Logic Programming and
Deductive Databases

Chapter 11: Datalog with
Built-In Predicates

Prof. Dr. Stefan Brass
Martin-Luther-Universitat Halle-Wittenberg
Summer 2023

http://www.informatik.uni-halle.de/~brass/1p23/

11-1/39

http://www.informatik.uni-halle.de/~brass/lp23/

Objectives

After completing this chapter, you should be able to:

@ check the allowedness of a clause.

@ explain how function symbols could be implemented with
binding patterns.

11-2 /39

Datalog
°

Contents

© Datalog

© Formal Treatment of Built-In Predicates
e Range-Restriction, Allowedness

@ Function Symbols and Built-In Predicates

11-3 /39

Datalog
[Jeleleo)

Basic Datalog (1)

@ Datalog is an adaption of Prolog for database applications.

@ The main differences are:

e No extra-logical constructs are used
(e.g., no cut, no built-in predicates with side effects).

e There is no prescribed execution sequence.

It is the task of the query optimizer to find a good evaluation sequence.

Of course, this excludes built-in predicates with side-effects.

e No function symbols are allowed (e.g., no lists).

l.e. terms are variables or constants.

e Rules must be range-restricted, i.e. every variable in the
rule head appears also in the body.
The notion of range-restriction is discussed in much more detail below.

It ensures that all rule applications yield ground atomic formulas (facts).

11-4 /39

Datalog
0®000

Basic Datalog (2)

@ Advantages of Datalog:

e It is a “more declarative” language than Prolog.
The user does not have to think about execution algorithms.
E.g., in Prolog, the programmer has often to order the rules about a
predicate in a specific sequence. In Datalog, the rule order is meaningless.

Also, the sequence of body literals is not important (for good optimizers).

e Termination is guaranteed.
E.g., the classic “ancestor” rules permit to compute the transitive
closure also of cyclic graphs. In Prolog, the programmer has to do
some bookkeeping which nodes were visited. That significantly

complicates the program.

e By not using structured terms, the language becomes
extremely simple.
In classical relational databases, there are no structured terms.

11-5 /39

Datalog
00®00

Basic Datalog (3)

@ While both languages (Datalog and Prolog) use the same
formalism of definite Horn clauses, the programmer thinks
quite differently when writing rules:

e The Prolog programmer thinks in predicate calls, and
sees the rules executed from left (head) to right (body).

e The Datalog programmer thinks in derivable facts, and
envisions the rules executed from right (body) to left (head).
The direction from right to left might seem strange at first, but it is

the direction of the implication arrow.

@ Prolog is executed with SLD-resolution.

@ In Datalog, one can use any method to compute the
minimal model, e.g. iterate the T p-operator (one needs only
the part of the minimal model that is relevant for the query).

11-6 /39

Datalog
000®0

Repetition of Definitions

@ A Datalog term t is a constant or a variable.

@ An atomic formula A has the form p(t;,..., t) and
consists of a predicate p (of arity k) and terms t;, i = 1,... k.

p is called the predicate of the atomic formula, we write pred(A) for the

predicate of A. t; is called the i-th argument of the atomic formula.

@ A Datalog rule has the form A < By, ..., B, with atomic
formulas A and B;, j = 1,..., n, which satisfies the condition
of range-restriction (below).

As long as there are no built-in or negated predicates, range-restriction simply
means that every variable that appears in A must appear in at least one B;.
A is called the head of the rule and By A --- A B, is its body.

If p is the predicate of A, this rule is called a rule about p.

@ A Datalog program is a finite set of Datalog rules.

11-7 /39

Datalog
ooooe

Datalog Variants

@ There are many extensions of this very basic version of
Datalog.
When you read a scientific paper, check what the author actually means by
Datalog. Every Datalog version should include the above (definite Horn clauses

without function symbols), but there are also more powerful versions.

@ Datalog™ contains also negation.

Maybe only stratified negation, maybe more. See Chapter 15.

@ There are also variants with aggregation.
e Datalog™” contains also function symbols.

@ Datalog™ permits existential variables in the head,
together with some restrictions that make it decidable.

This is a whole family of languages. They permit to formalize ontologies,

and can be seen as a syntactic variant of description logics.

11-8 /39

Formal Treatment of Built-In Predicates
°

Contents

© Formal Treatment of Built-In Predicates

11-9 /39

Formal Treatment of Built-In Predicates
[JeleleTolo)

Built-In Predicates in Datalog

@ Built-in predicates with side-effects, e.g. for input/output,
are not studied here. These do not exist in Datalog.

There are other options for declarative output.

@ Typical built-in predicates that are used in Datalog are
the comparison operators =, #, <, >, <, >, as well as
some support for arithmetics, e.g. X = ¥ + Z.

This can be seen as a user-friendly notation for the predicate sum(Y,Z,X)
that was studied in Chapter 6. In Prolog, one would have to write is, in
order to distinguish evaluation of arithmetic expressions from unification.
However, Datalog has no unification, or only a very restricted form of
unification called “matching”: One can replace a variable from the rule by
a constant from a given fact, or can check that a constant from the rule is
equal to the constant in the corresponding argument of a fact. In this way,

body literals are matched with facts.

11-10/ 39

Formal Treatment of Built-In Predicates
0®0000

Semantics of Programs (1)

Formal Treatment of Built-In Predicates:

@ Let a fixed interpretation 7z be given that defines the
extensions Zg|p| of all built-in predicates p.
Of course, this interpretation must also define the domain. Typically, one
considers only Herbrand interpretations. Then the base interpretation

defines the domain, the meaning of the function symbols, and the meaning

of the built-in predicates.

@ Then one considers only interpretations 7 that are
extensions of 7, i.e. all interpretations must agree
with Zz on the signature for which 73 is defined.

11-11 /39

Formal Treatment of Built-In Predicates
00®000

Semantics of Programs (2)

@ One identifies an interpretation 7 with the set of
facts p(t1,...,t,) with Z = p(ty, ..., t,), where p is not
a built-in predicate.
This is an extension of the corresponding convention for Herbrand
interpretations. Since built-in predicates nearly always have an infinite
extension, excluding them increases the chances that the set of facts is

finite (and thus can be explicitly written down or explicitly stored).

Of course, also predicates defined by rules can have infinite extensions.

@ As before, the semantics of a program P is the least fixed
point of the Tp-operator (see next slide).

This is the least model of P among the interpretations 7 that extend Zg.

11-12 /39

Formal Treatment of Built-In Predicates
000®00

Semantics of Programs (3)

@ The definition of the immediate consequence operator Tp
does not have to be modified:

Tp(Z) := {F € Bx | There is a rule
A+~ B/ AN---ANB,inP
and a ground substitution 6,

such that
eZEBjffori=1,... n, and
o F=A0}.

@ Since the head literal A does not contain a built-in predicate,
one gets only facts about user-defined predicates.

11-13 /39

Formal Treatment of Built-In Predicates
0000®0

Valid Binding Patterns (1)

@ The designer of the logic programming system defines for
each built-in predicate p a set validz(p) of valid binding
patterns such that for all built-in predicates p and all
B € validg(p):

e Suppose that p has arity n and let
{ilw"vik} = {i ‘ 1<i< n, s‘gi :b}
e Then for all domain elements d; ..., d, in Zg, the set

{(dy,....dy) € Iglpl | &}, = diy,...,d] =d;}
must be finite and computable.

l.e. the requirement is that given any values for the bound
arguments, it must be effectively possible to compute values for the

other arguments, and to compute all such solutions.

11-14 / 39

Formal Treatment of Built-In Predicates
00000e

Valid Binding Patterns (2)

@ Together with the range-restriction defined below, this
ensures that each single application of the Tp-operator is
computable and has a finite result.

o Of course, in the limit (minimal model), it is still possible
that user-defined predicates have infinite extensions.

Which is also bad, because it means that the computation does not

terminate.

e However, each approximation Tp T n of the minimal model
can be effectively computed.

11-15 / 39

Range-Restriction, Allowedness
°

Contents

© Range-Restriction, Allowedness

11-16 / 39

Range-Restriction, Allowedness
©0000000000000

Motivation (1)

@ In deductive databases, query evaluation is done by
applying the Tp-operator iteratively to compute the
minimal model (with certain optimizations).

Computing the entire minimal model would not be goal-directed.
Of course, one should compute only facts that are important for the query.
This problem is solved by the magic set transformation: Given a logic

program and a query, it computes a new logic program that has the same

answer, but implies only facts relevant to the query. See Chapter 12.

@ The allowed rules must be restricted so that immediate
consequences can effectively be computed.

11-17 / 39

Range-Restriction, Allowedness
0®000000000000

Motivation (2)

@ For example, computing immediate consequences for a
rule like the following would be difficult:

p(X,Y) < q(X).

@ The possible values for Y depend on the domain: All data
values can be inserted, often this set infinite, and maybe
not even explicitly known.

Normally, one works with the Herbrand universe that consists of all terms
which can be constructed from the constants and function symbols

appearing in the program. Then one can add a completely unrelated fact,
in which a new constant appears, and thereby change the extension of p.

That is a strange behaviour.

11-18 /39

Range-Restriction, Allowedness
00@00000000000

Motivation (3)

@ Given e.g. g(a), one could derive the “fact” p(a, Y).

@ One problem with this is that variables cannot be easily
represented in database relations.
As long as one does not use function symbols, derived predicates should
correspond to views in relational databases. Furthermore, at least some
prototypes did actually use a relational database system for query evaluation:

Then storing an intermediate result in a temporary relation for p is at least
difficult.

@ In contrast to Prolog, deductive databases normally use
only one-directional, restricted form of unification
(“matching”): Variables appear only in rules, body literals
are matched with variable-free facts.

11-19 / 39

Range-Restriction, Allowedness
000®0000000000

Allowed Rules (1)

Definition (Allowed Rule, First Try):

@ Arule A<— By A--- N\ B, is called allowed iff every variable
that appears in the head literal A appears also in at least
one body literal B;.

Note:

@ This definition works only if the body literals have no
binding restrictions.

@ E.g. one cannot compute all consequences of the
following rule, although it statisfies the condition:

less(X, Y) :- X < Y.

11-20 / 39

Range-Restriction, Allowedness
0000@000000000

Allowed Rules (2)

Definition (Allowed Rule with Built-In Predicates):

@ Arule A< By A--- N\ B, is called allowed iff every variable
that appears in the rule appears also in at least one body
literal B;, the predicate of which is not a built-in predicate.

Example:

@ E.g. the following rule satisfies this condition:

teenager(X) :- person(X, BirthYear),
BirthYear < 2012,
BirthYear > 2002.

11-21 /39

Range-Restriction, Allowedness
00000®00000000

Allowed Rules (3)

Note:

@ If all rules are allowed in the above sense, one can
effectively compute every approximation 7p 1 i of the
minimal model.

Assuming that validg(p) is not empty for every built-in predicate p.

Built-in predicates without any valid (implemented) binding pattern

obviously make no sense.
@ If in addition, the rules do not contain function symbols,

the minimal model itself can be computed.

It contains then only constants that appear in the program. Assuming that
programs are always finite, this means that the minimal model is finite, and

is reached after finitely many iterations of the Tp-operator.

11-22 /39

Range-Restriction, Allowedness
000000®0000000

Range Restriction (1)

@ The notion of “allowed rule” above assumes that we
really want to compute the entire extension of all derived
predicates.

l.e. that all predicates should support the binding pattern f ... f like stored

relations. This is not always required.

@ Predicates that have binding restrictions are typically
defined by rules that are not allowed:

append([], L, L).
append([F|R], L, [F|RL]) :-
append(R, L, RL).

append is called only with binding patterns bbf and ££b (or the more
specialized binding patterns bfb, £bb and bbb). However, we never compute

the entire extension of append (corresponding to the binding pattern ££f).

11-23 /39

Range-Restriction, Allowedness
0000000e000000

Range Restriction (2)

@ The rule about 1ess makes sense if it is called with
binding pattern bb:

less(X, Y) (- X < Y.

@ Occurrences of variables in literals with built-in predicates
can act as binding. This rule defines a predicate without
any binding restriction:

price_with _vat(Prod, X) :- product(Prod, Price),
X is Price * 1.19.

@ All this shows that the allowedness requirement is too
restrictive.

11-24 / 39

Range-Restriction, Allowedness
00000000e800000

Range Restriction (3)

Definition (Input Variables):

@ Given a literal A= p(ty,...,t,) and a binding
pattern = [31,..., [, for p, the set of input variables

of A with respect to [J is
input(A, 8) == {vars(t;) | 1 <i < n, B; =D}

(i.e. all variables that appear in bound arguments).

Note:

@ Input variables in body literals must be bound before the
literal can be called. Input variables in head literals are
bound when the rule is executed.

11-25 / 39

Range-Restriction, Allowedness
0000000080000

Range Restriction (4)

Definition (Valid Binding Patterns):
@ Let valid be a function that maps every predicate p to a

set valid(p) of binding patterns for p.

@ For built-in predicates p: valid(p) = validg(p).

l.e. valid extends validg from built-in predicates to all predicates.

@ valid is called a valid binding pattern specification.

Remark:

@ We assume that the programmer defines valid binding
patterns for every predicate.

In practice, it might be possible to compute the possible binding patterns,

but that would complicate the next definition.

11-26 / 39

Range-Restriction, Allowedness
0000000000e000

Range Restriction (5)

Definition (Range-Restricted Rule):

@ Arule A< By A--- A B, is range-restricted for a
binding-pattern [iff there is a sequence i1, ..., /, of the
body literals (i.e. {i,...,i,} ={1,..., n}) such that

o for every j € {1,... n} there is a binding pattern
B; € valid(pred(B;;)) with

input(B;;, B;) C input(A, B) U vars(By A--- A Bj_,)

o and furthermore it holds that
vars(A) C vars(Bu, ..., By) Uinput(A,).

11-27 / 39

Range-Restriction, Allowedness
00000000000e00

Range Restriction (6)

@ The definition assumes the following evaluation:

First, variables in the bound argument positions of the
head literal are assigned values (based on the input
arguments of the predicate call).

Then the body literals are evaluated in some order. For
each literal, variables in bound argument positions must
already have a value. Variables in other argument
positions get a value by this call.

In the end, a tuple is produced that corresponds to the
head literal. Therefore, all variables in the head literal
must now have a value.

11-28 / 39

Range-Restriction, Allowedness
0000000000008

Range Restriction (7)

@ The evaluation sequence of body literals may depend on
the binding pattern for the head literal.

@ For instance, consider the following rule:
p(X,Y) :- sum(X,1,Z), prod(Z,2,Y).

@ The given sequence of body literals is possible for the
binding pattern bf.

@ For the binding pattern fb, the system should
automatically switch the sequence of body literals.

The Datalog programmer does not necessarily know the binding pattern.

Furthermore, it would be bad style to double the rule.

11-29 / 39

Range-Restriction, Allowedness
0000000000000e

Range Restriction (8)

Definition (Range-Restricted Program):

@ A program P is range-restricted with respect to a binding
pattern specification valid iff for every
rule A< B; A --- A\ B, and every binding pattern
B € va/id(pred(A)), the rule is range-restricted for /3.

@ A program P is strictly range-restricted iff every rule in P

is range-restricted for the binding pattern f ... f.

Strict range restriction is the requirement for the Tp-operator to be
directly executable. As we will see, the magic set transformation turns a

range-restricted program into a strictly range-restricted program.

11-30 /39

Function Symbols and Built-In Predicates
°

Contents

@ Function Symbols and Built-In Predicates

11-31 /39

Function Symbols and Built-In Predicates
©0000000

Record Constructors (1)

@ Function symbols in Prolog are record/structure
constructors.

@ Let cons(E, N, L) be a built-in predicate for managing
nodes L in a linked list (records with two components: list
element E and “next” pointer N).

@ It can be called with two binding patterns:

e bbf: For constructing a list node.

e ffb: For selecting the components of a list node.

@ Note that cons(E, N, L) actually means [=[E|N].

11-32 /39

Function Symbols and Built-In Predicates
0®000000

Record Constructors (2)

@ Consider again the definition of append:

append([], L, L).
append([F|R], L, [F|RL]) :-
append(R, L, RL).

@ Instead of using composed terms like [F|R], one can also
use the built-in predicate cons:

append([], L, L).

append(L1, L2, L3) :-
cons(F, R, L1), % Split L1 into F and R
append(R, L2, RL),
cons(F, RL, L3). 7% Compose F and RL to L3

11-33 /39

Function Symbols and Built-In Predicates
00®00000

Record Constructors (3)

@ The right sequence of body literals in the above rule
depends on the binding pattern for the predicate.

@ As written down, the rule works if append is called with
binding pattern bbf.

o If it is called e.g. with binding pattern £fb, the body
literals should be (automatically) reordered:

append(L1, L2, L3) :-
cons(F, RL, L3),
append(R, L2, RL),
cons(F, R, L1).

11-34 / 39

Function Symbols and Built-In Predicates
000@0000

Record Constructors (4)

o If for every function symbol f of arity n, one has a built-in
predicate ps of arity n + 1 that constructs/splits records
of type f, composed terms are not strictly necessary:

e As shown above for append, one can always replace
them by a new variable and a call to the built-in

predicate.

@ Of course, this assumes that there are no terms with
“holes” (variables) in them.

In deductive databases, this is normally the case.

11-35 /39

Function Symbols and Built-In Predicates
0000®000

Evaluable Functions (1)

@ Conversely, one could use functional notation for certain
built-in predicates.

e E.g. consider

fib(0, 1).

fib(1, 1).

fib(N, F) :-
N> 1,
N1 is N-1, N2 is N-2,
fib(N1, F1), fib(N2, F2),
F is F1+F2.

11-36 / 39

Function Symbols and Built-In Predicates
00000@00

Evaluable Functions (2)

@ One could now write the rule as:
fib(N, F) :- N > 1,
fib(N-1, F1), fib(N-2, F2),
F is F1+F2.

@ Note: This is not correct in Prolog (typical beginner's error).

@ Even the following would be possible:
fib(N, fib(N-1)+fib(N-2)) :- N > 1.

@ Or better still:

fib(0) = 1.
fib(1) = 1.
fib(N) = fib(N-1)+fib(N-2) :-= N > 1.

A preprocessor could translate this back to the standard predicate notation.

11-37 /39

Function Symbols and Built-In Predicates
000000e0

Evaluable Functions (3)

@ So, why has Prolog only non-evaluable functions
(record constructors)?

@ Record constructors are uniquely invertable.

@ Consider e.g. the following rule:
p(X+Y, X, Y).
Compare it with this rule:
q([XI1Yl, X, Y).

@ The first rule does not support the binding pattern bff,
the second does support it.

11-38 /39

Function Symbols and Built-In Predicates
0000000Oe

Evaluable Functions (4)

@ As long as one has only record constructors,
every occurrence of a variable in a bound argument
position in the head defines a value for the variable.

@ For evaluable functions, this is not necessarily the case.
But e.g. the following rule supports bf:
p(X+1, X).
@ However, new logic programming languages are still being

proposed, and everybody is free to define (and implement)
his/her own language.

There are many proposals for combined logic-functional languages.

11-39 / 39

	Datalog
	Datalog

	Formal Treatment of Built-In Predicates
	Formal Treatment of Built-In Predicates

	Range-Restriction, Allowedness
	Range-Restriction, Allowedness

	Function Symbols and Built-In Predicates
	Function Symbols and Built-In Predicates

