Logic Programming and
Deductive Databases

Chapter 3: Clausal Logic

Prof. Dr. Stefan Brass
Martin-Luther-Universitat Halle-Wittenberg
Summer 2023

http://www.informatik.uni-halle.de/~brass/1p23/

3. Clausal Logic 3-1/33

http://www.informatik.uni-halle.de/~brass/lp23/

Objectives

After completing this chapter, you should be able to:

explain the notions: literal, positive literal, negative literal,
clause, empty clause, Horn clause, definite Horn clause.

translate between clauses written as disjunctions and
clauses written as rules.

define and explain Herbrand interpretations.

Including the notions Herbrand universe and Herbrand base.

Compare Herbrand interpretaions with general interpretations.

explain when it is sufficient to look only at Herbrand
interpretations.

transform formulas into sets of clauses.

Including the technique of Skolemization to eliminate existential quantifiers.

3. Clausal Logic

3.2/33

Contents

@ Normal Forms of Formulas
@® Clausal Form
© Herbrand Interpretations

@ Substitutions

3. Clausal Logic 3-3/33

Normal Forms (1)

Definition:
@ A formula F is in Prenex Normal Form iff it is closed and
has the form
@1X1: 51 ... @anZ Sn G
where {©;....,0,} C{V.3} and G is quantifier-free.
@ A formula F is in Disjunctive Normal Form iff it is in
Prenex Normal Form, and G has the form
(Gia N ANGig) V-V (Gui A A Gug,),

where each G;; is an atomic formula or a negated atomic
formula.

3. Clausal Logic 3-4/33

Normal Forms (2)

Remark:

@ Conjunctive Normal Form is like disjunctive normal form,
but G must have the form

(GiaV -V Gig) N A (Gp1 V-V Gug,).

Theorem:

@ Under the assumption of non-empty domains, every formula
can be equivalently translated into

e prenex normal form,
e disjunctive normal form, and

e conjunctive normal form.

3. Clausal Logic 3-5/33

@® Clausal Form

Contents

3. Clausal Logic

3.6/33

Literals, Clauses (1)

Definition:

@ A literal is an atomic formula (“positive literal”) or a
negated atomic formula (“negative literal”).

@ A clause is a disjunction of zero or more literals.
The empty clause is treated as false. All variables in a
clause are treated as V-quantified.

A clause is often seen as set of literals.

@ A Horn clause is a clause with at most one positive literal.
A definite Horn clause is a clause with exactly one
positive literal.

@ A logic program is a set of definite Horn clauses.

Sometimes it is called “definite logic program” in order to distinguish it

from later extensions.

3. Clausal Logic 3-7/33

Literals, Clauses (2)

@ Clauses can be written as implications with the positive
literals in the head, and negative literals (unnegated) in
the body:

AlV---VA, < B AN---ANB,
—_——— —_———
Head Body

Formally, this is not a clause, but a formula that is equivalent to a clause.

This kind of formula is also called a disjunctive rule.

@ This corresponds to the disjunction
ALV VA,V aBL V-V B,

@ A definite Horn clause can be written as a rule with only
one literal in the head:
A B N---NBp,,.

l.e. this kind of formula is called a rule or Prolog rule.

3. Clausal Logic 3-8/33

Literals, Clauses (3)

@ A clause with only negative literals =B, V ---V =B, is
written as: < By A -+ A B,

Here the head is the empty disjunction, which is understood as false:
A disjunction is satisfied if at least one of its elements is true. If there are

no elements, it can never be true.

¢ = Giff ®U{=Y(G)} is inconsistent. (See Appendix B.)

@ Refutation theorem provers, such as resolution, try to
derive the empty clause “false” from ¢ U {=V(G)}.

Therefore, a clause with only negative literals is often
understood as proof goal / query: 3(B; A - A By,).
This is what should be proven (giving values for the existentially quantified

variables). In order to prove it, the negation is added to the program, and

the inconsistency is shown by deriving the empty clause.

3. Clausal Logic 3-9/33

Skolemization (1)

@ In clauses, all variables are V-quantified.

Therefore, no explicit quantifiers are needed.

However, many logical formulas in prenex normal from do
contain existential quantifiers.

@ Skolemization is a technique for removing existential
quantifiers.

@ The idea of Skolemization is to introduce names
(constants or function symbols) for the values that are
required to exist.

e Eg. 4X:sp(X,a) isreplaced by p(c, a) with a new
constant ¢ of sort s.

3. Clausal Logic 3-10/33

Skolemization (2)

@ The new formula is not equivalent (it is a formula over a
different signature), but it is consistent whenever the old
formula is consistent.

A model of 3X: s p(X, a) can be extended to a model of p(c, a) by
interpreting ¢ as the value for X that makes p(X, a) true.

Conversely, if one has a model of p(c, a), one can simply forget the
interpretation of ¢ (but keep the value in the domain), to get a model of

3X: s p(X, a) for the original signature.

@ For refutation theorem provers, only the consistency is
important, thus this is no restriction.

3. Clausal Logic 3-11/33

Skolemization (3)

@ Suppose that the existential quantifier 3X: s is in the
scope of universal quantifiers VY7: s1...VY,: s,.

@ Then the value for X may depend on the values
for Yi,...,Y,.

@ Thus, Skolemization replaces each occurrence of the
variable X by f(Yi,...,Y,) with a new function symbol
fis1X--- X5, —s.

@ With Skolemization, any formula can be translated into a
set of clauses.

But one needs non-empty domains to get first prenex normal form.

3. Clausal Logic 3-12/33

Skolemization (4)

Exercise:
@ Consider the foreign key constraint:

VX,Y,Z,D (emp(x,Y, Z,D) — 3N, L dept(D, N, L)).

@ Use the equivalence transformations from Appendix B to
show that it is equivalent to

VDIN,LVX,Y,Z (emp(x, Y,Z,D) — dept(D, N, L)).
This is prenex normal form.

@ What Skolem functions would be introduced for this
formula?

3. Clausal Logic 3-13/33

Contents

© Herbrand Interpretations

3. Clausal Logic

3-14 /33

Herbrand Interpretations (1)

Definition:

@ A ground term is a variable-free term (i.e. a term built
only from constants and function symbols).

Definition:
@ A X -interpretation Z is a Herbrand interpretation iff

o for every sort s, the domain Z[s]| is the set of all ground
terms of sort s, i.e. Z[s] = TE, y(s).

This assumes that for every sort there is at least one ground term.

Otherwise one must extend the signature.

e all function symbols are interpreted as the corresponding
term constructors, i.e.
ZIf)(t1, .-, tn) = (b1, -, tn).

3. Clausal Logic 3-15/33

Herbrand Interpretations (2)

@ In general (non-Herbrand) interpretations, it is possible that

e there are anonymous domain elements
(objects not named by a constant or ground term).

For universal formulas, such domain elements are not important.
“For all” statements are even simpler to satisfy if the quantifiers

range only over a subset.

e different ground terms can denote the same object,
e.g. 1+ 1 and 2, or murderer and buttler.

As long as the logic contains no real equality, this is no problem:
One simply defines all predicates such that they treat e.g. 1 + 1 and

"

2 in the same way. One can have a user-defined “=".

@ It is quite difficult to consider arbitrary interpretations.

3. Clausal Logic 3-16 /33

Herbrand Interpretations (3)

@ Herbrand interpretations have a

o fixed domain: Set of all ground terms.
o fixed interpretation of constants as themselves.

o fixed interpretation of function symbols as term
constructors (“free interpretation”).
@ Thus, only the interpretation of the predicates can be
chosen in an Herbrand interpretation.

l.e. a Herbrand interpretation is given by the interpretation of the predicates.

If the set of ground terms is finite, there are only finitely
many Herbrand interpretations.

3. Clausal Logic 3-17/33

Herbrand Interpretations (4)

Definition:

@ The Herbrand universe Us for a signature X is the set of
all ground terms that can be constructed with the
constants and function symbols in >.

If the signature should contain no constant, one adds one constant a (so

that the Herbrand universe is not empty).

@ For a logic program P, the Herbrand universe Up is the
set of ground terms that can be built with the constants
and function symbols that appear in P.

l.e. if a signature is not explicitly given, one assumes that the signature

contains only the constants and function symbols that appear in P. Must

must again add a constant if (/p would otherwise be empty.

3. Clausal Logic 3-18/33

Herbrand Interpretations (5)

Definition:

@ The Herbrand base By is the set of all positive ground
literals that can be built over .

Again, one must ensure that the set is not empty be adding a constant if

> does not contain any constant.

@ |.e. the Herbrand base is the set of all formulas of the
form p(t1,...,t,), where p is a predicate of arity nin ¥,
and ty,...,t, € Us.

@ Again, if instead of a signature X, a logic program P is
given, one constructs the signature of the symbols that
appear in P.

3. Clausal Logic 3-19/33

Herbrand Interpretations (6)

A Herbrand interpretation Z can be identified with the set

of all positive ground literals p(ty, ..., t,) that are true
inZ, i.e. with H:={Ae€ By | 7 = A}

Conversely, H C By denotes the Herbrand interpretation
with
Tlp] = {(tr. .-, ta) €UL | p(tr...., 1) € H}.

Otherwise, Z is fixed, because it is a Herbrand interpretation: For the
single sort s, Z[s] := Uy, for constants ¢, Z[c] := ¢, and for function

symbols f of arity n: Z[f](t1, ..., tn) := f(t1,..., tn).

Thus, in the following, Herbrand interpretations are
subsets of By.

3. Clausal Logic

3-20/33

Herbrand Interpretations (7)

Definition:

@ A Herbrand model of a logic program P is a Herbrand
interpretation 7 that is a model of P.

Exercise:

@ Name two different Herbrand models of P:
p(a).
p(b).
q(a, b).
r(X) < p(X) A a(X,Y).
@ Please name also a Herbrand interpretation that is not a
Herbrand model of P.

3. Clausal Logic 3-21/33

Herbrand Interpretations (8)

Theorem:

@ A set ® of universal formulas (formulas in prenex normal
form with only universal quantifiers) without “="
is consistent iff it has a Herbrand model.

Assuming that only interpretations are considered with non-empty domains.

Remark:

@ The consistency of a set of formulas does not depend on
the signature. Thus, it suffices to consider Herbrand
interpretations with respect to the signature that contains
only the symbols appearing in ®.

3. Clausal Logic 3-22 /33

Herbrand Interpretations (9)

Example/Exercise:

@ Suppose that we want to prove that ® := {p(a)} implies
G :=3X p(X).

o ® = Giff U {=Y(G)} is inconsistent. Thus, we must
check ®" := {p(a), VX(—p(X))} for consistency.

@ It is consistent iff it has a Herbrand model.

@ The only ground term is a. Thus, there are only two
Herbrand interpretations, Z; := {p(a)} and Z, := 0.
None of the two satisfies both formulas.

@ Exercise: What happens if G := VX p(X)?

3. Clausal Logic 3-23/33

@ Substitutions

Contents

3. Clausal Logic

3-24/33

Substitutions (1)

Definition:

e A (X, v)-substitution 0 is a mapping from variables to terms,
ie. 0: VARS — TEyx, U VARS, such that
o the set {V € VARS | 0(V) # V} is finite,
This ensures that a substitution can be finitely represented.
o it respects the sorts, i.e. if v(X) = s, then §(X) € TEx ,(s).

If one uses a logic without sorts (as in Prolog), this part is obviously

not needed. One also does not need an explicit variable declaration v.

@ A substitution is usually written as set of variable-term-pairs,
e.g. 0= {Xl/tla R 7Xn/tn}.

It is the identity mapping for all not explicitly mentioned variables.

3. Clausal Logic 3-25/33

Substitutions (2)

Definition:
@ The result of applying a substitution ¢ to a term t,
written 0(t) or t6, is defined as follows:

e If t is a variable X, then
0(t) := 0(X).
o If t has the form f(t1,...,t,), then
0(t) := f(t1,...,t,),
where t/ ;= 0(t;) for i :==1,...,n.

Remark:

@ This definition extends the domain of a substitution from
variables to terms.

Terms are tree structures. The substitution recursively descends in the tree

and replaces every variable that it finds.

3. Clausal Logic 3-26 /33

Substitutions (3)

Definition:
@ The result of applying a substitution # to a formula F,
written 0(F) or F6, is defined as follows:
o If F is an atomic formula p(ti,...,t,), then
O(F) := p(t],...,t,), where t/ = 0(t;).
o If Fis (~G), then (F) := (—~G') with G’ := 6(G).

o If F has the form (G A Gy), then O(F):=(Gj A Ghyhere
G! := 0(G;). The same for \V, <, —, .

o If F has the form VX: s G, then (F) :=VX:s G/,
where G’ := ¢/(G) and 0’ agrees with 6 except that
0'(X) = X. The same for 3.

3. Clausal Logic 3-27/33

Substitutions (4)

l.e. when a substitution is applied to a formula, one
replaces the variables as specified by the substitution and
leaves the rest of the formula as it is.

In this way, the domain of the substitution is again
extended to arbitrary formulas. Of course, this also
includes literals, clauses, and logic programming rules.

Only free variables are replaced by a substitution.

For clausal logic, this is not important, because all variables are free

(not bound by a quantifier).

When a variable X is replaced by a term t, any variables
inside t are not touched.

l.e. t is the final result. Therefore, {X/Y, Y /X} does not result in an

infinite loop. It simply exchanges the two variables.

3. Clausal Logic

3-28/33

Substitutions (5)

Example/Remark:
e Consider the substitution ¢ := {X/a, Y /Z}.

As explained above, substitions are usually written down as a set of
variable/term pairs. The example specifies the substitution 6 with
0(X)=a, 0(Y)=Z, and O(V) = V for all other variables V.

@ This substitution applied to the literal p(X, Y, V, b)
gives the literal p(a, Z, V., b).

@ The postfix notation is often used for applying a substitution,
e.g. A0 means 0(A).

@ Note that a substitution is applied only once, not iteratively.
Eg. 0 ={X/Y,Y/Z} maps p(X) to p(Y), and not to p(Z).

3. Clausal Logic 3-29 /33

Substitutions (6)

Definition:

@ A substitution 0 is a ground substitution for a quantifier-free
formula F iff it replaces all variables that occur in F by
ground terms.

Since substitutions do not touch quantified variables, and the purpose of
ground substitutions is to eliminate all variables, it is important that there

are no quantifiers. Of course, clauses and rules are quantifier-free.

Remark:

@ Thus, the result of applying a ground substitution to a
clause F is a ground clause (variable-free clause).

l.e. a ground substitution replaces all variables by concrete values.
For Herbrand interpretations, ground substitutions and variable assignments

are basically the same.

3. Clausal Logic 3-30/33

Ground Instances (1)

Definition:

@ A clause F; is an instance of a clause F iff there is a
substitution ¢ with F; = 0(F,).

@ A ground instance is an instance that is variable-free
(the result of applying a ground substitution).

e We write ground(P) for the set of all ground instances of
rules in P.

If the signature contains no function symbols and only finitely many

constants, the set of ground instances of a logic program is finite.

Otherwise, it will be usually be infinite (in the one-sorted case). Many

“Answer Set” logic programming systems have an “intelligent grounder”

that computes only the interesting ground instances (ground instances that

can possibly be applied). In contrast, Prolog does not compute ground instances

first: It replaces variables by terms during the proof only as far as needed.

3. Clausal Logic 3-31/33

Ground Instances (2)

Example:

@ Let the following rule be given:
mother(X,Y) < parent(X,Y)A
woman(Y).
@ One ground instance of this rule is:

mother(alan,bianca) < parent(alan,bianca)A
woman(bianca).

@ The ground substitution is # = {X/alan, Y/bianca}.

@ The following is not a ground instance of the above rule:
mother(alan, chris) < parent(alan,chris) A
woman(doris).

One must of course replace all occurrences of the same variable in a rule by

the same value (when computing a single ground instance of a single rule).

3. Clausal Logic 3-32/33

Ground Instances (3)

Exercise:

@ Let the following rule be given:

p(a, X) < q(X,Y)Ar(Y,a).

@ Which of the following rules are ground instances of the

given rule?
O p(a,a) < q(a,a) Ar(a,a)
O p(a,b) < q(a,b) A r(b, a).
O p(a,b) « q(b,c) Ar(c,a)
O p(b,a) < q(a,a) A r(a, a).
O p(a,b) < q(b,Y)Ar(Y,a).

3. Clausal Logic

3-33/33

	Normal Forms of Formulas
	Normal Forms of Formulas

	Clausal Form
	Clausal Form

	Herbrand Interpretations
	Herbrand Interpretations

	Substitutions
	Substitutions

