents

1 The Cut

2 Performance Improvements

3 Further Applications

4 Dangers

5 Prolog vs. Pascal

7. Practical Programming 7-36 / 62

Prolog vs. Pascal

“Prolog is different, but not that different.”
This citation is probably from O’Keefe, The Craft of Prolog.

In general, one can translate a given imperative algorithm
(from Pascal, C, etc.) into Prolog.

The resulting program might be not the best possible program for the task,
just as a word-by-word translation from e.g. German to English gives bad
English. But at least, if one knows how to solve a problem in an imperative
language, one should also be able to write a Prolog program for it.

The goal of this section is to teach some typical patterns
of Prolog programming.

7. Practical Programming 7-37 / 62

Data Types (1)

Pascal Prolog
integer integer
real float
char ASCII-code (integer)

atom
string list of ASCII-codes

atom
string (in some Prologs)

file stream
atom (alias, in some Prologs)
switching standard IO

7. Practical Programming 7-38 / 62

Data Types (2)

Pascal Prolog
enumeration type set of atoms
(variant) record composed term
(union/struct in C) functor(field1, ..., fieldN)
array list

set of facts: a(i, valI)
term: a(val1, ..., valN)

pointer structured terms (e.g., lists)
otherwise like array index

— partial data structures
(terms with variables)

7. Practical Programming 7-39 / 62

Variables (1)

One can assign a value to a Prolog variable only once.
This is the biggest difference to imperative programming.

Afterwards it is automatically replaced everywhere by its
value.

I.e. it ceases to exist as a variable.

Thus, there is no possibility to assign a different value
during normal, forward execution.

Of course, with backtracking, one can go back to the point where the
variable was still unbound. But then all other variable bindings that
happend since that point in time are also undone.

7. Practical Programming 7-40 / 62

Variables (2)

Thus, one uses a different variable for every value:

procedure p(n: integer, var m: integer);
begin

m := n ∗ 2;
m := m + 5;
m := m ∗ m

end

p(N, M) :-
M1 is N ∗ 2,
M2 is M1 + 5,
M is M2 ∗ M2.

This is an artificial example. Normally, one would compute the value
of m in a single expression.

7. Practical Programming 7-41 / 62

Variables (3)

Using a new variable for every assignment is obviously
possible for sequential/linear code.

Loops are formulated in Prolog by recursion, thus one can
also get a fresh set of variables for every iteration
(see Slide 57 for more efficient solution):

for i := 1 to n do writeln(i);

loop(N) :- loop body(1, N).
loop body(I, N) :- I > N.
loop body(I, N) :- I =< N, write(I), nl,

Next I is I + 1,
loop body(Next I, N).

7. Practical Programming 7-42 / 62

Variables (4)

For variables passed between procedures (in/out-parameters),
a Pascal variable is split into two Prolog variables:
One for the input value, and one for the output value
(“accumulator pair”).

procedure double(var n: integer);
begin

n := n ∗ 2
end

double(N In, N Out) :-
N Out is N In ∗ 2.

7. Practical Programming 7-43 / 62

Variables (5)

Global variables in Pascal should be made predicate
parameters in Prolog.

Values that are passed unchanged from predicate to predicate are called
“context arguments”.

If there are too many global variables, one can pack them
into a structure (composed term) which can be passed as
a unit. An example is shown on the next slide.

Now every predicate that needs access to the “global state” has two
additional parameters +StateIn and -StateOut. If the predicate does not
need to change the state, a single parameter +State suffices. The state
can encapsulate any number of components, and one can easily add
components if the main code uses only getA(+State, -A) and
setA(+StateIn, +A, -StateOut) predicates for accessing the state
(see next slide). One can also check the validity of the component values
in the setA-predicates.

7. Practical Programming 7-44 / 62

Variables (6)

Data Structure with Three Components X, Y, Z:
The variable values are packed into a term xyz(X,Y,Z).

init(-Obj) returns object with initial values:
init(xyz(0,0,0)).

getA(+Obj, -A) returns value of component A:
getX(xyz(X,_,_), X).
getY(xyz(_,Y,_), Y).
getZ(xyz(_,_,Z), Z).

setA(+In, +A, -Out) changes value of component A:
setX(xyz(_,Y,Z), X, xyz(X,Y,Z)).
setY(xyz(X,_,Z), Y, xyz(X,Y,Z)).
setZ(xyz(X,Y,_), Z, xyz(X,Y,Z)).

7. Practical Programming 7-45 / 62

Variables (7)

One can represent a global variable also with a fact in the
dynamic database:

x := x+1

x(X), retract(x(X)), !, X1 is X+1, assert(x(X1)).
There is always only one fact about the predicate x which contains
the current value of X.

Some Prolog systems have support for destructive
assignments and global variables, but that is very
system-dependent.

In GNU-Prolog, there is, e.g., g_assign/2, g_read/2, g_array_size/2. In
SWI-Prolog, see flag/3, setarg/3. In Sepia/ECLiPSe, see setval/2.

7. Practical Programming 7-46 / 62

Conditions: If, Case (1)

Example:

procedure min(i, j: integer; var m: integer);
begin if i < j then m := i else m := j end

There are basically three possibilities to translate
conditional statements:

One rule per case, body contains the complete condition
(i.e. the negation of all previous cases):

min(I, J, M) :- I < J, M = I.
min(I, J, M) :- \+ (I < J), M = J.

Of course, one would write I >= J instead of \+ (I < J). But not all
conditions can be inverted so simply.

7. Practical Programming 7-47 / 62

Conditions: If, Case (2)

Translations of if-statements, continued:

A rule per case, each starts with the “else if”-condition
and a cut:

min(I, J, M) :- I < J, !, M = I.
min(I, J, M) :- M = J.

Using the conditional operators, i.e. a rule with a body
of the form (Cond-> Then ; Else):

min(I, J, M) :- (I < J -> M = I; M = J).

If possible, it is best to express the condition in the head
of the rule (see next slide).

7. Practical Programming 7-48 / 62

Conditions: If, Case (3)

Example (condition in the rule head):

procedure p(c: color; var i: integer);
begin

case c of red: i := 1;
green: i := 2;
blue: i := 3;

end
end

p(red, I) :- I = 1.
p(green, I) :- I = 2.
p(blue, I) :- I = 3.

Of course, one would simplify this further to, e.g., p(red, 1).

7. Practical Programming 7-49 / 62

Conditions: If, Case (4)

The first solution (complete condition in every rule) is
logically cleanest, it also permits to understand each rule
in isolation.

However:

There is a certain duplication of code.

In many Prolog systems, it will leave a choice point
behind if the first alternative is chosen.

Some Prolog systems are intelligent enough to understand that
I < J and I >= J exclude each other, thus no choice point is needed.
The solution with the cut or -> does not have this problem.

7. Practical Programming 7-50 / 62

Conditions: If, Case (5)

In general, it is better to use the explicit conditional
operator -> instead of the cut !, because this makes the
purpose of the cut clear.

However, this makes the syntactical structure of the
rules more complicated.

Most Prolog systems have an index (hash table) over the
outermost functor of the first argument.

Thus, if it is possible to code the condition in the rule
head (first argument), this will be especially efficient,
and no choicepoint will be generated.

7. Practical Programming 7-51 / 62

Loops: Tail-Recursion (1)

Loops are usually written as end-recursions.

One should try to make sure that only a constant amount
of memory is needed, not an amount linear in the number
of executions of the loop body.

A Prolog system reuses the memory of a rule invocation
when the last body literal is called and there are no more
alternatives.

If necessary, one can use a cut to make clear that other rules are not
applicable. It is best when the recursive call is the last literal of the last
rule about the predicate.

7. Practical Programming 7-52 / 62

Loops: Tail-Recursion (2)

Example (list length):

procedure length(l: list; var n: integer);
begin

n := 0;
while l <> nil do begin

n := n + 1;
l := l ↑.next

end
end

7. Practical Programming 7-53 / 62

Loops: Tail-Recursion (3)

Direct Translation to Prolog:
length(L, N) :-

length(L, 0, N).

length(L, N In, N Out) :-
L = [], !,
N Out = N In.

length(L, N In, N Out) :-
N Next is N In + 1,
[|L Next] = L,
length(L Next, N Next, N Out).

7. Practical Programming 7-54 / 62

Loops: Tail-Recursion (4)

Using the rule head for the conditions (makes the cut
unnecessary):

length(L, N) :-
length(L, 0, N).

length([], N In, N Out) :-
N Out = N In.

length([|L Next], N In, N Out) :-
N Next is N In + 1,
length(L Next, N Next, N Out).

7. Practical Programming 7-55 / 62

Loops: Tail-Recursion (5)

Alternative (elegant, but not tail recursive):
length([], 0).
length([|L Rest], N) :-

length(L Rest, N Rest),
N is N Rest + 1.

In this case, the system must return to a rule invocation
after the recursive call.

Thus, many systems will need memory that is linear in
the length of the list. But efficiency is not all!

The memory will become free after the call to the length predicate. If the
lists are not extremely long, the more elegant solution should be preferred.

7. Practical Programming 7-56 / 62

Loops: Tail-Recursion (6)

Consider again the for-loop:

for i := 1 to n do writeln(i);

loop(N) :- loop body(1, N).
loop body(I, N) :- I > N.
loop body(I, N) :- I =< N, write(I), nl,

Next I is I + 1,
loop body(Next I, N).

The last call (I = N+1) probably leaves a choice point behind.
A good Prolog system might discover that the two conditions I > N and
I =< N are mutually exclusive. Then there will be no choicepoint.

However, for all other calls, tail recursion works:
The memory complexity is still constant.

7. Practical Programming 7-57 / 62

Loops: Tail-Recursion (7)

The stack frame of a rule invocation
p(. . .)← B1 ∧ · · · ∧ Bn

is recycled for the last call in the rule (Bn) if

this is the last rule about p
Or the compiler knows that following rules are not applicable.

and no alternatives remain for the previous body literals
B1, . . . , Bn−1.

Thus, it is certainly not necessary to enter this rule invocation
again. If necessary and logical possible, one might add a cut before
the last literal of the last rule to eliminate choice points generated
by B1, . . . , Bn−1.

It does not prevent this optimization if the last literal Bn
might have several solutions.

7. Practical Programming 7-58 / 62

Loops: Tail-Recursion (8)

In the example, one could use a cut to make clear that
the second rule is no alternative when the first rule is
applicable:

loop body(I, N) :- I > N, !.
loop body(I, N) :- write(I), nl,

Next I is I + 1,
loop body(Next I, N).

However, too many cuts are bad style.

When testing an auxiliary predicate in isolation, it is nice
if the Prolog system does not wait for the user to press “;”,
only to answer false/no afterwards.

7. Practical Programming 7-59 / 62

Loops: Backtracking (1)

Some loops can also be written with “repeat” and
backtracking.

This is only possible if only the side effect of the loop body
is important (input/output, changes to the dynamic DB),
but no variable bindings must be kept from one iteration
to the next.

If it is possible, it is very efficient.
Not only the stack frames of predicate invocations are reused, but also all
term structures that were built up. This is important for simple Prolog
systems that have no garbage collection: There, space on the heap is
recycled only upon backtracking. For loops that run an indefinite amout of
time (command loops etc.), this should be used.

7. Practical Programming 7-60 / 62

Loops: Backtracking (2)

procedure skip(c: character);
var c1: character;
begin

repeat
read(c1)

until c1 = c
end

skip(C) :- repeat,
get code(C1),
C1 = C,
!.

The cut is important to avoid the re-execution of the loop if later in the
program something fails and backtracking starts.

7. Practical Programming 7-61 / 62

Loops: Backtracking (3)

Another typical pattern for a backtracking loop is to
iterate over all solutions to a predicate:

print all composers :-
composer(FirstName, LastName),
write(LastName),
write(’, ’),
write(FirstName),
nl,
fail.

print all composers.
The fact at the end ensures that the predicate ultimatively succees.

7. Practical Programming 7-62 / 62

	The Cut
	The Cut

	Performance Improvements
	Improving Runtime with the Cut
	Improving Memory Usage with the Cut

	Further Applications
	If-Then-Else
	Negation
	One Solution

	Dangers
	Dangers of the Cut

	Prolog vs. Pascal
	Prolog vs. Pascal
	Data Types
	Variables
	Conditions
	Loops

