
Logic Programming and
Deductive Databases

Chapter 15: Negation

Prof. Dr. Stefan Brass

Martin-Luther-Universität Halle-Wittenberg

Summer 2022

http://www.informatik.uni-halle.de/˜brass/lp22/

15. Negation 15-1 / 74

http://www.informatik.uni-halle.de/~brass/lp22/

Objectives

After completing this chapter, you should be able to:

explain the difference between negation in logic
programming and negation in classical logic

explain why stratification is helpful, check a given
program for the stratification condition.

compute supported, perfect, well-founded, and stable
models of a given program.

explain the well-founded semantics with conditional facts
and elementary program transformations.

15. Negation 15-2 / 74

Contents

1 Motivation

2 Syntax, Supported Models

3 Stratification

4 Well-Founded Model

15. Negation 15-3 / 74

Example (Small Library)

book
BID Author Title
Ull89 Ullman Princ. of DBS and KBS
Llo87 Lloyd Found. of Logic Progr.

borrowed
BID
Ull89

available(Author, Title) ← book(BID, Author, Title) ∧
not borrowed(BID).

available
Lloyd Found. of Logic Progr.

15. Negation 15-4 / 74

Motivation (1)

Queries or view definitions as in the above example are
possible in SQL, but cannot be expressed with definite
Horn clauses (classical Datalog).

A good query language should be relationally complete,
i.e. it should be possible to translate every relational
algebra expression into that language.

This goal is reached for Datalog with negation
(Datalogneg) (even without recursion).

Prolog has an operator not (also written \+).

15. Negation 15-5 / 74

Motivation (2)

Set difference is a natural operation. If it misses in a
query language, the user will pose several queries and
compute the set difference himself/herself.

If a query language computes sets, it should be closed under the usual set
operations. I.e. a set operation applied to the result of two queries should
be expressable as a single query. (One could also require other simple
operations, such as counting.) For relations, it should be closed under
relational algebra operations. This is not quite the same as relational
completeness, because this closure condition holds also e.g. for recursive
queries (not expressible in relational algebra).

It was defined above which facts are false in the minimal
model. Up to now, knowledge about false facts cannot be
used within in the program.

15. Negation 15-6 / 74

Not vs. Classical Negation (1)

The negation operator not in Prolog / Datalogneg is not
logical negation ¬ known from classical logic.

From the formulas
book(’Ull89’, ’Ullman’, ’Princ. of DBS and KBS’).
book(’Llo87’, ’Lloyd’, ’Found. of Logic Progr.’).
borrowed(’Ull89’).
available(Author, Title)← book(BID, Author, Title) ∧

¬borrowed(BID).

one cannot conclude that ’Llo87’ is not borrowed.
The given formulas specify only the positive information. This was also the
motivation for defining the minimal model.

15. Negation 15-7 / 74

Not vs. Classical Negation (2)

Therefore, also this is not a logical consequence:
available(’Lloyd’, ’Found. of Logic Progr.’)

This is a difference to Horn clause Datalog:
There, all answer-facts in the minimal model are logical
consequences of the given program.

Negative facts must be assumed “by default” if the
corresponding positive fact is not provable.

In order to prove not A, Prolog first tries to prove A.
If this fails, not A is considered “proven”:
“Negation as (Finite) Failure”/“Default Negation”.

15. Negation 15-8 / 74

Not vs. Classical Negation (3)

Classical logic is monotonic: If ψ follows from Φ, it also
follows from Φ ∪ {ϕ′} for any ϕ′.

If one has more preconditions, one can derive more (or at least the same).

This important property does not hold in logic programming:
If one adds borrowed(’Llo87’) to the given formulas,
one can no longer conclude

available(’Lloyd’, ’Found. of Logic Progr.’)

Thus, “Nonmonotonic Logic” is used to explain negation
in logic programming.

15. Negation 15-9 / 74

Not vs. Classical Negation (4)

Not all classical equivalences hold in logic programming:
For instance,

available(Author, Title)← book(BID, Author, Title) ∧
¬borrowed(BID).

is logically equivalent to

available(Author, Title) ∨ ¬book(BID, Author, Title) ∨
¬¬borrowed(BID).

and thus to
borrowed(BID)← book(BID, Author, Title) ∧

¬available(Author, Title).

15. Negation 15-10 / 74

Not vs. Classical Negation (5)

In logic programming (with not instead of ¬),
the two formulas have a completely different semantics:

borrowed(BID)← book(BID, Author, Title) ∧
not available(Author, Title).

In contrast to:
available(Author, Title)← book(BID, Author, Title) ∧

¬borrowed(BID).

Because no available-facts can be derived, Prolog now
concludes that also ’Llo87’ is borrowed.

In logic programming, rules can be used in only one direction.
The distinction between head and body is important.

The contraposition of a rule is not used.

15. Negation 15-11 / 74

Not vs. Classical Negation (6)

To understand not, it is helpful to assume that for every
predicate p there is a new, system-defined predicate not_p.

One can also use modal logic (with an operator “I know that”).

Then exchanging the head literal and a negated body
literal is no longer logical contraposition, since not_p is
not necessarily ¬p.

It is not even astonishing that some negation semantics
make neither p nor not_p true for difficult programs like
p ← not p.

The well-founded semantics (see later in this chapter) does this.

15. Negation 15-12 / 74

Why not Classical Logic?

NOT is useful/necessary:

Already the specification of finite relations (as in relational
databases) is quite complicated in first order logic.

The transitive closure cannot be defined in first order logic.
The well-known rules entail what must be true. But one cannot make sure
in classical logic that every other fact is false, i.e. one cannot give an
↔-definition of path that works for any given edge-relation.

15. Negation 15-13 / 74

Contents

1 Motivation

2 Syntax, Supported Models

3 Stratification

4 Well-Founded Model

15. Negation 15-14 / 74

Syntax

Now two types of body literals are allowed:

Positive body literals (atomic formulas, as usual):
p(t1, . . . , tn)

Negative body literals (default negation of an atomic
formula):

not p(t1, . . . , tn)

The default negation operator not cannot be used in the
head of a rule.

This corresponds to the above view that “not_p” is a system defined predicate.
One cannot introduce rules that define this predicate.

15. Negation 15-15 / 74

SLDNF-Resolution (1)

SLDNF-Resolution (SLD-resolution with negation as failure)
is a generalization of SLD-resolution to programs with
negative body literals.

Some authors think that it is more precise to say “finite failure”.

As in SLD-resolution, a tree is constructed, where the
nodes are marked with goals (conjunctions of positive and
negative literals).

Seen as a refutation proof, one can also view the goals as disjunction of
the opposite literals.

If the selected literal is a positive literal, child nodes are
constructed as in SLD-resolution.

15. Negation 15-16 / 74

SLDNF-Resolution (2)

If the selected literal is a negative literal,
SLDNF-resolution calls itself recursively with the
corresponding positive literal as query.

I.e. a new tree is constructed, the root marked with the positive literal.

If this tree is finite and contains no success node (empty
goal), the negative literal is considered proven, and the
calling node gets a single child node with the negative
literal removed.

If the tree contains a success node, the calling node is a
failure node (without child nodes).

15. Negation 15-17 / 74

SLDNF-Resolution (3)

Most authors require that a negative literal can only be
selected if it is ground.

The reason is the probably unexpected local quantification,
see next slides.

If the goal is not empty, but the selection function cannot
select a literal (because only nonground negative literals
are left), evaluation “flounders”.

This is an error condition.

Most Prolog systems do not obey this restriction.

15. Negation 15-18 / 74

Range Restriction (1)

not_p can only be called with the binding pattern bb . . . b.

I.e. every variable of the rule must occur in a positive
body literal.

With further restrictions if built-in predicates are used.

Many Prolog systems evaluate also negative literals with
variables. But then the usual quantification is inverted:

not p(X) is successful if p(X) fails for all X .

p(X) is successful if it succeeds for at least one X .

15. Negation 15-19 / 74

Range Restriction (2)

Consider the following example:

p(X)← not r(X) ∧ q(X).
q(a).
r(b).

Most Prolog systems will answer the query “p(X)” with “no”,
since already not r(X) fails.

In this case, there are actually two different variables named “X”, since X
within not is implicitly ∃-quantified.

If one exchanges the two body literals, every Prolog
systems answers the same query with X = a.

15. Negation 15-20 / 74

Range Restriction (3)

Remark (Anonymous Variables):

Anonymous variables in negated body literals can be useful.

Suppose that the table borrowed is extended:
borrowed

BID User
Ull89 Brass

Formally, the following rule would not be range-restricted,
but Prolog would work as (probably) expected:

available(Author, Title)← book(BID, Author, Title) ∧
not borrowed(BID,).

15. Negation 15-21 / 74

Range Restriction (4)

Remark, continued:

Probably, most deductive database systems permit
negative body literals with anonymous variables.

However, these variables are ∀-quantified in the body, whereas all other
variables that occur only in the body are ∃-quantified.
One can also say that anonymous variables are ∃-quantified immediately in
front of the atomic formula, i.e. inside the negation.

This is also consistent with the idea that anonymous
variables project away unnecessary columns.

Exercise: If anonymous variables were not allowed in
negated literals, how would one define available?

15. Negation 15-22 / 74

Exercise

Let the following EDB-relations be given:

lecture_hall(RoomNo, Capacity).

reservation(RoomNo, Day, From, To, Course).

Which lecture halls are free on tuesdays, 830–1000?

What is the largest capacity of a lecture hall?

Is there a time at which all lecture halls are used?
If there is such a time at all, also one of the times in From satisfies this
condition (Proof: Go back from the given time, when all lecture halls are
used, to the nearest start of a reservation.). Thus, it is not necessary to
check all possible times.

15. Negation 15-23 / 74

Clark’s Completion (1)

The first approach to define a semantics of negation in
logic programming non-operationally was (probably)
Clark’s Completion (also called CDB: “completed database”)
[1978].

Basically, the idea was to turn “←” into “↔.

E.g., if the only rule about p is

p(X)← q(X) ∧ r(X)

the definition of p in the CDB is (equivalent to)

∀X : p(X)↔ q(X) ∧ r(X)

15. Negation 15-24 / 74

Clark’s Completion (2)

When variables occur only in the body, e.g. Y in

p(X)← q(X ,Y)

it is normally not important whether

it is universally quantified over the entire rule:
∀X , Y : p(X)← q(X , Y)

or existentially over the body (equivalent):
∀X : p(X)← ∃Y : q(X , Y)

But for the CDB only the second version works:
∀X : p(X)↔ ∃Y : q(X ,Y)

15. Negation 15-25 / 74

Clark’s Completion (3)

If there are several rules about one predicate,
the rule bodies must be connected disjunctively.

E.g. consider
p(a,X)← q(X).
p(b,X)← r(X).

The rule heads must be normalized: New variables are
introduced for the arguments of the head, and equated
with the original arguments in the body:

∀Y1,Y2 : p(Y1,Y2)↔
(
∃X : Y1 = a ∧ Y2 = X ∧ q(X)

)
∨(

∃X : Y1 = b ∧ Y2 = X ∧ r(X)
)

15. Negation 15-26 / 74

Clark’s Completion (4)

E.g., consider this program:

p(X)← q(X) ∧ not r(X).
q(a).
q(b).
r(b).

Clark’s completion (as follows) implies e.g. p(a):

∀X p(X)↔ q(X) ∧ ¬r(X).
∀X q(X)↔ X = a ∨ X = b.
∀X r(X) ↔ X = b.

In addition it contains an equality theory that includes,
e.g., a 6= b (unique names assumption, UNA).

15. Negation 15-27 / 74

Clark’s Completion (5)

Consider the program
p ← p.

The definition of p in Clark’s Completion is
p ↔ p

i.e. p can be true or false.

SLDNF resolution can prove neither p nor not p.
It always gets into an infinite loop.

However, if one uses a deductive database with
bottom-up evaluation, it is clear that p is false.

This motivates the search for stronger negation semantics, see below.

15. Negation 15-28 / 74

Clark’s Completion (6)

Consider the program
p ← not p.

The definition of p in Clark’s Completion is
p ↔ ¬p

which is inconsistent.

SLDNF resolution can prove neither p nor not p.

However, if the program contains other, unrelated predicates,
SLDNF resolution would give reasonable positive and
negative answers for them, while Clark’s completion
implies everything.

15. Negation 15-29 / 74

Clark’s Completion (7)

Of course, the rule p ← not p is strange and contradictory:
p is provable iff p is not provable.

In classical logic p ← ¬p is simply equivalent to p, i.e. p is true. However,
as explained above, when negation is used, logic programming rules do not
behave as the corresponding formulas in classical logic.

However, such a case can be hidden in a large program,
and be totally unrelated to a given query.

In order to support goal-directed query evaluation procedures,
such cases must be excluded or the semantics must “localize”
the consistency problem.

15. Negation 15-30 / 74

Contents

1 Motivation

2 Syntax, Supported Models

3 Stratification

4 Well-Founded Model

15. Negation 15-31 / 74

Stratification (1)

In order to avoid the p ← not p problem, the class of
stratified programs is introduced.

Note that negative body literals not p(t1, . . . , tn) can be
easily evaluated if the complete extension of p was
already computed previously.

Variables among the arguments are already bound to a concrete value
because of the range restriction. Thus, one only has to check whether the
argument tuple is contained in the extension of p.

This means that p must not depend on a predicate that
depends on not p.
In short: Recursion through negation is excluded.

15. Negation 15-32 / 74

Stratification (2)

Definition (Level Mapping of the Predicates):

A level mapping of the predicates P is a mapping
` : P → lN0.

The domain of this mapping is extended to atomic
formulas through

`
(
p(t1, . . . , tn)

)
:= `(p).

Note:

The purpose of this level mapping is to define an
evaluation sequence: One starts with predicates of level 0,
continues with level 1, and so on.

15. Negation 15-33 / 74

Stratification (3)

Definition (Stratified Program):

A program P is stratified if and only if there is a level
mapping ` such that for each rule

A← B1 ∧ · · · ∧ Bm ∧ not C1 ∧ · · · ∧ not Cn

the following holds:

`(Bi) ≤ `(A) for i = 1, . . . , m, and

`(Cj) < `(A) for i = 1, . . . , n.

Such a level mapping is called a stratification of P.

15. Negation 15-34 / 74

Stratification (4)

One can compute a stratification as follows:

Let k be the number of different predicates in the
program.

Assign level 0 to every predicate.

Whenever the condition is violated for a rule, and the
level of the predicate in the head is less than k,
increment it.

If the level of a predicate reaches k, the program is not
stratified. Otherwise, when a stable state is reached, this
is a valid stratification.

15. Negation 15-35 / 74

Stratification (5)

The predicate dependency graph for programs with
negation is defined as follows:

Nodes: Predicates that occur in the program.
Here not p does not count as a predicate on its own.

There is a positive edge from q to p iff there is a rule of
the form p(. . .)← . . . ∧ q(. . .) ∧ . . .

There is a negative edge from q to p iff there is a rule of
the form p(. . .)← . . . ∧ not q(. . .) ∧

A program is stratified if and only if there is no cycle that
contains at least one negative edge.

15. Negation 15-36 / 74

Perfect Model (1)

For defining when an interpretation is a model of a
program one treats not like classical negation ¬.

Thus, an interpretation I is a model of a program P iff
for every rule

A← B1 ∧ · · · ∧ Bm ∧ not C1 ∧ · · · ∧ not Cn

and every variable assignment A the following holds:

If (I,A) |= Bi for i = 1, . . . , m and (I,A) 6|= Cj
for j = 1, . . . , n, then (I,A) |= A.

If one identifies again a Herbrand model I with its set of true facts, a
ground literal not p(c1, . . . , cn) is true in I if and only if p(c1, . . . , cn) 6∈ I.

15. Negation 15-37 / 74

Perfect Model (2)

Problem:

With negation, the minimal Herbrand model is no longer
unique: p ← not q.
This program has two minimal models (it is logically
equivalent to p ∨ q):

I1 = {p}.

I2 = {q}.

Of these, only I1 is intuitively right (intended model):
Since there are no rules about q, one cannot prove q.
Thus, it should be false.

15. Negation 15-38 / 74

Perfect Model (3)

Idea:

Predicate minimization with priorities:

It is natural to compute the predicate extensions in the
sequence given by the level mapping.

Then predicates with lower level are minimized with
higher priority.

They can choose first and they want to have a minimal extension.

In the example p ← not q (e.g., `(q)=0, `(p)=1) q is
minimized with higher priority, i.e. it is more important
to make q false than to make p false. Therefore, one
chooses I1 = {p}.

15. Negation 15-39 / 74

Perfect Model (4)

Definition (Prioritized Minimal Model):

Let a level mapping ` for a program P be given.

A Herbrand model I1 of P is preferable to a Herbrand
model I2 (I1 ≺` I2) iff there is i ∈ lN0 with

I1(p) = I2(p) for all predicates p with `(p) < i .

I1(p) ⊆ I2(p) for all predicates p with `(p) = i .

I1(p) 6= I2(p) for at least one p with `(p) = i .

I1 �` I2 iff I1 ≺` I2 or I1 = I2.

15. Negation 15-40 / 74

Perfect Model (5)

Theorem/Definition:

Every stratified program P has exactly one minimimal
model I0 with respect to �`.

This model I0 is called the perfect model of P.

The perfect model does not depend on the exact
stratification. If ` und `′ are two stratifications for P, the
minimal model with respect to �` is also minimal with
respect to �`′ .

Actually, the original definition of the perfect model does not use a level
mapping but the priority relation between the predicates given by the rules
of the program.

15. Negation 15-41 / 74

Bottom-Up Evaluation (1)

One first applies rules about predicates of level 0.
These do not contain negation.

Then one applies the rules about predicates of level 1.
These refer negatively only to predicates of level 0.
But the extensions of these predicates are already known.
And so on.

When the rules are applied in a sequence obtained from
topologically sorting the predicate dependency graph,
one automatically gets this order compatible with the
predicate levels.

15. Negation 15-42 / 74

Bottom-Up Evaluation (2)

Definition (Generalized TP-Operator):

TP,J (I) :=
{
F ∈ BΣ

∣∣∣There is a rule
A← B1 ∧ · · · ∧ Bm

∧ not C1 ∧ · · · ∧ not Cn
in P and ground substitution θ,
such that
θ(A) = F ,
θ(Bi) ∈ I ∪ J for i = 1, . . . ,m,
θ(Ci) 6∈ J for i = 1, . . . , n

}
.

15. Negation 15-43 / 74

Bottom-Up Evaluation (3)

Iterated Fixpoint Computation:
Let ` be a stratification of P with maximal level k .

Let Pi be the rules about predicates of level i , i.e.

Pi := {A← B1 ∧· · ·∧ Bm ∧ not C1 ∧· · ·∧ not Cn ∈ P |
`(A) = i}.

Let I0 := ∅ and Ii+1 := Ii ∪ lf p(TPi ,Ii).

Then Ik+1 is the perfect model of P.

15. Negation 15-44 / 74

Contents

1 Motivation

2 Syntax, Supported Models

3 Stratification

4 Well-Founded Model

15. Negation 15-45 / 74

Non-Stratified Negation (1)

Some practically useful programs are not stratified.

This happens e.g., if there is a “state” argument, and
when one defines a predicate for the next state, one uses
it negatively for the previous state:

odd(X)← succ(Y, X) ∧ not odd(Y).
succ(0, 1).
succ(1, 2).

...
succ(n − 1, n).

Since succ is acyclic, an odd-fact does not depend on itself negatively. But
if one looks only at the predicates, there is the negative cycle. It depends
on the data whether a program is “dynamically stratified”.

15. Negation 15-46 / 74

Non-Stratified Negation (2)

A similar program defines the winning states of a game in
which a player loses if he cannot make another move:

win(X)← move(X, Y) ∧ not win(Y).
E.g., in the Nim game, there are three piles of objects (e.g. matches). A
move is to take any number of objects (at least one) from a single pile.
The player who takes the last object wins (often it is played in the opposite
way). [https://en.wikipedia.org/wiki/Nim].

A winning state is one for which there is a strategy to win
the game.

No matter what the opponent does.

15. Negation 15-47 / 74

https://en.wikipedia.org/wiki/Nim

Non-Stratified Negation (3)

Negation is only a special case of aggreation functions, it
simply means: count(. . .) = 0.

The “bill of materials” problem, which was one of the
applications that motivated recursive queries in
databases, uses unstratified aggregation:

One is given the prices of elementary parts,

and the parts lists of modules, which are composed
recursively to still larger modules.

One has to compute the prices of all modules (the end
products are the root modules).

15. Negation 15-48 / 74

Interpretations, Models

An extended Herbrand-interpretation (EH-interp.) is a
set I of positive and negative ground literals.

So this is a four-valued logic: p is true in I iff p ∈ I and not p 6∈ I.
It is false iff not p ∈ I and p 6∈ I. It is undefined iff p 6∈ I and not p 6∈ I.
It is inconsistent iff p ∈ I and not p ∈ I.

An EH-interpretation is three-valued (consistent) if it
does not contain a ground fact and its negation.

An interpretation I is a model of a logic program P if for
every ground instance of a rule in P, if each body literal is
contained in I, then also the head is contained in I.

15. Negation 15-49 / 74

Well-Founded Semantics (1)

The well-founded semantics (WFS) defines a single
three-valued EH-interpretation, the well-founded model,
for each program.

For the problematic program
p ← not p.

the well-founded model contains neither p nor not p.
I.e. p has the third truth value “undefined”. One can view this as a kind of
error value.

15. Negation 15-50 / 74

Well-Founded Semantics (2)

The well-founded model (WFM) can be defined as least
fixed point of a modified TP operator.

Given a three-valued EH-interpretation I, this permits to
deduce positive and negative literals.

The deduction of positive literals is as usual: For each
ground instance

A← B1 ∧ · · · ∧ Bm ∧ not C1 ∧ · · · ∧ not Cn

of a rule in P, if the given interpretation I contains all
the (positive and negative) body literals, then A ∈ TP(I).

15. Negation 15-51 / 74

Well-Founded Semantics (3)

Negative literals are deduced based on the notion of an
unfounded set: Given a three-valued EH-interpretation I
and a program P, a set of facts J is an unfounded set iff
for each ground instance

A← B1 ∧ · · · ∧ Bm ∧ not C1 ∧ · · · ∧ not Cn

of a rule in P with A ∈ J

There is 1 ≤ i ≤ m with not Bi ∈ I, or

there is 1 ≤ i ≤ n with Ci ∈ I, or

there is 1 ≤ i ≤ m with Bi ∈ J
(called “witness of unusability of the rule”).

15. Negation 15-52 / 74

Well-Founded Semantics (4)

It is obvious that the union of two unfounded sets is again
an unfounded set.

Thus, there is a unique maximal unfounded set.

Now the TP-operator for the well-founded model adds the
negative counterpart (the default negation) of all
elements of the maximal unfounded set.

Plus the derived positive ground literals (see Slide 51).

This TP operator is monotonic with respect to ⊆
(information order).

Thus, the least fixed point exists. This is the WFM.

15. Negation 15-53 / 74

Well-Founded Semantics (5)

Example:

Program P: s ← not r .
r ← q.
q ← r .
q ← not p.
p.

I0 := ∅.

I1 := {p}.

Now {q, r} is an unfounded set with respect to I1.
I2 := {p, not q, not r}.

I3 := {p, not q, not r , s} (well-founded model of P).

15. Negation 15-54 / 74

Well-Founded Semantics (6)

Theorem:

For stratified programs P, the well-founded model of P is
the perfect model of P.

Note/Theorem:

The above definition of “model” only required that when
the body is true, the head must be true.

The well-founded model also satisfies that when the body
is undefined (no negation of a body literal is in the
model), the head is at least undefined (the negation of
the head is also not in the model).

15. Negation 15-55 / 74

Problem

For stratified programs, the semantics is clear, but
stratified programs are not enough in practice.

There are about 15 proposals for the semantics of
nonmonotic negation. The WFS is one of them.

Actually, the well-founded semantics and the stable model semantics
“survived”, the others are only interesting for specialists. The stable model
semantics lead to a new programming formalism, “answer set
programming”.

Which one(s) are natural and free of surprises?

Are there good semantics we do not know yet?

15. Negation 15-56 / 74

Abstract Semantics

Definition:

A semantics is a mapping S, which assigns to every
program P a set of EH-interpretations which are models
of P.

S(P) = S
(
ground(P)

)
.

I.e. it suffices to consider ground programs.

If a ground literal A does not occur in ground(P), then
not A ∈ I and A 6∈ I for every I ∈ S(P).

I.e. in this obvious case, A must be false.

15. Negation 15-57 / 74

Program Transformations (1)

Definition:

A program-transformation is a relation 7→ between
ground logic programs.

This is a relation, not a function: Since a transformation might be applied
to different rules or predicates in the program, the same “input” program
can be related to several alternative “output” programs.

A semantics S allows a transformation 7→ iff

P1 7→ P2 =⇒ S(P1) = S(P2).

I.e. the transformation does not change the meaning of the program: The
set of models (selected by the semantics) before and after the
transformation is the same.

15. Negation 15-58 / 74

Program Transformations (2)

Deletion of Tautologies:

P1 7→T P2 iff P1 contains a rule of the form

A← . . . ∧ A ∧ . . . ,

and P2 is the result of deleting this rule from P1.

Example:

P1: q ← not p.
p ← p ∧ q.

P2: q ← not p.

15. Negation 15-59 / 74

Program Transformations (3)

Unfolding (Partial Evaluation):
Replace a positive body literal B by the bodies of all
rules about B.

P1: p ← q ∧ not r .

q ← s ∧ not t.
q ← u.

P2: p ← s ∧ not t ∧ not r .
p ← u ∧ not r .

q ← s ∧ not t.
q ← u.

15. Negation 15-60 / 74

Program Transformations (4)

Deletion of Nonminimal (Subsumed) Rules:

A rule A← L1 ∧ · · · ∧ Ln can be deleted if there is
another rule A← Li1 ∧ · · · ∧ Lik such that
{Li1 , . . . , Lik} ⊂ {L1, . . . , Ln}.

We treat rule bodies here as sets. My habilitation thesis uses an explicit
operation for reordering body literals.

Example:

P1: p ← p ∧ not q.
p.

One could remove the tautological rule or unfold and get p ← not q.

P2: p.

15. Negation 15-61 / 74

Program Transformations (5)

Normal Form:

P0 is a normal form of P wrt 7→ iff

P 7→∗ P0 and

there is no P1 with P0 7→ P1.

Confluence:

7→ is confluent iff for all P1, P2, P3:

If P1 7→∗ P2 and P1 7→∗ P3,

then there is P4 with P2 7→∗ P4 and P3 7→∗ P4.

15. Negation 15-62 / 74

Program Transformations (6)

Theorem:

The rewriting system 7→ consisting of the above three
transformations is terminating, i.e. every program has a
normal form.

The rewriting system 7→ is also confluent.

Therefore, every program has a unique normal form.

Definition:

The normal form of P is called the weak residual program
of P.

15. Negation 15-63 / 74

Conditional Facts (1)

Conditional Fact:

Ground rule with only negative body literals:

A← not B1 ∧ · · · ∧ not Bn.

The weak residual program is a set of conditional facts.

It can be computed with a variant of the usual
TP-operator which simply delays the evaluation of
negative body literals.

The range restriction ensures that all variables in the rule will be bound if
we insert conditional facts for the positive body literals.

15. Negation 15-64 / 74

Conditional Facts (2)

Direct Consequence Operator TP :
p(a) ← not s(b) ∧ not r(b).
↑ ↑ ↑

p(X) ← q1(X) ∧ q2(X, Y) ∧ not r(Y).

↑ ↑
q1(a) q2(a, b)← not s(b).

Theorem:

lf p(TP) (without nonminimal cond. facts)
is exactly the normal form of ground(P).

15. Negation 15-65 / 74

Conditional Facts (3)

Example:

odd(X) ← succ(Y, X) ∧ not odd(Y).

succ(0, 1).
succ(1, 2).
. . .
succ(n − 1, n).

Normal Form:

odd(1) ← not odd(0). succ(0, 1).
odd(2) ← not odd(1). succ(1, 2).
.
odd(n) ← not odd(n − 1). succ(n − 1, n).

15. Negation 15-66 / 74

Relation to Minimal Models

Order Among the EH-Interpretations:

I1 ≺ I2 iff

I1 ⊂ I2, but

I1 and I2 contain the same negative literals.

Theorem:

A semantics S allows unfolding, elimination of tautologies
and of nonminimal rules iff

S(P1) = S(P2) for all programs P1 and P2, which have
the same set of ≺-minimal EH-models.

15. Negation 15-67 / 74

WFS-Characterization (1)

Positive Reduction:

Replace a rule of the form

A← L1 ∧ · · · ∧ Li−1 ∧ not B ∧ Li+1 ∧ · · · ∧ Ln,

where B occurs in no rule head, by

A← L1 ∧ · · · ∧ Li−1 ∧ Li+1 ∧ · · · ∧ Ln.

15. Negation 15-68 / 74

WFS-Characterization (2)

Negative Reduction:

Delete a rule of the form

A← L1 ∧ · · · ∧ not B ∧ · · · ∧ Ln,

where B ← true is given as a fact.

Theorem

Also the rewriting system extended by these two
transformations is terminating and confluent.

15. Negation 15-69 / 74

WFS-Characterization (3)

Residual Program:

The normal form of a program P with respect to all five
transformations is called the residual program res(P)
of P.

Example (continued on next slide):

odd(X) ← succ(Y, X) ∧ not odd(Y).

succ(0, 1).
succ(1, 2).
. . .
succ(n − 1, n).

15. Negation 15-70 / 74

WFS-Characterization (4)

Derivable Conditional Facts:

odd(1) ← not odd(0).
odd(2) ← not odd(1).
odd(3) ← not odd(2).
. . .

Residual Program:

odd(1). succ(0, 1).
succ(1, 2).

odd(3). succ(2, 3).
.

succ(n − 1, n).

15. Negation 15-71 / 74

WFS-Characterization (5)

Example

p ← not p.

This program cannot be further reduced, it is its own
residual program.

The well-founded semantics leaves p undefined in this case. One can
understand the undefined truth value as a kind of localized error indicator.

Theorem

The well-founded semantics allows the above five
transformations.

15. Negation 15-72 / 74

WFS-Characterization (6)

Theorem:

The well-founded model of P can be directly read from
the residual program res(P):
• A is true in the well-founded model iff

res(P) contains the fact A← true.
• A is false in the well-founded model iff

res(P) contains no rule about A.
• All other ground atoms are undefined in the

well-founded model.

15. Negation 15-73 / 74

WFS-Characterization (7)

Theorem:

Let S be any semantics that permits the above five
transformation.

Then for all programs P and all I ∈ S(P):

If A is true in the well-founded model of P, then A ∈ I.

If A is false in the well-founded model of P, i.e. not A is
contained in it, then not A ∈ I.

I.e.: The well-founded semantics is the weakest semantics
that permits the five transformations.

15. Negation 15-74 / 74

	Motivation
	Motivation, Differences to Classical Logic

	Syntax, Supported Models
	Syntax, Supported Models

	Stratification
	Stratification

	Well-Founded Model
	Conditional Facts, Well-Founded Model

