
Logic Programming and
Deductive Databases

Chapter 13: Magic Sets

Prof. Dr. Stefan Brass

Martin-Luther-Universität Halle-Wittenberg

Summer 2022

http://www.informatik.uni-halle.de/˜brass/lp22/

13. Magic Sets 13-1 / 62

http://www.informatik.uni-halle.de/~brass/lp22/

Objectives

After completing this chapter, you should be able to:

explain the basic idea of the magic set transformation.

What does a magic fact mean?

perform the magic set transformation for a given input
program.

name and explain different SIP strategies.
SIP: “Sideways Information Passing”.

13. Magic Sets 13-2 / 62

Contents

1 Introduction

2 SIP-Strategies, Adorned Program

3 The Magic Set Transformation

4 Improvements

13. Magic Sets 13-3 / 62

Introduction (1)

Example (Grandparents of Julia):

Logic Program (IDB-Predicates and Query):

parent(X, Y) ← mother(X, Y).
parent(X, Y) ← father(X, Y).
grandparent(X, Z) ← parent(X, Y) ∧

parent(Y, Z).
answer(X) ← grandparent(julia, X).

EDB-Predicates (stored in the database):

father
mother

13. Magic Sets 13-4 / 62

Introduction (2)

Problem:

Naive/Seminaive Bottom-Up Evaluation computes all
parent- and grandparent-relationships of all persons in the
database.

Until now, the actual query is considered only at the very
end of query evaluation — after the entire minimal model
was computed.

Therefore, the method is not goal-directed: It computes
many superfluous facts, which are not relevant for the query.

13. Magic Sets 13-5 / 62

Introduction (3)

Solution:

The “Magic Set” Transformation rewrites the program
such that the rules can only “fire” when their result
(the derived fact) is relevant for the query.

This is done by making the occurring queries and subqueries
explicit. They are encoded as facts of “magic predicates”.

E.g. the query
? grandparent(julia, X)

is represented as
m grandparent bf(julia).

13. Magic Sets 13-6 / 62

Introduction (4)

More About Encoding of Queries:

Consider again the correspondance:

Query: ? grandparent(julia, X)

Magic Fact: m grandparent bf(julia).

Magic facts should be representable in a database, and
therefore should not contain variables.

Solution: The binding pattern indicates the position of
the variables (their name is not important).

Only the values of constants in the query (bound arguments)
are explicitly stored in the magic fact.

13. Magic Sets 13-7 / 62

Introduction (5)

Example Output, First Part:

Rules are restricted by an additional body literal so that
they can fire only if there is a matching query:

parent(X, Y) ← m parent bf(X) ∧
mother(X, Y).

parent(X, Y) ← m parent bf(X) ∧
father(X, Y).

grandparent(X, Z) ← m grandparent bf(X) ∧
parent(X, Y) ∧
parent(Y, Z).

answer(X) ← true ∧
grandparent(julia, X).

13. Magic Sets 13-8 / 62

Introduction (6)

Example Output, Second Part:

m grandparent bf(julia) ← true.
m parent bf(X) ← m grandparent bf(X).
m parent bf(Y) ← m grandparent bf(X) ∧

parent(X, Y).

Of course, the original query must be represented as a
magic fact in the rewritten program.

In addition, magic facts corresponding to the occurring
subqueries must be derivable.

Example: To compute the grandparents of X, one must
first compute the parents of X.

13. Magic Sets 13-9 / 62

Introduction (7)

Summary (Equivalence):

The “Magic Set” transformation produces a program
which is equivalent for the given query:

The extension of the predicate “answer” in the minimal
model of the transformed program is the same as in the
minimal model of the original program.

But often the minimal model of the transformed program
is much smaller than the minimal model of the original
program.

It contains only IDB-facts that are relevant for the given query.

13. Magic Sets 13-10 / 62

Introduction (8)

Summary (Equivalence), Continued:

This equivalence (for the predicate answer) is independend
of the extensions of the EDB-predicates:

No database access is needed during the transformation.
Therefore, the transformation itself is quite efficient (one usually
assumes that external memory accesses are expensive).

The transformed program can be executed several times,
even when the database state was changed in the meantime.

13. Magic Sets 13-11 / 62

Introduction (9)

Input Program
(simple, but not efficient)

“Magic Set” Transformation

Output Program
(returns the same answers,
but is evaluated more efficiently)

13. Magic Sets 13-12 / 62

Introduction (10)

Magic Sets and Built-in Predicates:

The magic set transformation can also improve the
termination of programs with built-in predicates:

E.g., append has an infinite extension.

But for a concrete query, only a finite number of facts
might be needed.

E.g., when two given lists are appended.

In this way, the magic set transformation might turn an
infinite minimal model into a finite one.

Of course, it depends on the program and the query whether this works.

13. Magic Sets 13-13 / 62

Introduction (11)

Top-Down vs. Bottom-Up:

Before the magic set transformation, there were two
competing evaluation approaches:

Top-down evaluation (e.g. SLD-resolution):
Starts from the query, simplifies it, until facts can be
used. Advantage: Goal-directed.

Bottom-up evaluation (e.g., seminaive method):
Starts from the facts, computes derived facts, until
answers to the query are reached. Advantage: Avoids
duplicate work, ensures termination.

Magic sets combine the advantages of both.

13. Magic Sets 13-14 / 62

Introduction (12)

Magic Sets — A Source Code Level Transformation:

The underlying “bottom-up machine” can remain
unchanged.

It is always good to separate problems and solve them
one after the other.

One can understand the method on a high level of
abstraction (Herbrand models instead of internal data
structures).

However, it is probably advantageous for an implementation
to treat the magic predicates specially.

13. Magic Sets 13-15 / 62

Introduction (13)

IDB predicates as procedures:

With magic sets, IDB predicates can be understood as
procedures with input and output arguments:

Input: Relation M with bindings for the input arguments
(this is the “Magic Set”).

Output: Relation R for all arguments.
It does not suffice to return only a relation for the output arguments
because the connection to the input arguments would not be clear if
M contains more than one tuple.

If E is the original extension of the predicate,
R = E M holds (this is a semi-join).

13. Magic Sets 13-16 / 62

Introduction (14)

IDB predicates as procedures, continued:

Example:

M :
m parent bf
eric
fiona

parent bf

Procedure
R :

parent bf
eric alan
eric barbara
fiona chris
fiona doris

The database might contain many more mother/father relationships, but
only the required parent tuples are derived.

However, for recursive predicates, M might still be
extended later.

13. Magic Sets 13-17 / 62

Contents

1 Introduction

2 SIP-Strategies, Adorned Program

3 The Magic Set Transformation

4 Improvements

13. Magic Sets 13-18 / 62

SIP-Strategies (1)

Motivation:

SIP = ”Sideways Information Passing“
When rules are evaluated, information is passed “sideways”: from a body
literal that is evaluated earlier to one that is evaluated later.

grandparent(X, Z)← parent(X, Y) ∧ parent(Y, Z).

Variable binding from the caller: X = julia.

This is passed to the first body literal.

By evaluating this body literal, one gets bindings for Y,
e.g. Y = eric and Y = fiona.

These are passed to the second body literal.

13. Magic Sets 13-19 / 62

SIP-Strategies (2)

However, for the query “? grandparent(X, alan)”,
it is more efficient to start the evaluation of

grandparent(X, Z)← parent(X, Y) ∧ parent(Y, Z)

with the second body literal.

Then the binding Z = alan can be used.

This gives bindings for Y, which can be passed to the
first body literal.

If instead one evaluates the first body literal first, this is
done with the binding pattern ff, and one has to
compute the complete extension of parent.

13. Magic Sets 13-20 / 62

SIP-Strategies (3)

Definition:

Given a rule A← B1 ∧ · · · ∧ Bm and a binding pattern β
for pred(A),

a SIP-strategy defines an evaluation sequence for the
body literals, i.e. a permutation

π : {1, . . . ,m} → {1, . . . ,m},

and for every k ∈ {1, . . . ,m} a valid binding pattern
βπ(k) ∈ valid

(
pred(Bπ(k))

)
such that

input(Bπ(k), βπ(k)) ⊆ input(A, β) ∪
k−1⋃
j=1

vars(Bπ(j)).

13. Magic Sets 13-21 / 62

SIP-Strategies (4)

Note:

This is the same condition for π and βπ(k) as in the
definition of “range restricted rule”.

A given evaluation sequence determines “maximally
bound” binding patterns for the body literals:

Values for variables in “bound” argument positions in
the head literal are known.

Values for variables in body literals that were evaluated
earlier are known.

All other variables do not have a known value yet, thus
they lead to “free” argument positions.

13. Magic Sets 13-22 / 62

SIP-Strategies (5)

Most SIP-strategies choose the above “maximal” binding
pattern that uses all existing bindings.

Therefore, the real decision is the evaluation sequence for
the body literals. The binding patterns are then often
automatically determined.

However, the possible evaluation sequences depend on the valid binding
patterns for the body literal: Some predicates can only be evaluated if
certain arguments are bound.

A SIP-strategy can ignore existing bindings and choose a
more general binding pattern.

Possible reasons are explained on the next slide.

13. Magic Sets 13-23 / 62

SIP-Strategies (6)

Reasons for not choosing the maximal binding pattern:

Not all binding patterns might be implemented.
This is obvious for built-in predicates, but happens also for IDB-predicates
in separately compiled modules (modules define “exported binding patterns”).

One needs the more general binding pattern anyway at
some other place in the program.

In this way, one avoids duplicating the rules. But unless the other binding
pattern is ff . . . f, one computes more tuples (if calls disjoint).

to simplify the magic rules.
An even more general kind of “SIP-strategy” permits to choose a subset of
the earlier evaluated body literals for the magic rule.

13. Magic Sets 13-24 / 62

SIP-Strategies (7)

Exercise:

Consider this rule (with only IDB predicates):

ship_to(ProdName, City) ←
has_ordered(CustNo, ProdNo) ∧
customer_city(CustNo, City) ∧
product_name(ProdNo, ProdName).

Select a good evaluation sequence for each of the
following calls, and state the binding patterns:

ship_to(X, ’Halle’).

ship_to(’Van Tastic’, X).

ship_to(’Van Tastic’, ’Halle’).
13. Magic Sets 13-25 / 62

SIP-Strategies (8)

Framework for SIP-Strategies:

Let A← B1 ∧ · · · ∧ Bm be called with binding pattern β.
One chooses first π(1) (i.e. the first body literal to
evaluate), then π(2), and so on.

Given that one has already chosen π(1), . . . , π(k), the
i-th body literal is possible with binding pattern
β′ ∈ valid

(
pred(Bi)

)
iff the literal has not been chosen

yet, i.e. i ∈ {1, . . . ,m} \ {π(1), . . . , π(k)} and

input(Bi , β
′) ⊆ input(A, β) ∪

k⋃
j=1

vars(Bπ(j)).

13. Magic Sets 13-26 / 62

SIP-Strategies (9)

Example:

Consider the following rule is called with p(X , 3):
p(X ,Y)← X < Y ∧ q(X).

At the beginning, only the second body literal is evaluable
(with binding pattern f).

The only valid binding pattern for < is bb, therefore the first body literal
cannot be evaluated at this point (although it has more bound arguments
than q(X): the value for Y is already known).

Thus, all SIP-strategies must select π(1) = 2.

After q(X) is evaluated, the value of X is known, and the
first literal becomes evaluable: π(2) = 1.

13. Magic Sets 13-27 / 62

SIP-Strategies (10)

Common SIP-Strategies:

Among all possible (i , β), choose one such that β has the
smallest number of free argument positions.

Among all possible (i , β), choose one such that β has the
largest number of bound arguments.

Among all possible (i , β), choose one such that i is minimal.
This strategy evaluates body literals in the sequence given by the
programmer as far as possible. If there should be several possible β for the
minimal i , choose one with the maximum number of bound argument
positions.

13. Magic Sets 13-28 / 62

SIP-Strategies (11)

Example:

Consider the rule
p(X1,X2)← q(X1,Y) ∧ r(X1,X2,Z1,Z2)

and the call p(a, b).

A SIP-strategy that tries to maximize the number of
bound argument positions begins the evaluation with the
second body literal: r(X1,X2,Z1,Z2).

A SIP-strategy that minimizes the number of free
argument positions chooses q(X1,Y) first.

13. Magic Sets 13-29 / 62

SIP-Strategies (12)

Further Input for SIP-Strategies:

The SIP-strategy is an important component of the
optimizer of a deductive DBMS.

It should take also the following information into account:

Keys

Indexes

Size of Relations

Number of different values in an attribute

13. Magic Sets 13-30 / 62

SIP-Strategies (13)

Goals of SIP-Strategies:

Try to keep intermediate results small.

“Fail as early as possible”.

Call expensive predicates only when cheap tests were
successful. Expensive predicates are:

Recursive predicates

Predicates that need themselves many joins and possibly
a duplicate elimination.

Built-in predicates with complicated computations or
slow network accesses.

13. Magic Sets 13-31 / 62

SIP-Strategies (14)

Exercises:

p(X ,Z)← q(X ,Y1,Y2,Y3) ∧ r(Y1,Z), with call p(a, b),
when the first argument of q and r is a key.

Suppose p is defined by p(X)← q1(X) ∧ q2(X) and is
called with binding pattern f. Cost estimates:

q1 : f produces 100 tuples in 100 ms.

q1 : b checks a single value in 3 ms (index).

q2 : f produces 1000 tuples in 200 ms.

q2 : b checks a single value in 100 ms (FT scan).

Sorting/intersecting the two sets costs 1000 ms.

13. Magic Sets 13-32 / 62

Contents

1 Introduction

2 SIP-Strategies, Adorned Program

3 The Magic Set Transformation

4 Improvements

13. Magic Sets 13-33 / 62

Adorned Program (1)

Goal:

The first step of the transformation is to make the
binding patterns of the IDB-predicates explicit.

This simplifies the definition of the main magic set transformation.

I.e. the predicate p is renamed to p β. Several versions of
a predicate are produced for different β.

Sometimes one IDB-predicate is called with different binding patterns.

Furthermore, the body literals are ordered in the
evaluation sequence.

In this way, the information from the SIP-strategy is encoded in the program.

13. Magic Sets 13-34 / 62

Adorned Program (2)

Definition:

Let a logic program P, valid binding patterns valid and a
SIP-strategy S be given.

For each predicate p ∈ PIDB(P), p 6= answer, and every
binding pattern β ∈ valid(p) a new predicate p β is
introduced.

For a literal A = p(t1, . . . , tn) and binding pattern
β ∈ valid(p) let

adorn(A, β) :=

p β(t1, . . . , tn) if p ∈ PIDB(P),

p 6= answer
p(t1, . . . , tn) otherwise.

13. Magic Sets 13-35 / 62

Adorned Program (3)

Definition, continued:

The program AD(P) contains for each rule
A← B1 ∧ · · · ∧ Bm from IDB(P)

and each binding pattern β ∈ valid
(
pred(A)

)
the rule

adorn(A, β) ← adorn(Bπ(1), βπ(1)) ∧ · · · ∧
adorn(Bπ(m), βπ(m)),

where π and β1, . . . , βm are determined by the SIP-strategy S.

13. Magic Sets 13-36 / 62

Adorned Program (4)

Note:

It is theoretically simpler to process every rule for each
possible binding pattern.

The unnecessary binding patterns are eliminated when
one later deletes all predicates (and their definitions) on
which “answer” does not depend.

In practice, only necessary p β are constructed.
E.g. one manages a set of all combinations (p, β) that still have to be
processed. This is intialized with {(answer, f . . . f)}. In each step, one
takes an element from this set and generates the rules for p β. If the rule
bodies contain new combinations of predicates and binding patterns, one
inserts them into the set.

13. Magic Sets 13-37 / 62

Adorned Program (5)

Binding patterns chosen by the SIP-strategy for
EDB-/builtin predicates are important to determine which
index/implementation variant is to be used.

But the names of these predicates are determined in the
database/the system, they cannot be changed.

In contrast, names of IDB-predicates (6= answer) are only important within
the program.

Furthermore, the explicit binding patterns are a
preparation for the magic set transformation. This is not
useful for EDB-predicates, because their complete
extensions are already stored.

13. Magic Sets 13-38 / 62

Adorned Program (6)

Exercise:

Compute AD(P) (as far as relevant for answer).
Use a good SIP-strategy:

parent(X, Y) ← mother(X, Y).
parent(X, Y) ← father(X, Y).
grandparent(X, Z) ← parent(X, Y) ∧ parent(Y, Z).
answer(X) ← grandparent(julia, X).

append([], L, L) ← true.
append(X, L, Y) ← cons(H, T, X) ∧ cons(H, TL, Y) ∧

append(T, L, TL).
answer(X) ← append([a], [b, c], X).

13. Magic Sets 13-39 / 62

Adorned Program (7)

Exercise, continued:

Compute AD(P) (as before):

”Same Generation Cousins“:
sg(X, X) ← person(X).
sg(X, Y) ← parent(X, Xp) ∧ parent(Y, Yp) ∧

sg(Xp, Yp).
answer(X) ← sg(julia, X).

Abstract Example:
answer(yes) ← p(a, b).
p(X, Z) ← q(X, Y) ∧ q(Y, Z).
q(X, Y) ← r(a, X, Y).

13. Magic Sets 13-40 / 62

Adorned Program (8)

Lemma:

Let I be the minimal model of P and I ′ be the minimal
model of AD(P) ∪ EDB(P).

For every p ∈ PIDB(P), p 6= answer, and every
β ∈ valid(p):

I ′[p β] = I[p].

Furthermore: I ′[answer] = I[answer].
I.e. this part of the transformation has not changed the minimal model in
an important way. It only renamed predicates (and possibly duplicated them).

13. Magic Sets 13-41 / 62

Magic Set Transformation (1)

Notation:

For a literal A = p β(t1, . . . , tn) let
magic[A] := m p β(ti1 , . . . , tik),

where 1 ≤ i1 < · · · < ik ≤ n are the argument positions
with β(ij) = b.

For a literal A = answer(X1, . . . , Xn) with the special
predicate answer let magic[A] := true.

Example:

magic
[
parent bf(X, Y)

]
:= m parent bf(X).

13. Magic Sets 13-42 / 62

Magic Set Transformation (2)

Definition:

Let P = EDB(P) ∪ IDB(P) be a logic program and
AD(P) be the version of IDB(P) with explicit binding
patterns.

Then MAG(P) contains the following rules:

For each rule A← B1 ∧ · · · ∧ Bm in AD(P):
A← magic[A] ∧ B1 ∧ · · · ∧ Bm.

For each rule A← B1 ∧ · · · ∧ Bm in AD(P) and every
i ∈ {1, . . . , m} with pred(Bi) ∈ PIDB(P):

magic[Bi]← magic[A] ∧ B1 ∧ · · · ∧ Bi−1.

13. Magic Sets 13-43 / 62

Magic Set Transformation (3)

Definition:

Rules of the type
A← magic[A] ∧ B1 ∧ · · · ∧ Bm

are called “modified rules”.

Rules of the type
magic[Bi]← magic[A] ∧ B1 ∧ · · · ∧ Bi−1

are called “magic rules”.

A “magic fact” is a fact (ground atom) of the form m p β.

All other facts are called “non-magic facts”.

13. Magic Sets 13-44 / 62

Magic Set Transformation (4)

Exercises:

Check that the defined “magic set” transformation gives
the result on Slide 8 and 9 (without suffix bf) for the
“grandparent” example (Slide 4).

Compute the result of the transformation for append with
binding pattern bbf.

append([], L, L) ← true.
append(X, L, Y) ← cons(H, T, X) ∧ cons(H, TL, Y) ∧

append(T, L, TL).
answer(X) ← append([a], [b, c], X).

13. Magic Sets 13-45 / 62

Correctness (1)

Lemma:

Let IAD be the minimal model of AD(P) ∪ EDB(P),
IMAG be the minimal model of MAG(P) ∪ EDB(P).

For all non-magic facts A the following holds:

If IMAG |= A, then IAD |= A.
Proof Sketch: Induction on the number of derivation steps. A
non-magic fact can only be derived by a “modified rule”, but this is
only a restricted version of the corresponding rule in AD(P).

If IAD |= A and IMAG |= magic[A],
then IMAG |= A.

Proof Sketch: Induction on the number of derivation steps of A from IAD .

13. Magic Sets 13-46 / 62

Correctness (2)

Theorem:

Let IAD and IMAG be as above, and I be the minimal
model of EDB(P) ∪ IDB(P). Then the following holds:

IMAG [answer] = IAD[answer] = I[answer].

I.e. the transformed program is equivalent to the original
program in the sense that it returns the same answers.

The two programs are not logically equivalent. Actually, that is not even
defined, because the programs are based on different signatures. The
programs could be called “answer-equivalent”.

13. Magic Sets 13-47 / 62

Correctness (3)

Theorem:

Let P be range-restricted with respect to valid .

Then MAG(P) is range-stricted with respect to valid ′,
where

valid ′(q) :=
{
{f . . . f} if q has the form p β/m p β
valid(q) otherwise.

I.e. the transformed program can be evaluated by
iteration of the TP-Operator.

13. Magic Sets 13-48 / 62

Contents

1 Introduction

2 SIP-Strategies, Adorned Program

3 The Magic Set Transformation

4 Improvements

13. Magic Sets 13-49 / 62

Supplementary Predicates (1)

Example:

Rule from AD(P), all Bi with IDB-predicates:
A← B1 ∧ B2 ∧ B3.

Result of the magic set transformation:

magic[B1] ← magic[A].
magic[B2] ← magic[A] ∧ B1.
magic[B3] ← magic[A] ∧ B1 ∧ B2.
A ← magic[A] ∧ B1 ∧ B2 ∧ B3.

The same joins and selections are computed several times.

13. Magic Sets 13-50 / 62

Supplementary Predicates (2)

Solution:

Compute each join only once, store the result in a new
“supplementary predicate”:

magic[B1] ← magic[A].
S1 ← magic[A] ∧ B1.
magic[B2] ← S1.
S2 ← S1 ∧ B2.
magic[B3] ← S2.
A ← S2 ∧ B3.

The arguments of the Si are those variables from
magic[A] ∧ B1 ∧ · · · ∧ Bi , that are still needed, i.e. that
occur in Bi+1, . . . ,Bm,A.

13. Magic Sets 13-51 / 62

Supplementary Predicates (3)

The deductive DBMS CORAL uses this method (“Magic
Sets with Supplementary Predicates”).

CORAL is installed on our SUN machines. Before calling it, one must use
setenv CORALROOT /usr/central/coral. Then it can be called with
$CORALROOT/bin/coral. A manual is in $CORALROOT/doc/manual.ps (use
gv to display it). Homepage: http://www.cs.wisc.edu/coral/.
In CORAL, rules are written into modules, an example sg.P is shown on
the next slide. Facts are written outside modules, e.g. into *.F-files. The
files are processed with, e.g., consult(sg.P). For modules, this does the
magic set transformation, the result is stored in sg.P.M (quite readable,
i.e. one can look at the result of the transformation).
Strings are written, e.g., "abc". If it has the form [a-z][a-zA-Z0-9_.]*,
no " is needed. Computation: Y = X+1. Query syntax: ? sg(julia, X).
To get all answers immediately: clear(interactive_mode). Also useful:
help., quit., list_rels.

13. Magic Sets 13-52 / 62

Supplementary Predicates (4)

Example (CORAL):

Rules in Coral are written in modules, with exported
predicates and possible binding patterns defined.

module same_generation_cousins.

export sg(bf).

sg(X,X) :- person(X).
sg(X,Y) :- parent(X,Xp), sg(Xp,Yp), parent(Y,Yp).

end_module.

export also works with several binding patterns, e.g. sg(bf,ff). More
bound arguments in the call are possible, but not so efficient.

13. Magic Sets 13-53 / 62

Supplementary Predicates (5)

Example:
sg(X, Y)← parent(X, Xp) ∧ sg(Xp, Yp) ∧ parent(Y, Yp).

Result (if parent is an EDB-predicate):
sup 2 1(X, Xp) ← m sg bf(X) ∧

parent(X, Xp).
m sg bf(X) ← sup 2 1(X, Xp).
sg bf(X, Y) ← sup 2 1(X, Xp) ∧

sg bf(Xp, Yp) ∧
parent(Y, Yp).

In CORAL, the i-th supplementary predicate of the n-th
rule is named “sup n i”.

13. Magic Sets 13-54 / 62

Supplementary Predicates (6)

Example (continued):
sg(X, X)← person(X).

The transformation of this non-recursive rule that only
uses an EDB-predicate is easy:

sg bf(X, X)← m sg bf(X) ∧ person(X).

Coral also supports other transformations.
Try one of: “@magic+.”, “@sup_magic+.” (this is the default),
“@factoring+.”, “no_rewriting+.”, “sup_magic_indexing+.”.

The SIP-strategy is left-to-right.

13. Magic Sets 13-55 / 62

Supplementary Predicates (7)

Note:

In this method, magic sets are always directly derived
from supplementary predicates.

One can try to replace the magic predicates by the
supplementary predicates.

If a magic predicate is defined by only one rule (only one
call of p β), this is simply a macro-expansion.

Otherwise, one would have to duplicate rules.

Depending on the application, it might be an advantage
to distinguish different calls of a predicate.

13. Magic Sets 13-56 / 62

Rectification (1)

Problem/Example:

p(Y1,Y2,Y3)← q(X ,X ,Y1,Y2,Y3).
q(a, b,Y1,Y2,Y3)← r(Y1) ∧ r(Y2) ∧ r(Y3).

The basic magic set method as explained above
distinguishes only between “bound” and “free” argument
positions.

It calls q with the binding pattern fffff.

Suppose that there are n facts about r . Then n3 facts
about q will be derived, although the rule does not match
the call.

13. Magic Sets 13-57 / 62

Rectification (2)

Since the body of the first rule is not unifiable with the
head of the second rule, SLD-resolution would
immediately stop (without looking at the r -facts).

Such a situation probably does not happen often in practice. But since one
wants to prove that magic sets are (in some sense) as efficient as (or really
as goal-directed as) SLD-resolution, this is a problem.

The magic set method can pass only concrete values for
the arguments to a called predicate.

The basic method cannot pass the information to q that
the first two arguments must be equal.

13. Magic Sets 13-58 / 62

Rectification (3)

Definition:

A logic program is rectified iff no body literal contains the
same variable more than once, i.e. for every body literal
p(t1, . . . , tn), if ti = tj for i 6= j , then ti is a constant.

Remark:

In the magic predicates, free argument positions are
projected away (not represented). If the program is
rectified, this does not lead to a loss of information.

13. Magic Sets 13-59 / 62

Rectification (4)

Every logic program that does not contain function
symbols (structured terms) can be transformed into an
equivalent, rectified program.

Again, equivalent means that it produces the same answer.

The rectification is done by introducing predicate variants
that contain at different argument positions the same
arguments: p(i1,...,in)(t1, . . . , tk) corresponds to
p(ti1 , . . . , tin), e.g.

q(1,1,2,3,4)(X, Y1, Y2, Y3) means q(X, X, Y1, Y2, Y3).

13. Magic Sets 13-60 / 62

Rectification (5)

One specializes the rules of the original predicate once for
each such predicate variant:

E.g., the critical rule q(a, b, . . .)← . . . is deleted in the
specialization for the predicate variant q(1,1,2,3,4).

Note that this is a predicate name. In practice, one of course has to
encode it without exponent, parentheses, commas.

In general, one tries to unify the rule head with
p(ti1 , . . . , tin). If it is unifiable, the result is encoded with
the new predicates: p(i1,...,in) in the head, and in the body
as needed to ensure rectification.

13. Magic Sets 13-61 / 62

Rectification (6)

As explained above, rectification is applied before the
adorned program is computed and the SIP-strategy is
applied.

However, one could do the rectification also together with
the adornment.

Then binding patterns consist not of b and f, but of
“constant”, “variable-1”, “variable-2”, and so on.

Note that it is no problem if a bound variable appears twice in a body
literal. So one might need fewer predicate variants in this way. Note also
that if one wants to come close to SLD-resolution, only SIP-strategies are
interesting that do not ignore existing bindings.

13. Magic Sets 13-62 / 62

	Introduction
	Introduction (Examples, Motivation, Basic Idea)

	SIP-Strategies, Adorned Program
	SIP-Strategies, Adorned Program

	The Magic Set Transformation
	The Magic Set Transformation

	Improvements
	Improvements

