
Logic Programming and
Deductive Databases

Chapter 2: Prolog Tutorial

Prof. Dr. Stefan Brass

Martin-Luther-Universität Halle-Wittenberg

Summer 2024

http://www.informatik.uni-halle.de/˜brass/lp24/

2. Prolog Tutorial 2-1 / 60

http://www.informatik.uni-halle.de/~brass/lp24/


Objectives

After completing this chapter, you should be able to:

use a Prolog system.
How does one leave the interpreter?
How does one load a file with a Prolog program?

explain the syntax of Prolog predicates, constants and
variables.

explain the basic syntax ofafacts and rules in Prolog.

develop simple Prolog/Datalog programs.

2. Prolog Tutorial 2-2 / 60



Contents

1 DBs as Sets of Facts

2 Using a Prolog System

3 Rules as Logical Formulas

4 Recursion

5 Exercises

2. Prolog Tutorial 2-3 / 60



Basic Prolog Syntax: Identifiers (1)

In Prolog, identifiers for constants (and predicates) start
with a lowercase letter.

Identifiers for constants and predicates are also called “atoms” in prolog.

The reason is that variable names are distinguished
because they start with an uppercase letter.

Prolog is a language without declarations (it uses “dynamic typing”).
The system must know whether an identifier is a constant or a variable.
Other languages, e.g. PHP and XPath/XQuery, use a special character
(a “$”-Sign) to mark variables.

Otherwise both contain
uppercase and lowercase letters,
digits, and
the underscore symbol “_”.

2. Prolog Tutorial 2-4 / 60



Basic Prolog Syntax: Identifiers (2)

In Prolog, one can also use any sequence of characters
enclosed in single quotes ' (apostrophe) as constant or
predicate.

The constants c and 'c' are treated as identical.
But it is good style to decide for one spelling. While it is in principle
possible to write predicate names in '...', this is never done.

The constants c and 'C' are different.
Prolog is case sensitive.

Of course, one can also use numeric constants as known
in other languages.

We will look at the details in a later chapter. For the moment, it suffices
that integers like 123 are possible.

2. Prolog Tutorial 2-5 / 60



Example Database (1)

As a first example in Prolog, it is customary to study
family relations.

In a simple relational database, we could use three tables:

person(ID, FirstName, LastName, Gender)
Gender can be m (male), f (female) or d (other).
As known from the database course, primary key attributes are
underlined. E.g., there cannot be two table rows with the same
value in the ID column (attribute).

parent(Child→ person, Parent→ person)
The arrow marks a foreign key. All values appearing in the Child
and Parent columns must appear also as primary key value,
i.e. as ID, in the referenced table person.

couple(Partner1→ person, Partner2→ person)

2. Prolog Tutorial 2-6 / 60



Example Database (2)

person
ID FirstName LastName Gender
alan Alan Smith m
bianca Bianca Smith f
chris Christopher Johnson m
doris Doris Johnson f
eric Eric Smith m
fiona Fiona Smith f
george George Johnson m
helen Helen Johnson f
ian Ian Smith m
julia Julia Smith f
ken Kenneth Smith m
laura Laura Williams f

2. Prolog Tutorial 2-7 / 60



Example Database (3)

parent
Child Parent
eric alan
eric bianca
fiona chris
fiona doris
george chris
george doris
ian eric
ian fiona
julia eric
julia fiona
ken george
ken helen

2. Prolog Tutorial 2-8 / 60



Example Database (4)

couple
Partner1 Partner2
alan bianca
chris doris
eric fiona
george helen
ken laura

2. Prolog Tutorial 2-9 / 60



Example Database (5)

◦◦alan bianca

◦◦eric fiona

ian julia

◦◦chris doris

◦◦george helen

◦◦ken laura

2. Prolog Tutorial 2-10 / 60



Predicates (1)

Logic is the science of statements and their interrelationships,
especially consequence.

Consider a statement with placeholders,
e.g. “C is child of P (parent)”.

Let us abbreviate this to “parent(C, P)”.

The statement can be true or false if concrete values are
given for the placeholders.

E.g. in the situation described in the above DB:
parent(eric, alan) is true, and
parent(eric, bianca) is true, but
parent(eric, fiona) is false.

2. Prolog Tutorial 2-11 / 60



Predicates (2)

“parent” is an example for a predicate symbol.
It has two arguments: child and parent.

The number of arguments is called the arity of a predicate.

Formally, a predicate is a function that assigns true or
false to given values for the arguments.

A predicate symbol is a name for such a function.
One could also choose another name, such as p or child_of. One only has
to use one name consistently. Logic and Prolog do not understand the
meaning of the name, they only know the specified facts and rules.

Since logic analyses statements, it carefully distinguishes
between symbols and their interpretation.

Relation names are defined in the DB schema, relations in the state.

2. Prolog Tutorial 2-12 / 60



Predicates (3)

The extension of a predicate is the set of argument tuples
for which the predicate is true.

(eric, alan) belongs to the extension of parent (in the situation of the
above DB state), while (eric, chris) does not.

Predicates (with finite extension) are really the same as
(database) relations.

E.g. given a relation, one can see it as predicate that is true for the tuples
in the relation, and false for all other arguments. In the opposite direction,
one chooses the extension of the predicate as the relation.

In Prolog, one can define predicates with infinite extension,
e.g. odd(n) is true iff n is an odd number.

2. Prolog Tutorial 2-13 / 60



Predicates (4)

In logic and Prolog, the arguments of a predicate are
identified by position.

I.e. one must know that the first argument is the child and the second the
parent. The names of the placeholders in the original statement (C, P) are
not important.

In SQL, the columns of a table (attributes of a relation)
are identified by name.

However, one could also define a logic programming
language that uses argument names.

If there are few arguments, and one applies consistent style rules for
ordering the arguments, then the Prolog notation is shorter (more concise).
With many arguments, the SQL notation is safer.

2. Prolog Tutorial 2-14 / 60



More about Prolog Syntax

In Prolog, every fact (or rule) must be terminated with
“.” (full stop).

It is required that the full stop is followed by white space (a space or a line
break). The reason is that “.” is also an operator in Prolog (list constructor).
If it is used that way, it is not followed by white space.

One should avoid spaces between the predicate and the
opening parenthesis “(”.

This is used to distinguish operator syntax from the standard syntax.
Operator syntax is treated in a later chapter.

Comments in Prolog start with “%” and extend to the end
of the line. (Alternative: /* ... */ as in C.)

2. Prolog Tutorial 2-15 / 60



No Declarations in Prolog

Prolog is a concise language: One does not have to
declare predicates or constants.

Predicates are automatically declared by writing facts or rules about them.
This is a bit dangerous because typing errors might not be detected.
However, most Prolog systems require at least that (1) facts and rules
about one predicate are not interrupted by facts/rules about another
predicate (2) at least one fact/rule exists for every predicate that is called.
This gives already some protection.

Prolog is untyped. However, many type systems have
been proposed and implemented for Prolog.

It is easy to write a type checker for Prolog in Prolog, because Prolog has
good metaprogramming facilities (processing programs as data).

2. Prolog Tutorial 2-16 / 60



Example DB as Prolog Facts (1)

https://users.informatik.uni-halle.de/˜brass/lp23/prolog/family.pl

person(alan, 'Alan', 'Smith', m).
person(bianca, 'Bianca', 'Smith', f).
person(chris, 'Christopher', 'Johnson', m).
person(doris, 'Doris', 'Johnson', f).
person(eric, 'Eric', 'Smith', m).
person(fiona, 'Fiona', 'Smith', f).
person(george, 'George', 'Johnson', m).
person(helen, 'Helen', 'Johnson', f).
person(ian, 'Ian', 'Smith', m).
person(julia, 'Julia', 'Smith', f).
person(ken, 'Kenneth', 'Smith', m).
person(laura, 'Laura', 'Williams', f).

2. Prolog Tutorial 2-17 / 60

https://users.informatik.uni-halle.de/~brass/lp23/prolog/family.pl


Example DB as Prolog Facts (2)

parent(eric, alan).
parent(eric, bianca).
parent(fiona, chris).
parent(fiona, doris).
parent(george, chris).
parent(george, doris).
parent(ian, eric).
parent(ian, fiona).
parent(julia, eric).
parent(julia, fiona).
parent(ken, george).
parent(ken, helen).

2. Prolog Tutorial 2-18 / 60



Example DB as Prolog Facts (3)

couple(alan, bianca).
couple(chris, doris).
couple(eric, fiona).
couple(george, helen).
couple(ken, laura).

2. Prolog Tutorial 2-19 / 60



Contents

1 DBs as Sets of Facts

2 Using a Prolog System

3 Rules as Logical Formulas

4 Recursion

5 Exercises

2. Prolog Tutorial 2-20 / 60



Loading Predicate Definitions (1)

Write the logic program into a file, e.g. “family.pl”.
[https://users.informatik.uni-halle.de/˜brass/lp23/prolog/family.pl]
The extension “.pl” is usual for Prolog sources. Unfortunately, it is also
used for Perl programs (Prolog was first!). Some Prolog systems permit to
choose the extension “.pro” during installation. Of course, one can use
any extension, but if it is not the standard extension, one later has to
specify it explicitly.

Start the Prolog system (e.g. “swipl” or “pl” under UNIX).

It should display the prompt “?-”.
This means that it is in query mode.

Read the file with the command “[family].”.
The brackets are an abbreviation for the built-in predicate “consult”, e.g.
“consult(family).”. Commands are queries to special predicates.

2. Prolog Tutorial 2-21 / 60

https://users.informatik.uni-halle.de/~brass/lp23/prolog/family.pl


Loading Predicate Definitions (2)

Do not forget the full stop “.” at the end!
Every Prolog fact, rule, query, or command must be terminated with a full
stop. Otherwise, Prolog assumes that the command continues on the next
line and either silently waits for more input or displays a prompt like “|”.
Of course, one can then still write the full stop.

If one has to specify a path (or a filename that is not a
Prolog identifier) one must put it in single quotes '
(to make it a Prolog identifier), e.g.
['C:/stefan/courses/lp23/examples/family.pl'].

Note that the backslash “\” is usually interpreted as
escape symbol, thus it must be doubled: “\\”.

SWI Prolog accepts a normal slash “/” in filenames also under Windows.

2. Prolog Tutorial 2-22 / 60



Loading Predicate Definitions (3)

If one wants to enter rules and facts interactively,
one can read the special file “user”, e.g. “[user].”.

The input usually ends with the UNIX end-of-file marker Crtl+D.

Facts and rules can be distributed over several files, e.g.
“[myfacts,myrules1,myrules2].”

Most Prolog systems assume that rules about one predicate are stored
consecutively in the file. If one loads another file that contain rules about
the same predicate, the first rules are forgotten. Normally a warning is
printed in this case. However, it is possible (depending on the system) that
one reloads a file with the rules about a predicate removed, and the old
rules still remain in memory (until one exists from the Prolog system).
This is normally no problem, since one will not call the old predicate.

2. Prolog Tutorial 2-23 / 60



Queries (1)

Given the above program (“knowledge base”),
one can pose queries (goals for the theorem prover),
for example:

parent(eric, bianca).
−→ Yes.

parent(eric, chris).
−→ No.

parent(X, bianca).
−→ X = eric.

parent(eric, X).
−→ X = alan.

X = bianca.

2. Prolog Tutorial 2-24 / 60



Queries (2)

Example queries (proof goals), continued:

parent(X, Y).
−→ X = eric, Y = alan.

X = eric, Y = bianca.
X = fiona, Y = chris.

...
...

SQL is based on tuple calculus, Prolog on Domain calculus:

SELECT X.Parent
FROM parent X
WHERE X.Child = 'eric'

In SQL, variables range over entire table rows (tuples).
In Prolog, a variable stands for a single data value (domain element).

2. Prolog Tutorial 2-25 / 60



Using a Prolog System: Queries (1)

Once facts and rules are defined, one can enter queries
(from the “?-” prompt), e.g.

parent(julia, X).

Prolog prints only one solution at a time.

If one wants more solutions, one must press the “;” key
(this stands in Prolog for “or”).

When there are no more solutions, Prolog will print “No”. This “a
tuple at a time” processing (which may also print duplicates) is also
a difference to deductive databases.

If one does not want more solutions, one must press the
“Enter” key.

2. Prolog Tutorial 2-26 / 60



Using a Prolog System: Queries (2)

If a query should get into an infinite loop, one can press
“Crtl+C”.

This normally will enter the Prolog debugger. Pressing “a” (for “abort”)
will stop the query and leave the debugger.

One can leave the Prolog system with “halt.”.
“quit” and “exit” will not work in most systems. If one really wants, one
can of course define them by a rule. Again: Don’t forget the full stop “.”
at the end.

For predicates with 0 arguments (like halt), one does not
write “()” in Prolog.

“halt().” is a syntax error.

2. Prolog Tutorial 2-27 / 60



Using a Prolog System: Getting Help

Most systems have an online manual which documents at
least all built-in predicates, e.g. try

help(consult/1).

Note that the number of arguments usually has to be
specified in the notation p/n (predicate p with n args).

In Prolog, different predicates can have the same name if they have a
different number of arguments. E.g. in SWI-Prolog, one can also call
“help.” to bring up the online manual. This is documented in
“help(help/0).”.

2. Prolog Tutorial 2-28 / 60



Contents

1 DBs as Sets of Facts

2 Using a Prolog System

3 Rules as Logical Formulas

4 Recursion

5 Exercises

2. Prolog Tutorial 2-29 / 60



Logical Formulas (1)

If there were only such elementary statements,
logic would not be very interesting.

However, one can combine statements with logical
connectives, e.g.:

∧: logical “and” (conjunction)

∨: logical “or” (disjunction)

¬: logical “not” (negation)

←: logical “if”

↔: logical “iff” (if and only if)

2. Prolog Tutorial 2-30 / 60



Logical Formulas (2)

One can also introduce variables:

∀X : “for all X” (universal quantification)

∃X : “there is an X” (existential quantification)

In SQL, such formulas are used as query language.
SQL has no universal quantifier, except in a specific context: >= ALL.
However, one can simulate it with EXISTS-subqueries. Actually, it is a
result of mathematical logic that one kind of quantifier suffices.

Prolog is a restricted automated theorem prover:
Knowledge can be specified not only as facts (as in RDBs),
but also as rules (special kind of formulas).

2. Prolog Tutorial 2-31 / 60



Rules (1)

Predicates can be defined also by “if-then” rules:
man(X) ← person(X, Y, Z, m).

“If there is a person with ID X, first name Y, last name Z,
and gender “m”, then X is a man”.

Note the difference between variables (X, Y, Z), for which any value can be
inserted, and constants, such as m, which stand for a single value.

In Prolog, one writes “:-” instead of “←”.
A rule has two parts:

Rule Head: The left hand side, the conclusion.
Rule Body: The right hand side, the condition.

If the rule body is satisfied (for certain values of X, Y, Z),
the rule head can be derived (with the same values of X, Y, Z).

2. Prolog Tutorial 2-32 / 60



Rules (2)

The above rule defines the predicate “man” and uses the
predicate “person”.

I.e. it assumes that there is information about person that can be used to
derive information about man. Prolog does not require a specific sequence
of declaration: In the source file, could also lists the facts for “person”
below the rule for “man”. This is important because two predicates can
reference each other with mutual recursion (see below). In predicate logic,
there is no such distinction between definition and use.

Derived predicates correspond to database views.

A rule with the predicate p in the head is called a
“rule about p”.

E.g. the above rule is a rule about man.

2. Prolog Tutorial 2-33 / 60



Rules (3)

Names starting with a capital letter are variables:
One can insert any value for a variable.

I.e. the variables are universally quantified (“for all”, ∀) in front of the rule.
Of course, during a single rule application, one must replace different
occurrences of the same variable by the same value.

E.g. when one replaces X with alan, Y with 'Alan', and
Z with 'Smith', one gets:

man(alan) ← person(alan, 'Alan', 'Smith', m).

The right hand side of the rule is true (it is given as a fact),
thus the left hand side can be derived.

2. Prolog Tutorial 2-34 / 60



Rules (4)

Suppose one substitutes e.g. X with laura, Y with 'Laura',
and Z with 'Williams':
man(laura)← person(laura, 'Laura', 'Williams', m).

The right hand side cannot be proven, thus nothing can
be derived with this rule instance (the condition is false,
nothing follows about the head).

This does not mean that the rule head must be false: There might be
another rule / rule instance that permits to derive it (see below).
In this example, the rule head is false (there is no other way to derive it).

Prolog and deductive databases do not simply try all
possible values for the variables (to reach better performance).

“All possible values” might also be infinitely many.

2. Prolog Tutorial 2-35 / 60



Rules (5)

Of course, one can choose better variable names
(they only have to start with an uppercase letter):

man(ID)← person(ID, FirstName, LastName, m).

This renaming of variables does not change the meaning
of the rule in any way.

Variables are implicitly ∀-quantified in front of each rule.
I.e. the scope of each variable is the rule.

Two different rules can have variables with the same name,
but there is no connection between them.

2. Prolog Tutorial 2-36 / 60



Anonymous Variables (1)

When a variable appears only once in a rule, its name is
not important.

Prolog then permits to use an underscore “_” instead of
the variable name (“anonymous variable”).

I.e. each occurrence of the underscore stands for a new variable.
Even if the underscore appears twice in a rule, it is not the same variable.

E.g. the rule about man can be written as:
man(ID) :- person(ID, _, _, m).

I.e. the underscore can be used to fill in arguments that
are not needed.

This is necessary since arguments are identified by position. It corresponds
to a projection in databases.

2. Prolog Tutorial 2-37 / 60



Anonymous Variables (2)

Most Prolog systems give a warning (“singleton variables”)
if a non-anonymous variable appears only once in a rule.

This is intended to catch typing errors in variables.

Variables do not have to be declared, but a typing error
will yield a variable that appears only once.

If one wants to have a meaningful name, although the
variable appears only once, one can start that name with
an underscore to switch off the warning.

Thus, the underscore counts as an uppercase letter with this special
treatment if it starts a variable name.

2. Prolog Tutorial 2-38 / 60



Multiple Body Literals

A rule can have several conditions which are conjunctively
connected (logical “and”):

grandparent(X, Z) ← parent(X, Y) ∧
parent(Y, Z).

E.g. one successful application of the rule is:
grandparent(ian, bianca) ← parent(ian, eric) ∧

parent(eric, bianca).

Both conditions in the body (“body literals”) follow from
the given facts and rules.

Then this rule can be applied and permits to derive that
bianca is a grandparent of ian.

2. Prolog Tutorial 2-39 / 60



Prolog Rule Syntax (1)

A Prolog rule consists of

A rule head, on the left:
A single atomic formula (“head literal”).

A rule body, on the right:
A conjunction of atomic formulas (“body literals”).

In Prolog, one writes

“:- ” instead of “←” (between head and body),

a comma “,” instead of “∧” (between body literals).

An atomic formula (used as head or body literal) consists
of a predicate symbol and a list of argument terms.

Argument terms are (for the moment) variables or constants.
2. Prolog Tutorial 2-40 / 60



Prolog Rule Syntax (2)

E.g. the predicate “grandparent” is defined by the rule:
grandparent(X, Z) :- parent(X, Y), parent(Y, Z).
It has the head literal grandparent(X, Z), and the two body literals
parent(X, Y) and parent(Y, Z).

Where a space is permitted, one can use any sequence of
newline, spaces, tabs (Prolog is free format):

grandparent(X, Z) :-
parent(X, Y),
parent(Y, Z).

I recommend this formatting with one literal per line and the body literals
indented below the head literal (by one tab).

2. Prolog Tutorial 2-41 / 60



Using Derived Predicates

Derived predicates can be used in the definition of
additional derived predicates:

mother(X, Y) ← parent(X, Y) ∧ woman(Y).
woman(X) ← person(X, _, _, f).

As mentioned above, it is permissible to use predicates defined later.
Only when queries to mother are executed, the predicate woman must be
defined, or one will get an error message. However, it might be better style
to make the program readable in sequential order and define predicates
before they are used. But a top-down approach for program construction
als has its merits (if the meaning of the called predicates is clear).

It is no problem that woman is called with variable Y as
argument, and defined with variable X.

Since variables have a meaning only within a rule, the variables would anyway
be different, even if they had the same name. During the call, they are matched.

2. Prolog Tutorial 2-42 / 60



Multiple Rules (1)

The sequence of the two person IDs in the predicate for
the married couples is arbitrary (e.g., alphabetic).

We can define a symmetric version with two rules:
married_with(X, Y) ← couple(X, Y).
married_with(X, Y) ← couple(Y, X).

Both rules can be used to derive facts about married:

The first rule gives facts with the partners in the same
order as in couple.

E.g. married_with(alan, bianca) follows with this rule.

The second rule permits to derive facts in the inverse order.
E.g. married_with(bianca, alan) can be derived with this rule.

2. Prolog Tutorial 2-43 / 60



Multiple Rules (2)

Suppose that in the first rule, X is replaced by bianca,
and Y by alan:

married_with(bianca, alan)← couple(bianca, alan).

The condition (rule body) is false.
Only couple(alan, bianca) is given as a fact.

However, the consequence (rule head) is true:
married_with(bianca, alan) follows from the other rule.

If the rule body is true, the head must be true, too. If the rule body is
false, this rule alone does not say anything about the head (unless we
know that there is no other rule about the predicate).

2. Prolog Tutorial 2-44 / 60



Multiple Rules (3)

Several rules about one predicate are a way to encode
disjunctive preconditions in Prolog.

Consider again the two rules about married_with:
married_with(X, Y) ← couple(X, Y).
married_with(X, Y) ← couple(Y, X).

A fact is true if it can be derived with the first rule or it can be derived
with the second rule.

This is equivalent to:
married_with(X, Y) ← couple(X, Y)

∨ couple(Y, X).
In Prolog, the disjunction symbol “∨” is written “;”. But, as this example
shows, disjunction is not really necessary. Especially at the beginning, it is
a complication that is better avoided.

2. Prolog Tutorial 2-45 / 60



Multiple Rules (4)

It is not required that several rules about a predicate all
have the same head.

The facts for a database relation can be seen as different rules with empty
body for the same predicate.

One could write the two rules also as:
married_with(X, Y) ← couple(X, Y).
married_with(Y, X) ← couple(X, Y).

Variable names are local to rules, so swapping the two variables in the
second rule does not change the meaning of the program in any way.

The following solution is problematic:
married_with(X, Y) ← couple(X, Y).
married_with(Y, X) ← married_with(X, Y).

The second rule causes an infinite recursion.
2. Prolog Tutorial 2-46 / 60



Example: Summary (1)

Facts (Database):

person(alan, 'Alan', 'Smith', m).
person(bianca, 'Bianca', 'Smith', f).

...

parent(eric, alan).
parent(eric, bianca).

...

couple(alan, bianca).
...

2. Prolog Tutorial 2-47 / 60



Example: Summary (2)

Rules (Derived Predicates, Views):

man(X) ← person(X, _, _, m).
woman(X) ← person(X, _, _, f).
father(X, Y) ← parent(X, Y) ∧ man(Y).
mother(X, Y) ← parent(X, Y) ∧ woman(Y).
grandparent(X, Z) ← parent(X, Y) ∧ parent(Y, Z).
married_with(X, Y) ← couple(X, Y).
married_with(X, Y) ← couple(Y, X).

2. Prolog Tutorial 2-48 / 60



Queries

Syntactically, queries are the same as rule bodies
(a conjunction of literals).

Queries (Goals) are not very powerful, e.g. they normally
do not permit disjunction.

Actually, modern Prolog systems have disjunction in rule bodies and queries.
However, this is not really necessary.

However, one can extend the knowledge base with new
rules that define temporary predicates.
These new predicates can also be used in the query.

SQL-99 permits to define temporary views in queries (WITH-clause).

2. Prolog Tutorial 2-49 / 60



Contents

1 DBs as Sets of Facts

2 Using a Prolog System

3 Rules as Logical Formulas

4 Recursion

5 Exercises

2. Prolog Tutorial 2-50 / 60



Recursive Rules (1)

It is possible to use a predicate in its own definition:
ancestor(X, Y) ← parent(X, Y).
ancestor(X, Z) ← parent(X, Y) ∧ ancestor(Y, Z).

Initially, no facts about ancestor are known, thus only
the first rule is applicable.

Then, ancestor(X, Y) is known if Y is parent of X.

This can be inserted in the second rule, and it is derived
that grandparents are also ancestors.

Another application of the second rule yields that
great-grandparents are ancestors, too. And so on.

2. Prolog Tutorial 2-51 / 60



Recursive Rules (2)

Finally, all ancestor relationships that hold in the database
are derived.

The example DB contains only three generations, so there are already no
great-grandparents. But the recursion works with any number n of
generations: After n − 2 iterations, no new facts are derived.

Of course, a recursive rule like
p(X)← p(X).

is useless: It never yields anything new.
In Prolog, such a rule would actually create an infinite loop. This shows
that Prolog is not an ideal logic programming language. In logic, the rule is
a tautology: It is always trivially satisfied. Deductive databases can process
such rules without problems.

2. Prolog Tutorial 2-52 / 60



Recursive Rules (3)

The important point is that although one of the rules
that defines “ancestor” uses “ancestor”, it never refers
to the same fact as it tries to prove.

As in other programming languages, in Prolog one has to
reduce the “problem size” in the recursive call, or the
recursion will not come to an end.

E.g. given the query “ancestor(julia, bianca)”,
Prolog will first try the nonrecursive rule.

Prolog tries the rules in the order they are written down. This dependence
on the rule order again violates the ideal of logic programming. Deductive
DBs are again better, but at the expense of performance.

2. Prolog Tutorial 2-53 / 60



Recursive Rules (4)

Using the nonrecursive rule, Prolog has to prove
parent(julia, bianca),

but this fails.

Now it uses the recursive rule. It inserts the data from the
query and finds that it has to prove

parent(julia, Y) ∧ ancestor(Y, bianca).

Thus, it searches for the parents of julia (eric and fiona),
and processes the recursive calls:

ancestor(eric, bianca).
eric happens to be found first, because the fact was written first in
the Prolog program. Only when the ancestor search for eric is done,
Prolog searches for another parent (and finds fiona).

ancestor(fiona, bianca).
2. Prolog Tutorial 2-54 / 60



Recursive Rules (5)

The recursive call ancestor(eric, bianca) is proven
with the nonrecursive rule: bianca is mother of eric.

Thus, the answer “Yes” is printed.

The recursive call ancestor(fiona, bianca) fails.
Prolog first tries to prove that bianca is parent of fiona. This fails.
Then it creates again two recursive calls by inserting fiona’s parents:
ancestor(chris, bianca) and ancestor(doris, bianca). These immediately
fail since there are no parents of chris and doris in the database.

The problem size is reduced because every recursive call
goes one generation up in the database and somewhere,
there are no further data.

2. Prolog Tutorial 2-55 / 60



Recursion in SQL-99

Ancestors cannot be computed in SQL-92
(one needs one more join for every generation).

However, SQL-99 permits recursion:

WITH
RECURSIVE ancestor(Child, Anc) AS

(SELECT Child, Par FROM parent
UNION
SELECT P.Child, A.Anc
FROM parent P, ancestor A
WHERE P.Par = A.Child)

SELECT Anc FROM ancestor
WHERE Child = 'julia'

2. Prolog Tutorial 2-56 / 60



Contents

1 DBs as Sets of Facts

2 Using a Prolog System

3 Rules as Logical Formulas

4 Recursion

5 Exercises

2. Prolog Tutorial 2-57 / 60



Exercises (1)

The Table DEPT has the columns
DEPTNO (Department Number),
DNAME (Department Name),
LOC (Location):

DEPT
DEPTNO DNAME LOC

10 ACCOUNTING NEW YORK
20 RESEARCH DALLAS
30 SALES CHICAGO
40 OPERATIONS BOSTON

How would these data look as Prolog facts?
[https://users.informatik.uni-halle.de/˜brass/lp23/prolog/empdept.pl]

2. Prolog Tutorial 2-58 / 60

https://users.informatik.uni-halle.de/~brass/lp23/prolog/empdept.pl


Exercises (2)

EMP
EMPNO ENAME JOB MGR SAL DEPTNO
7369 SMITH CLERK 7902 800 20
7499 ALLEN SALESMAN 7698 1600 30
7521 WARD SALESMAN 7698 1250 30
7566 JONES MANAGER 7839 2975 20
7654 MARTIN SALESMAN 7698 1250 30
7698 BLAKE MANAGER 7839 2850 30
7782 CLARK MANAGER 7839 2450 10
7788 SCOTT ANALYST 7566 3000 20
7839 KING PRESIDENT 5000 10
7844 TURNER SALESMAN 7698 1500 30
7876 ADAMS CLERK 7788 1100 20
7900 JAMES CLERK 7698 950 30
7902 FORD ANALYST 7566 3000 20
7934 MILLER CLERK 7782 1300 10

2. Prolog Tutorial 2-59 / 60



Exercises (3)

Formulate These Queries in Prolog and in SQL:
Print number and name of the department in Boston.

List number and name of all employees in the research
department.

List the names of all employees who are manager or
president of the company.

List all employees who earn more than their direct supervisor.
One can use a condition like X > Y.

The requirement is that X and Y must occur in a body literal to the left of
X > Y, so that they are “bound” to a number when this condition is evaluated.

List all employees who are directly or indirectly managed
by “JONES”.

2. Prolog Tutorial 2-60 / 60


	DBs as Sets of Facts
	Databases as Sets of Facts

	Using a Prolog System
	How to use a Prolog System

	Rules as Logical Formulas
	Rules as Logical Formulas

	Recursion
	Recursion

	Exercises
	Exercises: Comparison with SQL


