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Objectives

After completing this chapter, you should be able to:

compare magic sets with SLD resolution.

name some problems of the magic set method and sketch
possible solutions.

Stefan Brass: Logic Programming/deductive DBs 14. SLDMagic 14-2 / 52



Introduction Tail Recursion Further Problems of Magic Sets The SLDMagic Method

Contents

1 Introduction

2 Tail Recursion

3 Further Problems of Magic Sets

4 The SLDMagic Method

Stefan Brass: Logic Programming/deductive DBs 14. SLDMagic 14-3 / 52



Introduction Tail Recursion Further Problems of Magic Sets The SLDMagic Method

Bottom-Up vs. Top-Down Evaluation (1)

In this course, two main methods for evaluating logic
programs were studied:

SLD-Resolution, which works “top-down”.
The query is seen at the “top”, the given facts at the “bottom”.

Bottom-Up evaluation with magic sets.
We first studied bottom-up evaluation without magic sets, but it is
not goal-directed, which in many cases makes it obviously inferior to
SLD-resolution (but it always terminates!). The “magic set”
transformation solves this problem.

Of course, we want to know: Which method is faster?
Not only by running some benchmarks for concrete implementations, but
the goal must be also to gain theoretical insights on the efficiency of the
two methods.
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Bottom-Up vs. Top-Down Evaluation (6)
It will turn out that

every magic fact that is derivable from the transformed
program corresponds to a selected literal in the SLD tree,
every derivable non-magic fact is proven als a “lemma”
in the SLD-tree.

So there is a strong connection between the two methods.

However, the implicit representation of lemmas in the
SLD-tree can make SLD-resolution significantly faster in
case of tail-recursive programs.

This and other problems can be solved with the SLDMagic
technique (developed by the author) presented in the last
part of the chapter.
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Repetition: Magic Set Transformation (1)

Example (Grandparents of Julia):

Logic Program (IDB-Predicates and Query):

parent(X, Y) ← mother(X, Y).
parent(X, Y) ← father(X, Y).
grandparent(X, Z) ← parent(X, Y) ∧

parent(Y, Z).
answer(X) ← grandparent(julia, X).

EDB-Predicates (stored in the database):

father
mother
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Repetition: Magic Set Transformation (2)

Example Output, First Part:
Rules are restricted by an additional body literal so that
they can fire only if there is a matching (sub-)query:

E.g. m parent bf(X): There is a query of the form parent(X, _) with given X.

parent(X, Y) ← m parent bf(X) ∧
mother(X, Y).

parent(X, Y) ← m parent bf(X) ∧
father(X, Y).

grandparent(X, Z) ← m grandparent bf(X) ∧
parent(X, Y) ∧
parent(Y, Z).

answer(X) ← true ∧
grandparent(julia, X).
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Repetition: Magic Set Transformation (3)
Example Output, Second Part:

m grandparent bf(julia) ← true.
m parent bf(X) ← m grandparent bf(X).
m parent bf(Y) ← m grandparent bf(X) ∧

parent(X, Y).

Of course, the original query grandparent(julia, X) must
be represented as a magic fact m grandparent bf(julia)
in the rewritten program.

In addition, magic facts corresponding to the occurring
subqueries must be derivable.

Example: To compute the grandparents of X, one must first compute the
parents of X. This is encoded in the second rule above.
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Problem: Tail Recursion (1)
Example:

Computation of all nodes reachable from a given node
(standard “transitive closure” example):

path(X, Y) ← edge(X, Y).
path(X, Z) ← edge(X, Y) ∧ path(Y, Z).

? path(0, X).

EDB-Relation (directed graph, in this case one long path):

edge :=
{

(i − 1, i)
∣∣∣ 1 ≤ i ≤ n

}
.

0 1 · · · n
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Problem: Tail Recursion (2)

Complexity of Magic Sets:

The query path(0, X) calls the subquery path(1, X), and
so on.

In the end, all facts path(i , j) are computed.

Derivable facts:

m path bf(i) für 0 ≤ i ≤ n
path(i , j) für 0 ≤ i < j ≤ n

These are (n + 2)(n + 1)/2 facts, thus the runtime is at
least quadratic (probably more).

This example should run in linear time!
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Problem: Tail Recursion (3)
Runtime (CORAL):

n

t
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Problem: Tail Recursion (4)

SLD-Resolution (Prolog):

The SLD-tree is shown on the next slide.

Number of nodes in the SLD-tree: 4n + 3.

Each node consists of maximally two literals.

Complexity of each access to edge: O
(

log(n)
)

.

Total complexity: O
(
n ∗ log(n)

)
.

If one could access edge bf in time O(1) (e.g., hash table),
the total runtime would really be linear.
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Problem: Tail Recursion (5)

path(0, X)

edge(0, X)

X = 1

edge(0, Y) ∧ path(Y, X)

path(1, X)
...

path(n, X)

edge(n, X) edge(n, Y) ∧ path(Y, X)
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Problem: Tail Recursion (6)

Historical Note:

A paper “Bottom-Up Beats Top-Down for Datalog” from
Jeffrey Ullman appeared in PODS’89.

It proves that seminaive evaluation of the magic set
transformed program is always at least as efficient as
“top-down evaluation”.

However, “top-down evaluation” as used in this paper is
not SLD-resolution.

It is a top-down query evaluation algorithm defined by Ullman himself
(QRGT: Queue-Based Rule/Goal Tree Expansion). He even states that
“this algorithm is easily seen to mimic the search performed by Prolog’s
SLD resolution strategy”.
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Problem: Tail Recursion (7)

Historical Note, continued:

The paper contains a footnote that Prolog implementations
usually contain a form of tail-recursion optimization that
makes them faster than QRGT in certain cases.

As shown here, it is not necessary to go down to the
implementation level (e.g., the WAM). The efficient
treatment of tail recursion is inherent in SLD-resolution.
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Efficiency of Magic Sets (1)

Theorem:

Let P be a rectified program.

Let the standard left-to-right SIP-strategy and SLD
selection function be used.

Then for each magic fact m p β(c1, . . . , ck) that is
derivable from MAG(P) ∪ EDB(P), there is a node in the
SLD-tree with selected literal A, such that

magic[A] = m p β(c1, . . . , ck).
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Efficiency of Magic Sets (2)

Example:

For each m path bf(i) there is a node path(i , X) in the
SLD-tree.

Note:

I.e. magic facts correspond to selected literals in the
SLD-tree.

Since both encode subqueries or predicate calls, there is a
strong relation between both methods.
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Efficiency of Magic Sets (3)

Definition:

If a node A ∧ B1 ∧ · · · ∧ Bn in the SLD-tree has a
descendant node (B1 ∧ · · · ∧ Bn)θ, where θ is the
composition of the MGUs on this path, one says that Aθ
was proven as a lemma.

Theorem:

Let P be a rectified program.

Every non-magic fact about an IDB-predicate that is
derivable from MAG(P) ∪ EDB(P) is proven in the
SLD-tree as a lemma.
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Efficiency of Magic Sets (4)

path(0, X)

true

}
path(0, 1)

path(1, X)

true

}
path(1, 2)


path(0, 2)

...

path(n − 1, X)

true

}
path(n − 1, n)

path(n, X)
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Efficiency of Magic Sets (5)

Reason for the Problem:

With a linear number of nodes, one can prove a quadratic
number of lemmas.

The lemma depends on the path, or at least start and end node.

The magic set method stores these lemmas explicitly. In
the SLD-tree, they are only implicit.

This problem occurs only for tail recursions.

Otherwise (no tail recursions), the number of applicable
rule instances in the transformed program is
O(number of nodes in the SLD-tree).
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Efficiency of Magic Sets (6)

If the program contains no function symbols and built-in
predicates, bottom-up evaluation terminates and needs
only polynomial time (wrt DB-size).

SLD-resolution does not always terminate. Even if it does,
it might need exponential time

An example is given on the next slide.

There are variants of SLD-resolution that use tabellation
to avoid these problems (e.g. in XSB).

But these methods have the same problem with tail
recursions (they are equivalent to magic sets).
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Efficiency of Magic Sets (7)

There are exponentially many paths in this graph,
and Prolog (SLD-resolution) follows them all:

· · ·

But the number of connected node pairs is quadratic,
and magic sets compute only these.

Because of join computations and duplicate elimination, the actual runtime
is probably O(n2 ∗ log(n)).
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Introduction of Recursion (1)

The “grandparent”-example on Slide 6 is non-recursive.

However, the output of the magic set transformation for
this example (Slide 7 and 8) is recursive:

parent(X, Y) ← m parent bf(X) ∧
mother(X, Y).

parent(X, Y) ← m parent bf(X) ∧
father(X, Y).

m parent bf(Y) ← m grandparent bf(X) ∧
parent(X, Y).
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Introduction of Recursion (2)

If the bottom-up machine cannot process recursive programs
(e.g., a classical SQL-DBMS), this is a real problem.

Otherwise, magic sets can be used for query optimzation in SQL-systems,
when the query refers to views.

Even if recursive programs can be processed,
the recursion causes a significant overhead.

Multiple relation variants are needed for the seminaive iteration, one
cannot do a simple unfolding/expansion of the resulting relational algebra
expressions, duplicate checks are necessary.
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Introduction of Recursion (3)

Why does this happen?

The problem is that there are two calls of the
parent-predicate, and the magic set method uses only
one predicate (magic set) to store the arguments (input
values) of the calls.

The input values of the second call depend on the result
values of the first call.

Since the magic set method does not distinguish
between both calls, one gets a recursion.
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Introduction of Recursion (4)

Although this is syntactically a recursion, one can prove
that a single application of the recursive rule about
m parent bf, and two applications of the (recursive)
rules about parent suffice.

See evaluation sequence on the next page. The important point is that no
new facts about m grandparent bf can be derived.

No new facts will be derived if the recursive rules are
iterated further.

This is an example of a “bounded recursion”.
If the bottom-up “machine” detects and optimizes bounded recursions,
there is no problem.
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Introduction of Recursion (5)

m grandparent bf(julia)← true.
m parent bf(X) ← m grandparent bf(X).
parent(X, Y) ← m parent bf(X) ∧

mother(X, Y).
parent(X, Y) ← m parent bf(X) ∧

father(X, Y).
m parent bf(Y) ← m grandparent bf(X) ∧

parent(X, Y).
parent(X, Y) ← m parent bf(X) ∧

mother(X, Y).
parent(X, Y) ← m parent bf(X) ∧

father(X, Y).
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Example: Web-Interface from Datalog

In the next two examples, web queries will be written in
Datalog.

The following built-in predicates will be used:

document(URL, Title, Text, Date)

link(From, To, Label)

index(Search_Term, URL, MaxResults)

server(URL, Server_Part)

Exercise: Which binding patterns can be supported with
reasonable efficiency?
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Context Switches Between Rules (1)

Web pages that have changed since my last visit:

has_changed(URL) :- my_links(URL, Last_Visit),
mtime(URL, Modif),
Modif > Last_Visit.

mtime(URL, Modif) :- document(URL, _, _, Modif).

When the magic set for calling mtime is constructed, the
bindings for Last_Visit are projected away.

Later, these bindings must be reconstructed (with an
expensive join) for evaluating Modif > Last_Visit.
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Context Switches Between Rules (2)

Getting results back into the context of the caller:

my_links(URL,Last_Visit) Modif > Last_Visit

URL Last_Visit
...

...

URL Last_Visit Modif
...

...
...

π

URL
...

URL Modif
...

...

mtime(URL, Modif)
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Context Switches Between Rules (3)

Note that the source of the problem is again that
different calls to a predicate are to be collected in a single
magic predicate.

Therefore, the context of the specific call must be
forgotten when the input arguments are entered into the
table for the magic predicate.

This can also have advantages: Several identical calls are
merged, the result is computed only once.

In the example, if URL were not a key in my_links, the
projection would eliminate duplicates.
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Conditions for the Parameters (1)

Magic sets pass to the called predicate only values for the
parameters, e.g. X = 5, but not, e.g., X > 5.

has_changed(URL) :- my_links(URL, Last_Visit),
mtime(URL, Modif),
Modif > Last_Visit.

Example query:
has_changed(URL), server(URL, ’www.pitt.edu’).

When the query is evaluated with magic sets,
all pages in my_links are accessed.

has_changed(...) must be evaluated first: server(...) needs URL bound.
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Conditions for the Parameters (2)

SLD resolution is more flexible: It would first replace the
call to has_changed by its definition:

my_links(URL, Last_Visit),
mtime(URL, Modif),
Modif > Last_Visit,
server(URL, ’www.pitt.edu’).

Now server(...) can be evaluated directly after
my_links(...), before the expensive call mtime(...).

• In this way, only pages of the server 'www.pitt.edu'
must be accessed.
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Conditions for the Parameters (3)

The problem is here that magic sets are bound to the
predicate structure of the program.

Which is again linked to the fact that identical calls to a predicate at
different places in a program should be merged. This can be advantageous
in certain situations and one cannot have both.

SIP strategies determine the evaluation sequence only
within a rule.

Plus possibly bindings that are ignored when constructing the magic set.

SLD selection functions determine the evaluation
sequence within the entire remaining goal.
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Conditions for the Parameters (4)

Solutions for most of the above problems are known in
the literature:

Magic sets with tail recursion optimization.

A version of magic sets that guarantees that
non-recursive programs remain non-recursive.

A version of magic sets that can pass conditions like
X > 5 (unequalities) to the called predicate.

My SLDMagic method (presented in the last part of this
chapter) solves all of the above problems in a single
framework.
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The SLD-Magic Method
Starting Point (Meta-Interpreter):

Query / Programm

Interpreter for SLD-Resolution

Bottom-Up Machine


Top-Down
Machine

Input Programm written as Datalog Facts (with lists):

rule(grandparent(X,Z),
[parent(X,Y), parent(Y,Z)]).

Note:

François Bry explained magic sets in this way.
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The Meta-Interpreter (1)

Initialization:
node(Query,[Query]) :- query(Query).

SLD-Resolution:
node(Query, Child) :- node(Query, [Lit|Rest]),

rule(Lit, Body),
append(Body, Rest, Child).

Database Access:
node(Query, Rest) :- node(Query, [Lit|Rest]),

db(Lit).

Query is proven:
answer(Query) :- node(Query, []).
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The Meta-Interpreter (2)

Theorem (Simulation of SLD-Resolution):

For each node N with goal ← A1 ∧ · · · ∧ An in the SLD-tree
there is a fact node(Qθ, [A′1, . . . ,A′n]) derivable from the
meta-interpreter, and a variable renaming σ, such that

A′iσ = Ai (for i = 1, . . . , n), and

Qθσ is the result of applying all MGUs on the path from
the root to the node N to the query Q.

And vice versa corresponds each derivable node-fact in
this way to at least one node in the SLD-tree.
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The Meta-Interpreter (3)

Definition:

A program is at most tail-recursive iff for each rule
A← B1 ∧ · · · ∧ Bn the predicates of Bi for i ≤ n−1 do
not depend on the predicate of A.

I.e. only the last literal of every rule can be recursive.

Theorem (Termination):

Let P be at most tail-recursive and let P, the DB, and Q
be finite and without structured terms.

Then bottom-up evaluation of the meta-interpreter
terminates.
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The Meta-Interpreter (4)

Sometimes magic sets are better.
Therefore the user should be able to choose the
evaluation method for each body literal.

This needs only two new rules in the interpreter.

Start recursive call of SLD-resolution:
query(Lit) :- node(_, [call(Lit)|_]).

Use the recursively computed results:

node(Query, Rest) :- node(Query, [call(Lit)|Rest]),
answer(Lit).
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The Meta-Interpreter (5)

This is basically SLD resolution with tabulation:

The first rule puts the call into a table,

the second rule takes proven lemmas from a table in
order to solve the literal.

If call(...) is used for every body literal with an IDB
predicate, one gets something very similar to magic sets
with supplementary predicates.

query-facts correspond to facts about magic predicates, answer-facts
correspond to derived IDB-predicates, and node-facts correspond to facts
about the supplementary predicates.
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The Meta-Interpreter (6)

With the possibility to select magic set behaviour, one
can also overcome the termination problems of the pure
SLD-meta-interpreter:

For every recursive call that is not tail-recursive, one
uses: call(...).

For other body literals with IDB predicates, it is an
intersting problem for the optimizer to choose between
the two evaluation strategies.

It must try to find out how often the same call will be repeated. The strength
of magic sets is that it avoids repeated calls (at the cost explained above).

Stefan Brass: Logic Programming/deductive DBs 14. SLDMagic 14-45 / 52



Introduction Tail Recursion Further Problems of Magic Sets The SLDMagic Method

Partial Evaluation (1)

Interpreter
+ Partial Evaluator

Compiler

Inputs for the Meta-Interpreter:

Interpreter

Database

Query

Program
Known

at compiletime}
only at runtime

Stefan Brass: Logic Programming/deductive DBs 14. SLDMagic 14-46 / 52



Introduction Tail Recursion Further Problems of Magic Sets The SLDMagic Method

Partial Evaluation (2)

Idea:
Fixpoint computation with conditional facts F← C.

C contains the part that is only known at runtime (typically bindings for
the variables in F).

Application of a rule gives

possibly a new conditional fact
After the derivation step, variables in conditional facts are normalized
(renamed to X0, X1, . . .) to ensure that there are not unnecessarily many.

a specialized rule.

At runtime, the evaluation works only with instances of
the conditions.
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Partial Evaluation (3)
Input Program:

path(X, Y) ← edge(X, Y).
path(X, Z) ← edge(X, Y) ∧ path(Y, Z).

? path(0, X).

Initial Set of Conditional Facts:
query(path(0,X)) ← true.

rule(path(X,Y),[edge(X,Y)]) ← true.

rule(path(X,Z),[edge(X,Y), path(Y,Z)]) ←
true.

db(edge(X,Y)) ← edge(X,Y).
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Partial Evaluation (4)

Derivation Step:
Rule (from Meta-Int.): A← B1 ∧ B2
Conditional Facts: B′1 ← C1 B′2 ← C2
MGU((B1,B2), (B′1,B′2)): σ
Part. eval. Rule: E ← C1σ ∧ C2σ
Conditional Fact: Aσ← E

Encoding of Result Literals:
E has the form p(Y1, . . . ,Yn), where Yi are those variables
that appear in both, in Aσ , and in one of the Ciσ.
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Partial Evaluation (5)

Prototype: http://www.informatik.uni-halle.de/
˜brass/sldmagic/

Input: path(X,Y) :- edge(X,Y).
path(X,Z) :- edge(X,Y), path(Y,Z).
?- path(0, X).

Output: p0(X0) :- edge(0,X0).
p1(X1) :- edge(0,X1).
p0(X0) :- p1(X1), edge(X1,X0).
p1(X1) :- p1(X2), edge(X2,X1).
reach(d0,X0) :- p0(X0).
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Partial Evaluation (6)
Conditional Facts:

db(edge(X0,X1)) :- edge(X0,X1).
rule(path(X0,X1),[edge(X0,X1)]) :- true.
rule(path(X0,X1),[edge(X0,X2),path(X2,X1)]) :- true.
query(path(0,X0)) :- true.
node(path(0,X0),[path(0,X0)]) :- true.
node(path(0,X0),[edge(0,X0)]) :- true.
node(path(0,X0),[edge(0,X1),path(X1,X0)]) :- true.
node(path(0,X0),[]) :- p0(X0).
node(path(0,X0),[path(X1,X0)]) :- p1(X1).
node(path(0,X0),[edge(X1,X0)]) :- p2(X1).
node(path(0,X0),[edge(X1,X2),path(X2,X0)]) :- p3(X1).
answer(path(X0,X1)) :- path(X0,X1).
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Partial Evaluation (7)

Rules after partial evaluation:

p0(X0) :- edge(0,X0).
p1(X1) :- edge(0,X1).
p2(X1) :- p1(X1).
p3(X1) :- p1(X1).
p0(X0) :- p2(X1), edge(X1,X0).
p1(X1) :- p3(X2), edge(X2,X1).
path(0,X0) :- p0(X0).

In the version shown above already “copy rules” were
eliminated.

As can be seen, further optimizations are possible, but already this
program does not more steps than SLD-resolution.
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