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Objectives

After completing this chapter, you should be able to:

explain why for a set of definite Herbrand clauses,
the minimal model is chosen as the semantics.

And not simply the set of all models.

determine the minimal Herbrand model of a given program.

explain and apply the immediate consequence operator T P .

explain the significance of the least fixed point of TP .

define “supported model” and check a given Herbrand
interpretation whether it is a supported model of a logic
program.
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Logic Programs (1)

Definition:

A Logic Program P is a set of definite Horn clauses,
i.e. formulas of the form

A← B1 ∧ · · · ∧ Bn.

where A,B1, . . . ,Bn are atomic formulas and n ≥ 0.
For Prolog execution, the sequence of the rules is important.
Then a Pure Prolog Program is a list of definite Horn clauses.

Such formulas are called rules. A is called the head of the
rule, and B1 ∧ · · · ∧ Bn the body of the rule.
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Logic Programs (2)

Note:

In this chapter, we assume that the signature is one-sorted.

This corresponds to Prolog being untyped, and makes the
formalism simpler.

Often, a signature is not explicitly given
(Prolog needs no declarations).

However, given a logic program P, one can always construct
a signature Σ of the symbols that appear in P.
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Logic Programs (3)

Definition:

A fact is a rule with empty body and without variables.
The empty body is understood as “true”.

A conjunction is true iff all its conjuncts are true. If there is none, this is
trivially satisfied.

A fact is written as “A← .” or as “A.”.

Sometimes facts are identified with the positive ground
literal in the head.

One also sometimes says “fact” when one really means
“positive ground literal” (fact is shorter).
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Logic Programs (4)

Note:
The definitions become simpler when facts are seen as
special cases of a rule.

Of course, in deductive databases one separates

predicates that are defined only by facts
(EDB predicates: classical relations).

EDB: Extensional Data Base.

predicates that are defined by proper rules
(IDB predicates: views).

IDB: Intensional Data Base.

In deductive databases, often no function symbols are
permitted.
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Herbrand Interpretations (1)

This is only a repetition. See Chapter 3.

It is difficult to consider arbitrary interpretations.

Herbrand interpretations have a

fixed domain: Set of all ground terms.

fixed interpretation of constants as themselves.

fixed interpretation of function symbols as term
constructors (“free interpretation”).

Thus, only the interpretation of the predicates can be
chosen in an Herbrand interpretation.
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Herbrand Interpretations (2)

Definition:

The Herbrand universe UΣ for a signature Σ is the set of
all ground terms that can be constructed with the
constants and function symbols in Σ.

If the signature should contain no constant, one adds one constant “a”
(so that the Herbrand universe is not empty).

For a logic program P, the Herbrand universe UP is the
set of ground terms that can be built with the constants
and function symbols that appear in P.

I.e. if a signature is not explicitly given, one assumes that the signature
contains only the constants and function symbols (and predicates) that
appear in P. One must again add a constant if UP would otherwise be empty.
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Herbrand Interpretations (3)

Definition:

The Herbrand base BΣ is the set of all positive ground
literals that can be built over Σ.

Again, one must ensure that the set is not empty be adding a constant if
Σ does not contain any constant.

I.e. the Herbrand base is the set of all formulas of the
form p(t1, . . . , tn), where p is a predicate of arity n in Σ,
and t1, . . . , tn ∈ UΣ.

Again, if instead of a signature Σ, a logic program P is
given, one constructs the signature of the symbols that
appear in P.
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Herbrand Interpretations (4)

A Herbrand interpretation I can be identified with the set
of all positive ground literals p(t1, . . . , tn) that are true in I,
i.e. with H := {A ∈ BΣ | I |= A}.

Conversely, H ⊆ BΣ denotes the Herbrand interpretation
with

I[p] := {(t1, . . . , tn) ∈ Un
Σ | p(t1, . . . , tn) ∈ H}.

Otherwise, I is fixed, because it is a Herbrand interpretation: For the
single sort s, I[s] := UΣ, for constants c, I[c] := c, and for function
symbols f of arity n: I[f ](t1, . . . , tn) := f (t1, . . . , tn).

Thus, in the following, Herbrand interpretations are
subsets of BΣ.
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Herbrand Interpretations (5)

Definition:

A Herbrand model of a logic program P is a Herbrand
interpretation I that is a model of P.

Exercise:

Name two different Herbrand models of P:
p(a).
p(b).
q(a, b).
r(X )← p(X ) ∧ q(X ,Y ).

Please name also a Herbrand interpretation that is not a
Herbrand model of P.
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Minimal Herbrand Model (1)

A model of a logic program can be “too large”
(it can contain unnecessary ground literals).

The rules enforce only that if the body is true, also the
head must be true.

If the body is false, the rule is automatically satisfied.
Nothing is required for the truth of the head.

That is important because there can be several rules with the same head.
If the body of this rule is false, the body of another rule with the same
head can be true. Thus, one cannot require that if the body is false, the
head must also be false.
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Minimal Herbrand Model (2)

E.g. the entire Herbrand base (the interpretation that
makes everything true) is a model of every logic program.

Of course, one wants a model that contains only those
ground literals that must be true because of the rules.

That is the minimal Herbrand model. It is the declarative
semantics of a logic program.

At least in the area of deductive databases. As we will see, Prolog’s
SLD-Resolution corresponds more the to set of supported models.
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Minimal Herbrand Model (3)

Definition:

A Herbrand interpretation I is called Minimal (Herbrand)
Model of a logic program P iff

I is model of P (I |= P), and

there is no smaller model of P, i.e. no Herbrand
interpretation I ′ with I ′ |= P and I ′ ⊂ I (I ′ 6= I).

Theorem:

Every logic program has a unique minimal model.
It is the intersection of all Herbrand models.
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Minimal Herbrand Model (4)

Relation to Databases:

As explained above, a relational database state is an
interpretation with finite extensions of the relation symbols
and no function symbols.

For simplicity, we ignore datatype operations.

If the logic program contains no function symbols,
the minimal model is a relational DB state.

If a predicate is defined only by facts, it is interpreted
in the minimal model as exactly these facts.

Rules then define views (derived predicates).
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Minimal Herbrand Model (5)

Theorem:

Let I be the minimal Herbrand model of a logic program P.

For every positive ground literal A ∈ BΣ:
If I |= A, then P |= A.

Of course, the same holds for a conjunction of positive ground literals.

For every positive ground literal A ∈ BΣ:
If I 6|= A, then P 6|= A.

This is trivial.
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Minimal Herbrand Model (6)

Note:

The above theorem explains the importance of the
minimal model for query evaluation: It is a prototypical
model and instead of logical consequence we can talk
about truth in this model.

It does not hold for formulas that contain variables.
E.g. P = {p(a), p(b)}. If a and b are the only constants in Σ (and there
are no function symbols), ∀X p(X) is true in the minimal model, but it is
not implied.

However, in deductive databases, one normally ensures
that all variables in the query must be bound.
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Minimal Herbrand Model (7)

Exercise:

What is the minimal model of this logic program?

mother(alan, barbara).
father(barbara, chris).
parent(X, Y)← mother(X, Y).
parent(X, Y)← father(X, Y).
ancestor(X, Y)← parent(X, Y).
ancestor(X, Z)← parent(X, Y) ∧ ancestor(Y, Z).

Guess a model I and explain for each A ∈ I that there
cannot be a model without A.
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Minimal Herbrand Model (8)

Example:

Consider the following logic program:
a_list([]).
a_list([a|X]) :- a_list(X).

This program has an infinite minimal model:
I = {a_list([]), a_list([a]), a_list([a,a]), . . .}.

This explains e.g. why Prolog answers

a_list([a,a]) with “yes”,

a_list([a,b]) with “no”.
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Computing the Minimal Model

One can compute the minimal model by iteratively
inserting known facts for the body literals to compute a
new literal:

p(a, b)
↑

p(a,X )← q(X ,Y ) ∧ r(Y , a).

↑ ↑
q(b, c) r(c , a)

This rule application is formalized by the immediate
consequence operator TP .
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Substitutions (1)

This is a repetition, see Chapter 3.
Here the definition is slightly simpler, because no sorts are considered.

A substitution is a mapping θ : VARS → TE Σ, such that
the set {V ∈ VARS | θ(V ) 6= V } is finite.

The restriction ensures that a substitution can be finitely represented.
It is not a real restriction because formulas anyway contain only finitely
many variables. Note that Σ is here a one-sorted signature, therefore no
variable declaration is needed, and TEΣ contains Terms with arbitrary
variables from VARS.

A substitution is usually written down as a set of
variable/term-pairs in the form {X/a,Y /Z}.

This means the substitution θ with θ(X) = a, θ(Y ) = Z , and θ(V ) = V
for all other variables V .
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Substitutions (2)

The domain of a substitution can be extended from the
set of variables successively to terms, literals, and rules
(or arbitrary formulas).

This is done by replacing the variables inside the term,
literal, rule as specified in the substitution and leaving the
rest unchanged.

E.g. the substitution θ = {X/a,Y /Z} applied to the
literal p(X ,Y ,V , b) gives the literal p(a,Z ,V , b).

The postfix notation is often used for applying a
substitution, e.g. Aθ means θ(A).
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Substitutions (3)

Note that a substitution is applied only once, not iteratively.
E.g. θ = {X/Y , Y /Z} maps p(X ) to p(Y ), and not to p(Z ).

A substitution θ is a ground substitution for a rule F iff
it replaces all variables that occur in F by ground terms.

Thus, the result of applying a ground substitution to a
rule F is a ground rule.

I.e. a ground substitution replaces all variables by concrete values. For
Herbrand interpretations, ground substitutions and variable assignments
are basically the same.
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Ground Instances (1)

Definition:

A rule F1 is an instance of a rule F2 iff there is a substitution θ
with F1 = θ(F2).

A ground instance is an instance that is variable-free
(the result of applying a ground substitution).

We write ground(P) for the set of all ground instances of
rules in P.
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Ground Instances (2)

Example:

E.g. parent(alan, barbara)← mother(alan, barbara)
is a ground instance of parent(X, Y)← mother(X, Y).

The ground substitution is θ = {X/alan, Y/barbara}.

E.g. parent(alan, chris)← mother(alan, chris)
is another ground instance of the same rule.

E.g. parent(chris, barbara)← mother(barbara, doris)
is not a ground instance of the above rule.

One must of course replace all occurrences of the same variable in a rule by
the same value (when computing a single ground instance of a single rule).
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Ground Instances (3)

Exercise:

Let the following rule be given:
p(a,X )← q(X ,Y ) ∧ r(Y , a).

Which of the following rules are ground instances of the
given rule?

p(a, a)← q(a, a) ∧ r(a, a).

p(a, b)← q(a, b) ∧ r(b, a).

p(a, b)← q(b, c) ∧ r(c, a).

p(b, a)← q(a, a) ∧ r(a, a).

p(a, b)← q(b, Y ) ∧ r(Y , a).
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TP-Operator (1)

Let a logic program P be given.

The immediate consequence operator TP maps Herbrand
interpretations to Herbrand interpretations:

TP(I) := {F ∈ BΣ | There is a rule
A← B1 ∧ · · · ∧ Bn in P
and a ground substitution θ,
such that
• Bi θ ∈ I for i = 1, . . . , n, and
• F = A θ}.

Note that the case n = 0 is possible, then the condition
about the body literals is trivially satisfied.
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TP-Operator (2)

The input interpretation I consists of facts that are
already known (or assumed) to be true.

The result TP(I) of the TP-operator consists of those
facts that are derivable in a single step from the given
facts and the rules in the program.

I.e. for each ground instance A← B1 ∧ · · · ∧ Bn of a rule
in P, if the precondition B1 ∧ · · · ∧ Bn is true in I
(i.e. {B1, . . . ,Bn} ⊆ I), then A ∈ TP(I).
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TP-Operator (3)

Exercise:

Let the following logic program P be given:

p(a, b).
p(c , c).
q(X ,Y )← p(X ,Y ).
q(Y ,X )← p(X ,Y ).

Let I0 := ∅.

Please compute I1 := TP(I0), I2 := TP(I1), and
I3 := TP(I2).
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TP-Operator (4)

Theorem:

Let P be any logic program and let

I0 := ∅,

Ii+1 := TP(Ii ) for i = 0, 1, . . ..

If there is n ∈ lN0 with In+1 = In then In is the minimal
Herbrand model of P.

If ground(P) is finite, there is always such an n.
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TP-Operator (5)

Exercise:

Please compute the minimal model of the following logic
program P by iteratively applying the TP-operator:

mother(alan, barbara).
father(barbara, chris).
parent(X, Y)← mother(X, Y).
parent(X, Y)← father(X, Y).
ancestor(X, Y)← parent(X, Y).
ancestor(X, Z)← parent(X, Y) ∧ ancestor(Y, Z).

Does I ⊆ TP(I) hold for arbitrary I?
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A Little Bit of Lattice Theory (1)

Let a set M and a relation � ⊆ M×M be given.

� is a partial order iff for all I, I1, I2, I3 ∈M the
following holds:

I � I.
I.e. � is reflexive.

I1 � I2 and I2 � I3 implies I1 � I3.
I.e. � is transitive.

I1 � I2 and I2 � I1 implies I1 = I2.
I.e. � is antisymmetric.

(M,�) is then called a partially ordered set.
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A Little Bit of Lattice Theory (2)

Let (M,�) be a partially ordered set.

An element I ∈ M is an upper bound of a set N ⊆M
iff J � I for all J ∈ N .

An element I ∈ M is called least upper bound of a set
N ⊆M iff

it is an upper bound, i.e. J � I for all J ∈ N ,

I � I ′ for all I ′ ∈M that are an upper bound of N .

In the same way, one defines lower bound and greatest
lower bound.
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A Little Bit of Lattice Theory (3)

Lemma:

If the least upper bound exists, it is unique.

Definition (Complete Lattice):

A partially ordered set (M,�) is a complete lattice if and
only if

for every N ⊆M there is a least upper bound and a
greatest lower bound.

Then one writes lub(N ) for the least upper bound and
glb(N ) for the greatest lower bound.
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A Little Bit of Lattice Theory (4)

Definition (Top and Bottom Elements):

A complete lattice (M,�) always contains

a top element > := lub(M), and

a bottom element ⊥ := glb(M).

Example:

The set of all Herbrand interpretations (over a fixed
signature) together with ⊆ is a complete lattice:

lub(N ) =
⋃
I∈N
I, glb(N ) =

⋂
I∈N
I, ⊥ = ∅, > = BΣ.
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A Little Bit of Lattice Theory (5)

Definition (Properties of Mappings):

Let T : M→M.

T is monotonic iff T(I1) � T(I2) for all I1 � I2.

T is continuous iff T
(
lub(N )

)
= lub

(
T(N )

)
for all

N ⊆M such that every finite subset of N has an upper
bound in N . Here T(N ) := {T(I) | I ∈ N}.

Lemma:

If T is continuous, it is also monotonic.

10. The Minimal Model 10-40 / 47



A Little Bit of Lattice Theory (6)

Definition (Fixpoints):

I ∈ M is a fixpoint of T iff T (I) = I.

I ∈ M is the least fixpoint of T iff T (I) = I and
I � J for all J ∈M with T (J ) = J .

Theorem:

A monotonic mapping T in a complete lattice has always
a least fixpoint, namely

glb
(
{I ∈ M | T (I) � I}

)
.

Let lf p(T ) be the least fixpoint of T.
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A Little Bit of Lattice Theory (7)

Lemma:

The immediate consequence operator TP is monotonic
and even continuous.

Lemma:

I is a model of P iff TP(I) ⊆ I.

Theorem:

The least fixpoint of TP is the minimal model of P.
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A Little Bit of Lattice Theory (8)

Definition (Iteration of a Mapping):
T ↑ 0 := ⊥.

T ↑ (n + 1) := T(T ↑ n).

T ↑ ω := lub
(
{T ↑ n | n ⊆ lN0}

)
.

Note:

If there is n ∈ lN0 with T ↑ (n + 1) = T ↑ n, then
T ↑ m = T ↑ n for all m ≥ n and thus T ↑ ω = T ↑ n.

T ↑ γ can be defined for arbitrary ordinal numbers γ.
T ↑ γ := T

(
T ↑ (γ − 1)

)
if γ is successor of γ − 1, and

T ↑ γ := lub
(
{T ↑ β | β < γ}

)
otherwise (γ is a limit ordinal).
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A Little Bit of Lattice Theory (9)

Lemma:

If T is monotonic, T ↑ i � T ↑ (i + 1) for all i ∈ lN0.

Theorem:

If T is continuous, it holds that lf p(T) = T ↑ ω.
This implies the theorem on page 33 (minimal model computation).
If T is only monotonic, there is an ordinal number γ with lfp(T) = T ↑ γ.

Corollary:
Even when the iteration of the TP-operator does not
terminate, every fact that is true in the minimal model is
generated after finitely many iterations.
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Supported Models (1)

Supported Model:

A Herbrand model I of P is called supported model of P
iff TP(I) = I (i.e. I is a fixpoint of TP).

Note:

Thus, for every fact A that is true in I there is a reason
in form of a ground instance

A← B1 ∧ · · · ∧ Bn

of a rule in P that permits to derive A (because I |= Bi
for i = 1, . . . , n).

10. The Minimal Model 10-46 / 47



Supported Models (2)

Corollary:

The minimal model is a supported model.

Note:

The converse is not true: Consider e.g. the program
P := {p ← p}.

The interpretation I := {p} is a supported model of P,
but it is not minimal.

Practical example: married_with(X, Y)← married_with(Y, X).

However, non-recursive programs (see below) have only
one supported model, namely the minimal model.
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