
Logic Programming and
Deductive Databases

Chapter 4: Prolog Syntax

Prof. Dr. Stefan Brass

Martin-Luther-Universität Halle-Wittenberg

Summer 2022

http://www.informatik.uni-halle.de/˜brass/lp22/

4. Prolog Syntax 4-1 / 47

http://www.informatik.uni-halle.de/~brass/lp22/

Objectives

After completing this chapter, you should be able to:

write syntactically correct Prolog.

explain the basic data structure for rules and terms
(abstract syntax).

use the operator syntax.
And translate operator syntax into standard syntax.

use list syntax.

4. Prolog Syntax 4-2 / 47

Contents

1 Pure Prolog

2 Lexical Syntax

3 Abstract Syntax

4 Operator Syntax

5 List Syntax

6 Formal Syntax

4. Prolog Syntax 4-3 / 47

Introduction (1)

A pure Prolog program is a set P of definite Horn clauses
(clauses with exactly one positive literal).

Prolog uses an un-sorted (or one-sorted) logic.

A query or (proof) goal Q in Prolog is a conjunction of
positive literals.

I.e. its negation for refutation provers gives a Horn clause with only
negative literals.

The purpose of a Prolog system is to compute
substitutions θ such that P |= Q θ.

I.e. one wants values for the variables such that the query is true for these
values in each model of the program.

4. Prolog Syntax 4-4 / 47

Introduction (2)

In Prolog it is possible that the computed substitutions θ
with P |= Q θ are not ground.

E.g. consider the query q(X) for the program
q(X)← p(X).
p(X).

Then it is not necessary to replace X in the query by any
concrete value. The program implies ∀X q(X).

Then one is not interested in all substitutions with P |= Q θ, but only in a
set of substitutions that “subsumes” all other substitutions.

In deductive DBs, rules and queries are restricted such
that only ground answers are computed.

4. Prolog Syntax 4-5 / 47

Introduction (3)

While in mathematical logic, the concrete syntax is not
very important (e.g. one assumes any alphabet),
this chapter explains the exact Prolog syntax.

In Chapter 7, some features will be explained that are
necessary for many practical Prolog programs, but do not
have a nice logical semantics.

The classical “impure” feature is the cut, but also
arithmetic predicates and I/O make Prolog semantics
more complicated.

4. Prolog Syntax 4-6 / 47

Introduction (4)

In contrast to the examples in Chapter 1, now function
symbols are permitted.

Function symbols are supported in Prolog and some
modern deductive database systems.

Originally, function symbols are not permitted in deductive databases,
because then termination of query evaluation cannot be guaranteed.

Function symbols are interpreted as term constructors,
e.g. for lists. In logic programming, one basically considers
only Herbrand interpretations.

I.e. function symbols are not interpreted (“free interpretation”).

4. Prolog Syntax 4-7 / 47

Contents

1 Pure Prolog

2 Lexical Syntax

3 Abstract Syntax

4 Operator Syntax

5 List Syntax

6 Formal Syntax

4. Prolog Syntax 4-8 / 47

Lexical Syntax (1)

Prolog Atoms:
Lowercase (Letter | Digit |)∗

E.g.: thisIsAnAtom, x27, also this is permitted.

’ (arbitrary characters)∗ ’
If the sequence of characters contains ', one must double it, e.g. 'John''s',
or escape it with “\”, e.g. 'John\'s'. Modern Prologs support many more
escape sequences starting with “\”. If one needs “\” itself, one must write
“\\” instead. The Prolog Standard seems to say that the quote is doubled.
SWI Prolog understands both variants. Note: 'a' and a are the same atom.

(#|$|&|*|+|-|.|/|:|<|=|>|?|@|\|ˆ|˜)+

But: “.” followed by whitespace marks the end of the clause.
Another exception is “/*”, which starts a comment.

Special atoms: !, ;, [], {}.
4. Prolog Syntax 4-9 / 47

Lexical Syntax (2)

Constants in Prolog:

Atoms (see above): e.g. red, green, . . . , monday, . . .
Atoms are internally represented as pointers to a symbol table.

Integers: e.g. 23, -765, 16'1F (=31), 0'a (=97)
〈Radix〉'〈Number〉 is the Edinburgh Prolog syntax. The ISO-Standard
requires instead that hexadecimal numbers start with 0x, octal numbers
with 0o, and binary numbers with 0b. It supports 0' for the ASCII-code.
The Edinburgh Prolog syntax is probably more portable.

Floating point numbers: e.g. -1.23E5.

Strings: e.g. "abc".

4. Prolog Syntax 4-10 / 47

Lexical Syntax (3)

Strings in Prolog:

In classical Prolog systems, strings are represented as lists
of ASCII codes, e.g. "abc" is [97,98,99].

This makes string processing easy and flexible, but each
character might need e.g. 16 bytes of storage.

Also, write("abc") prints [97,98,99].

Modern Prologs often represent strings as arrays of
characters (as usual in other languages).

This creates, however, portability problems: Old programs might not run.
In ECLiPSe, the conversion is done with string_list(String, List). In
SWI Prolog, it is string_to_list(String, List).

4. Prolog Syntax 4-11 / 47

Lexical Syntax (4)

Atoms vs. Strings:

Atoms are internally represented as pointers into a symbol
table (“dictionary”).

Therefore comparing and copying them is very fast.

However, creating a new atom takes some time.

Also, once an atom is created, it is never deleted from
memory (depending on the Prolog system).

It is possible to create atoms dynamically (at runtime),
but one should do this only if one expects to reference
them again and again.

4. Prolog Syntax 4-12 / 47

Lexical Syntax (5)

Predicates and Function Symbols in Prolog:

Predicate and function symbol names are atoms.

Prolog permits to use the same name with different arities.
These are different predicates, e.g.:

father(Y) :- father(X,Y).

In the Prolog literature, one normally writes p/n for a
predicate with name p and arity n.

Remember that the arity is the number of arguments. E.g. the above rule
contains the predicate father/1 in the head, and the predicate father/2

in the body. There is no link between these two distinct predicates except
what is explicitly specified with the rule.

4. Prolog Syntax 4-13 / 47

Lexical Syntax (6)

Variables in Prolog:

(Uppercase | _) (Letter | Digit | _)∗

Exception: “_” (anonymous variable):
Each occurrence denotes a new system-generated variable.

Many Prolog systems print a warning (“singleton variable”)
if a variable that appears only once in a rule does not
start with an underscore “_”.

This helps to protect against typing errors in variable names: If the variable
really appears only once, one could as well use the anonymous variable.

4. Prolog Syntax 4-14 / 47

Lexical Syntax (7)

Comments in Prolog:

From “%” to the line end (as in TEX).

From “/*” to “*/” (as in C).

Logical Symbols in Prolog:

“:-” for ←.

“,” for ∧.

4. Prolog Syntax 4-15 / 47

Contents

1 Pure Prolog

2 Lexical Syntax

3 Abstract Syntax

4 Operator Syntax

5 List Syntax

6 Formal Syntax

4. Prolog Syntax 4-16 / 47

Abstract Prolog Syntax (1)

The abstract syntax describes the data structures that
the parser creates (e.g. operator tree).

The concrete syntax defines e.g. operator priorities,
abbreviations, and special “syntactical sugar”.

E.g. the concrete input might contain parentheses and special delimiter
characters that are not contained in the internal representation of the
program.

Prolog was originally an interpreted language.
Today, it is typically compiled into byte code for the “WAM”.

Then the abstract syntax describes the data structures on
which the interpreter works.

4. Prolog Syntax 4-17 / 47

Abstract Prolog Syntax (2)

Program:

A program is a sequence of clauses.

Clause:

A clause is one of the following:

Fact: A literal.
Literal means here always “positive literal”.

Rule: Consists of a literal and a goal.
The literal is called the head of the rule, and the goal is called the
body of the rule.

Query/Command: A goal.

4. Prolog Syntax 4-18 / 47

Abstract Prolog Syntax (3)

Goal (simple version, this chapter):

A goal is a sequence of literals.

Goal (complex version, later):

A goal is one of the following:

A literal.

A cut.

A conjunction of two goals.

A disjunction of two goals.

If goal, then goal, possibly else goal.

4. Prolog Syntax 4-19 / 47

Abstract Prolog Syntax (4)

Literal (Positive Literal):

A literal consists of

An atom p, and

n terms t1, . . . , tn, n ≥ 0.

p/n is the predicate of the literal.

ti is the i-th argument of the literal.

If A is a literal, let pred(A) denote the predicate of A.

4. Prolog Syntax 4-20 / 47

Abstract Prolog Syntax (5)

Term:
A term is one of the following:

Variable (the anonymous variable is treated specially)
Atom

A composed term consisting of an atom f and
n ≥ 1 terms t1, . . . , tn.

f /n is the functor of this term.

Number: integer, real, possibly rationals etc.

String (if this is not a list of ASCII codes).

Stream (open file).

. . . (possibly other types of objects).
4. Prolog Syntax 4-21 / 47

Contents

1 Pure Prolog

2 Lexical Syntax

3 Abstract Syntax

4 Operator Syntax

5 List Syntax

6 Formal Syntax

4. Prolog Syntax 4-22 / 47

Operator Syntax (1)

Example:

+(1, 1) is a term in standard syntax.
Standard syntax is f (t1, . . . , tn) for a composed term with functor f /n and
arguments t1, . . . , tn.

1+1 is the same term in operator syntax.

This is only a more convenient input syntax.
Internally, +(1,1) and 1+1 are the same term.

There is absolutely no difference in their meaning.

Operator syntax can be used also for literals, e.g. X \= Y,
5 < 7.

4. Prolog Syntax 4-23 / 47

Operator Syntax (2)

Operators:

Many operators are predeclared, but the Prolog user can
declare new operators.

Declaring an operator only modifies the input syntax of Prolog (in Prolog
programs and user input read with the built-in predicate read). By itself, it
does not associate any specific meaning with the operator.

An operator has

Name: Any Prolog atom.

Priority: From 1 (high priority) to 1200 (low).
E.g. ∗ (priority 400) binds more strongly than + (priority 500).

Associativity: One of fx, fy, xf, yf, xfx, yfx, xfy.

4. Prolog Syntax 4-24 / 47

Operator Syntax (3)

Operator Types:

fx, fy: Prefix operator, e.g. “-X”.

xf, yf: Postfix operator, e.g. “7!”.

xfx, yfx, xfy: Infix operator, e.g. “1 + 1”.

Associativity:

x: term, the topmost operator of which has a numerically
lower priority (which means really higher priority).

y: term with numerically lower or equal priority.

4. Prolog Syntax 4-25 / 47

Operator Syntax (4)

Example for Associativity:

- has type yfx, i.e. another - can be in the left operand,
but not in the right (except inside “(...)”).

Thus, the term 9 - 3 - 1 means -(-(9,3),1).
“-” is a left-associative operator.

9 - 3︸ ︷︷ ︸
y

-︸︷︷︸
f

1︸︷︷︸
x

-
-

9 3

1

E.g. X is 9 - 3 - 1 binds X = 5.
And not to 7, which would be the result of 9 - (3 - 1).

4. Prolog Syntax 4-26 / 47

Operator Syntax (5)

Showing the Structure of Terms:
display(T) prints the term T in standard syntax.

E.g. display(9 - 3 - 1) prints -(-(9,3),1).

write(T) prints the term T using operator syntax.
For function symbols declared as operators. Otherwise, standard syntax is
the only option. This does not depend on the use of operator syntax or
standard syntax for input of the term: The original syntax is not stored in
the internal data structures. E.g. write(+(1,1)) prints 1+1.

Querying Declared Operators:
“current_op(Prio, Type, Operator)” can be queried
to get a list of all declared operators.

“current_op” is one of many built-in predicates, i.e. predicates that are
not defined by clauses, but by a procedure inside the Prolog system.

4. Prolog Syntax 4-27 / 47

Operator Syntax (6)

Operator Declaration:

A new operator is declared by calling/executing the
built-in predicate “op(Prio, Type, Operator)”.

E.g. after executing the goal
op(700, xfx, is_child_of)

the following is a legal syntax for a fact:
emil is_child_of birgit.

It is completely equivalent to
is_child_of(emil, birgit).

4. Prolog Syntax 4-28 / 47

Operator Syntax (7)

Note:

Besides facts and rules, a Prolog program can contain goals.
One must write “:- op(...).”

Unless one enters “op(...)” interactively, in which case the Prolog system
is already in query mode. But if one should write “op(...)” as a fact in a
file, one will probably get an error message that one tries to redefine a
built-in predicate.

The Prolog compiler executes this while compiling the
program. It modifies the internal parser tables.

One can then use the operator in the rest of the same
input file and in later user input.

4. Prolog Syntax 4-29 / 47

Predefined Operators (1)

Logic, Control:

Op. Priority Type Meaning
:- 1200 xfx “if” in rules
:- 1200 fx marks a goal
--> 1200 xfx syntax rule
; 1100 xfy disjunction (or)
-> 1050 xfy then (for if-then-else)
, 1000 xfy conjunction (and)
\+ 900 fy negation as failure

4. Prolog Syntax 4-30 / 47

Predefined Operators (2)

Arithmetic Comparisons:

Op. Priority Type Meaning
< 700 xfx is less than
> 700 xfx is greater than
>= 700 xfx greater than or equal
=< 700 xfx less than or equal
=:= 700 xfx is equal to
=\= 700 xfx is not equal to
is 700 xfx evaluate and assign

These functions evaluate arithmetic expressions in their
arguments (is only on the right side).

4. Prolog Syntax 4-31 / 47

Predefined Operators (3)

Arithmetics:

Op. Priority Type Meaning
+ 500 yfx sum
+ 200 fx identity (monadic +)
- 500 yfx difference
- 200 fx sign inversion (monadic -)
* 400 yfx product
/ 400 yfx division (quotient)
div 400 yfx integer division (floor)
// 400 yfx integer division (toward zero)
mod 400 xfx modulo (division rest for div)
rem 400 xfx modulo (division rest for //)

4. Prolog Syntax 4-32 / 47

Predefined Operators (4)

Bit Operations:

Op. Priority Type Meaning
/\ 500 yfx bitwise and
\/ 500 yfx bitwise or
>> 400 yfx right shift
<< 400 yfx left shift
\ 200 fx bitwise negation

4. Prolog Syntax 4-33 / 47

Predefined Operators (5)

Term Comparisons:

Op. Priority Type Meaning
= 700 xfx does unify with
== 700 xfx is strictly equal to
\== 700 xfx is not strictly equal to
@< 700 xfx comes before
@> 700 xfx comes after
@=< 700 xfx comes before or is equal
@=> 700 xfx comes after or is equal

Term Conversion:

Op. Priority Type Meaning
=.. 700 xfx convert term to list

4. Prolog Syntax 4-34 / 47

Some Syntactical Restrictions

Restrictions in Mixed Syntax:

In standard syntax “f (t1, . . . , tn)”, one cannot put a
space between “f ” and “(”.

A space is necessary, when the argument of a prefix operator starts with a
parenthesis, e.g. “ \+(1) > 2 ” vs. “ \+ (1) > 2 ”.

In standard syntax “f (t1, . . . , tn)”, the prioity of operators
in the argument terms ti must be < 1000.

“,” is an operator with priority 1000. Use parentheses if necessary.

If a prefix-operator is used as atom without arguments,
it must be put into parentheses: (op).

4. Prolog Syntax 4-35 / 47

Contents

1 Pure Prolog

2 Lexical Syntax

3 Abstract Syntax

4 Operator Syntax

5 List Syntax

6 Formal Syntax

4. Prolog Syntax 4-36 / 47

List Syntax (1)

The functor “./2” is used as list constructor.
SWI Prolog uses '[|]' instead of “.”. That is quite logical (see below),
but SWI Prolog is probably the only such system: “.” is the classical symbol.
SWI Prolog introduced “dictionaries” and needed the “.” for that.

The left argument is the first element of the list.

The right argument is the rest of list.

The atom “[]” is used to represent the empty list.

E.g. the list 1, 2, 3 can be written as
.(1, .(2, .(3, []))).

However, Prolog accepts the abbreviation [1, 2, 3]
for the above term.

It is uncommon that one ever uses “.” explicitly.

4. Prolog Syntax 4-37 / 47

List Syntax (2)

I.e. [t1, . . ., tn] is an abbreviation for
.(t1, . . ., .(tn, []) . . .)

One can also write “[X|Y]” for “.(X, Y)”.

More generally, also the abbreviation
[t1, . . ., tn | tn+1]

for the following term is accepted:
.(t1, . . ., .(tn, tn+1) . . .)

I.e. after the vertical bar “|”, one writes the rest of the list. Before it, the
first list elements. [1 | 2, 3] is a syntax error. [1|2] is not a syntax
error, but it would be a type error if Prolog were typed.

4. Prolog Syntax 4-38 / 47

List Syntax (3)

E.g. the following are different notations for the list 1, 2, 3:

[1, 2, 3].

.(1, .(2, .(3, []))).

[1, 2, 3 | []].

[1 | [2, 3]].

.(1, [2, 3]).

If one tries write(t) for each of these terms, the system
will always print [1, 2, 3].

In SWI Prolog, try: write('[|]'(1, '[|]'(2, '[|]'(3, [])))).

4. Prolog Syntax 4-39 / 47

List Syntax (4)

Now list processing predicates are easy to define.

E.g. append(X, Y, Z) is true iff the list Z is the
concatenation of lists X and Y, e.g.

append([1, 2], [3, 4], [1, 2, 3, 4])

It is defined as follows:
append([], L, L).
append([F|R], L, [F|RL]) :-

append(R, L, RL).

Some Prolog systems have append as a built-in predicate.
In SWI-Prolog, it is defined in a library that is automatically loaded when
append is called an not yet defined.

Exercise: Define member(X, L): X is an element of L.
4. Prolog Syntax 4-40 / 47

Contents

1 Pure Prolog

2 Lexical Syntax

3 Abstract Syntax

4 Operator Syntax

5 List Syntax

6 Formal Syntax

4. Prolog Syntax 4-41 / 47

Formal Prolog Syntax (1)

The input is a term of priority 1200, followed by a “full stop”:
Term(1200) “.”

White space (a space, line break, etc.) must follow so that “.” is recognized
as “full stop”.

The term is interpreted as clause:
“:-” and “,” are declared as operators.

There are certain type restrictions, e.g. the head of the
clause cannot be a variable or number.

Prolog requires that the predicate is an atom, and e.g. not a variable.

4. Prolog Syntax 4-42 / 47

Formal Prolog Syntax (2)

Term(N):

Operator(N,fx) Term(N-1)
Exception: “-1” is a numeric constant, not a composed term. Furthermore,
if “Term(N-1)” starts with “(”, a space is required.

Operator(N,fy) Term(N)

Term(N-1) Operator(N,xfx) Term(N-1)

Term(N-1) Operator(N,xfy) Term(N)

Term(N) Operator(N,yfx) Term(N-1)

4. Prolog Syntax 4-43 / 47

Formal Prolog Syntax (3)

Term(N), continued:

Term(N-1) Operator(N,xf)

Term(N) Operator(N,yf)

Operator(N,fx/fy)
Prefix-operators that are used as atom count as term of their priority, and
not as term of priority 0 as other operators.

Term(N-1)
I.e. it is not required that Term(N) really contains an operator of
priority N. It may also contain an operator of numerically lower priority
(which means higher binding strength), or contain no further operators
outside parentheses (elementary terms are generated by Term(0) below).

4. Prolog Syntax 4-44 / 47

Formal Prolog Syntax (4)

Term(0):

Atom
The atom cannot be declared as prefix operator, see above.

Variable

Number

String

Atom “(” Arguments “)”

“[” List “]”

“(” Term(1200) “)”

4. Prolog Syntax 4-45 / 47

Formal Prolog Syntax (5)

Arguments:

Term(999)

Term(999) “,” Arguments

List:

Term(999)

Term(999) “,” List

Term(999) “|” Term(999)

4. Prolog Syntax 4-46 / 47

More Syntax Examples

The rule “p :- q, r.” can also be entered in standard
syntax: :-(p, ','(q, r)).

The following are all the same literal:

X is Y+1

is(X, Y+1)

is(X, +(Y,1))

X is +(Y,1)

I.e. one can use arbitrary mixtures of operator syntax and standard syntax
and even when an atom is defined as operator, one can use the standard syntax.

4. Prolog Syntax 4-47 / 47

	Pure Prolog
	Pure Prolog

	Lexical Syntax
	Lexical Syntax

	Abstract Syntax
	Abstract Syntax

	Operator Syntax
	Operator Syntax
	Predefined Operators
	Problems due to Mixed Syntax

	List Syntax
	List Syntax

	Formal Syntax
	Formal Syntax

