
Logic Programming and
Deductive Databases

Chapter 8: Definite Clause
Grammars (DCGs)

Prof. Dr. Stefan Brass
Martin-Luther-Universität Halle-Wittenberg

Summer 2022

http://www.informatik.uni-halle.de/˜brass/lp22/

8. Grammars in Prolog 8-1 / 26

http://www.informatik.uni-halle.de/~brass/lp22/

Objectives

After completing this chapter, you should be able to:

use context-free grammars in Prolog.

compare grammar support in Prolog with parser
generators for compilers like yacc/bison.

8. Grammars in Prolog 8-2 / 26

Contents

1 Definite Clause Grammars

2 Lexical Analysis

8. Grammars in Prolog 8-3 / 26

Definite Clause Grammars (1)

In Prolog, one can directly write down grammar rules
(of context-free grammars).

Actually, the grammar formalism is even more expressive, since one can
include arbitrary Prolog code as an additional condition for the applicability
of a grammar rule.

A simple preprocessor translates the grammar rules into
standard Prolog rules.

Thus, Prolog has a tool like yacc/bison built-in.
yacc/bison are standard tools used in compiler construction: Given a
context-free grammar (with certain restrictions), they produce a C program
that checks the syntactic correctness of the input. One can extend the
grammar with program code for processing the input.

8. Grammars in Prolog 8-4 / 26

Definite Clause Grammars (2)

However, the goal of the Prolog grammar formalism is
not compiler construction, but natural language processing
(e.g., for machine translation):

There one needs more complicated grammars.

E.g., non-deterministic grammars are possible in Prolog,
but not in compiler-construction tools.

In natural language (e.g., English), there are ambiguous words,
phrases, and sentences. These can easily be processed with
backtracking in Prolog. In programming languages (e.g., C, Prolog),
the meaning of every construct must be completely clear.

However, the efficiency requirements are not so strong,
since the inputs are usually not very long.

8. Grammars in Prolog 8-5 / 26

Definite Clause Grammars (3)

Comparison with yacc/bison, continued:

In Prolog, arbitrary context-free grammars are possible,
in yacc/bison only LALR(1) grammars.

The condition in compiler construction tools ensures that efficient
parsing is possible: The decisions for building the parse tree are done
backtrack-free with only a single token lookahead.

In Prolog, grammar rules can be mixed with arbitrary
program code. This can contain additional checks for
selecting a grammar rule.

In yacc/bison, one can include C code that is executed when a
grammar rule is applied. In this way, one can, e.g. generate output.
However, the C code cannot influence the parsing decisions,
e.g. choose one of several possible grammar rules.

8. Grammars in Prolog 8-6 / 26

Definite Clause Grammars (4)

The grammar on the next slide describes the commands
of a simple text adventure game:

Such games are similar to books, in which the reader
can give the main actor commands and influence in this
way the storyline.

Therefore, they are called “interactive fiction”. Titles like “Zork” by
Infocom were very popular.

In principle, the user can input any English sentence. In
practice, most commands

move the player around in the adventure world

apply objects found in certain locations.

8. Grammars in Prolog 8-7 / 26

Definite Clause Grammars (5)

command --> verb, noun_phrase.
command --> [go], direction.
command --> direction.
command --> [quit].
direction --> [north].
direction --> [south].
direction --> [east].
direction --> [west].
verb --> [take].
verb --> [examine].
noun_phrase --> noun.
noun_phrase --> [the], noun.
noun --> [key].
noun --> [lamp].

8. Grammars in Prolog 8-8 / 26

Definite Clause Grammars (6)

Nonterminal grammar symbols (syntactic categories) are
written like standard Prolog predicates.

Terminal symbols (expected input tokens) are written in
[. . .].

The syntactic analysis is done with the predicate “phrase”,
e.g.

phrase(command, [take, the, lamp]). −→ yes.

phrase(command, [lamp, the, north]). −→ no.

Of course, one needs more than “yes/no”. This is done by attributes of the
grammar symbols (predicate arguments). See below.

8. Grammars in Prolog 8-9 / 26

Implementation (1)

In principle, every nonterminal symbol N is translated into
a Prolog predicate that is true for all lists of input tokens
that are derivable from N .

A naive solution (not the Prolog solution) would generate
rules like

command(X) :- append(Y, Z, X),
verb(Y), noun_phrase(Z).

command([go|X]) :- direction(X).
command(X) :- direction(X).
command([quit]).

8. Grammars in Prolog 8-10 / 26

Implementation (2)

The above solution is too inefficient: Especially the
arbitrary splitting of the input list with append causes a
lot of unnecessary backtracking.

The real implementation of grammar rules uses a data
structure called “difference lists”:

E.g. the list [a, b, c] is represented by a pair of lists
[a, b, c | X] and X.

A special case is the pair [a, b, c, d, e], [d, e]:
This also represents the list [a, b, c].

8. Grammars in Prolog 8-11 / 26

Implementation (3)

Thus, every nonterminal symbol is translated into a
predicate with two arguments:

Input list (total rest of input tokens before the
nonterminal symbol is processed).

Output list (rest of input after the nonterminal).

The difference between both lists are the input symbols
derivable from the nonterminal symbol:

command(X, Z) :- verb(X, Y), noun_phrase(Y, Z).
command(X, Z) :- X = [go|Y], direction(Y, Z).
command(X, Z) :- direction(X, Z).
command(X, Z) :- X = [quit|Z].

8. Grammars in Prolog 8-12 / 26

Implementation (4)

I.e. every predicate cuts off from the input list the prefix
it can process, and hands the rest to the next predicate.

The syntax analysis is then done by calling the predicate
for the start symbol of the grammar with the complete
input list and the empty list as the rest:

command([take, the lamp], []).

Thus, the predicate phrase is defined as:

phrase(Start, Input) :-
Goal =.. [Start, Input, []],
call(Goal).

8. Grammars in Prolog 8-13 / 26

Attributes (1)

Usually, it is not sufficient to know that the input is
syntactically correct, but one needs to collect data from
the input.

Therefore, the nonterminal symbols can have arguments
(which correspond to attributes in attribute grammars).

The preprocessor for grammar rules simply extends the
given literals by two further arguments for the input and
output token lists.

The given arguments are left untouched.

8. Grammars in Prolog 8-14 / 26

Attributes (2)

command(V,O) --> verb(V), noun_phrase(O).
command(go,D) --> [go], direction(D).
command(go,D) --> direction(D).
command(quit,nil) --> [quit].
direction(n) --> [north].
direction(s) --> [south].
direction(e) --> [east].
direction(w) --> [west].
verb(take) --> [take].
verb(examine) --> [examine].
noun_phrase(O) --> noun(O).
noun_phrase(O) --> [the], noun(O).
noun(key) --> [key].
noun(lamp) --> [lamp].

8. Grammars in Prolog 8-15 / 26

Further Possibilities (1)

One can include arbitrary Prolog code in the syntax rules.

It must be written in {. . .} in order to protect it from the
rewriting done by the preprocessor.

E.g. it might be easier to store a list of game objects as
facts, and to use only a single grammar rule for nouns:

noun(O) --> [O], {object(O, _, _)}.

The additional arguments of object could be the initial location and the
description of the object.

8. Grammars in Prolog 8-16 / 26

Further Possibilities (2)

The cut !, the disjunction (which can also be written |),
and the if-then symbol -> do not need to be included in
{. . .}.

One can also use parentheses (. . .) to structure the alternatives.

For instance, the optional article before the noun can also
be encoded in a single rule:

noun_phrase(O) --> ([the] | []), noun(O).

The cut can help to improve the efficiency of the syntax
analysis.

8. Grammars in Prolog 8-17 / 26

Further Possibilities (3)

The left hand side of the syntax rule can contain a
“look-ahead terminal”, e.g.

p, [a] --> q, [a].
means that the production p --> q can only be applied
if a is the next token.

This is translated to p(X1,X4) :- q(X1,X2), X2=[a|X3], X4=[a|X3],
i.e. the look-ahead terminal” is inserted back into the input stream after
the rule is processed. In the example, X2 = X4, thus the a is not consumed.

8. Grammars in Prolog 8-18 / 26

Efficiency Improvements

Avoid left recursion.
This is usually not only inefficient, but wrong: At least for incorrect inputs
it easily gets into an endless recursion.

Think about possible cuts, especially before tail recursions.

It might be possible to use the Prolog index over the first
argument.

lookahead(Token), [Token] --> [Token].
stmt --> lookahead(Token), stmt(Token).
stmt(if) --> [if], cond, [then], stmt.
...
stmt(id) --> [id], [’:=’], expression.

8. Grammars in Prolog 8-19 / 26

Formal Syntax

g_rule --> g_head, [’-->’], g_alt.
g_head --> non_terminal, ([’,’], terminal | []).
g_alt --> g_if, ([’|’], g_alt | []).
g_if --> g_rhs, ([’->’], g_rhs | []).
g_rhs --> g_item, ([,], g_rhs | []).
g_item --> terminal.
g_item --> non_terminal.
g_item --> variable.
g_item --> [’!’].
g_item --> [’(’], g_alt, [’)’].
g_item --> [’{’], prolog_goal, [’}’].
non_terminal --> any_callable_prolog_term.
terminal --> [’[’], (toks | []), [’]’].
toks --> any_prolog_term, ([’,’, toks | []).

8. Grammars in Prolog 8-20 / 26

Contents

1 Definite Clause Grammars

2 Lexical Analysis

8. Grammars in Prolog 8-21 / 26

Lexical Analysis (1)

The input to the syntax analysis (parser) is usually a list
of word symbols, called tokens.

Of course, one could also use a list of characters (atoms
or ASCII codes).

However, since the combination of characters to words is
simple, a more efficient algorithm (without backtracking)
can be used.

This reduces a long list of characters to a short list of
words. Then the more complex algorithm can work on a
shorter input.

8. Grammars in Prolog 8-22 / 26

Lexical Analysis (2)

The module that is responsible for transforming a
sequence of characters into a sequence of word symbols
(lexical analysis) is called the scanner.

The separation of lexical analysis and syntax analysis is
also useful because the scanner can suppress

white space between tokens
Usually, any sequence of spaces, tabulator characters, and line ends
is permitted.

comments.

This simplifies the syntax analysis.

8. Grammars in Prolog 8-23 / 26

Lexical Analysis (3)

The following example program reads input characters
until the line end.

[https://users.informatik.uni-halle.de/˜brass/lp22/prolog/scan.pl]

It skips spaces and composes sequences of letters to words.
Other characters (punctation marks etc.) are treated as
one-character tokens.

It could be used as a scanner for an adventure game, and could be a
starting point for other scanners.

The main work is done by a predicate scan (see next slide)
that gets the current input character as first argument:

scanner(TokList) :-
get_char(C),
scan(C, TokList).

8. Grammars in Prolog 8-24 / 26

https://users.informatik.uni-halle.de/~brass/lp22/prolog/scan.pl

Lexical Analysis (4)

scan('\n', []) :- !.
scan(' ', TokList) :- !,

get_char(C),
scan(C, TokList).

scan(C, [Word|TokList]) :-
letter(C), !,
read_word(C, Letters, NextC),
name(Word, Letters),
scan(NextC, TokList).

scan(C, [Sym|TokList]) :-
name(Sym, [C]),
get_char(NextC),
scan(NextC, TokList).

8. Grammars in Prolog 8-25 / 26

Lexical Analysis (5)

The predicate read_word reads a list of letters starting
with character C. It returns the character NextC that
follows after the word:

read_word(C, [C|MoreC], NextC) :-
letter(C), !,
get_char(C2),
read_word(C2, MoreC, NextC).

read_word(C, [], C).
One needs one such predicate for each token type consisting of multiple
characters (state of the finite automaton for the scanner).

The predicate letter defines which characters can
appear in words:

letter('a').
...

8. Grammars in Prolog 8-26 / 26

	Definite Clause Grammars
	Definite Clause Grammars

	Lexical Analysis
	Lexical Analysis

