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Objectives

After completing this chapter, you should be able to:

explain how bottom-up evaluation works.

draw the predicate dependency graph for a given
program, determine recursive cliques.

translate a given Datalog rule into relational algebra and
SQL.

explain seminaive evaluation.

translate a given Datalog program into C+SQL.
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Bottom-Up Evaluation: Goal

Given:
Relational DB with relations for EDB-predicates

Logic program P that defines IDB-predicates

Compute:
Minimal model, i.e. relations for IDB-predicates.

This corresponds to the materialization of the views defined by the logic
program P. The extension of the derived predicates is computed.

Only the extension of the special predicate answer is
important.

Defined by answer(X1, . . . , Xn)← Q with query Q with variables Xi .

Stefan Brass: Logic Programming/deductive DBs 12. Bottom-Up Evaluation 12-4 / 79



Basic Approach Predicate Dependencies Translation of Rules First Compiler Seminaive Evaluation Remarks

Basic Method (1)

Compute the minimal model as least fixpoint of TP
iteratively. The simplest (very naive) algorithm is:

(1) I := ∅;
(2) Inew := TP(I);
(3) while Inew 6= I do
(4) I := Inew;
(5) Inew := TP(I);
(6) od;
(7) print I[answer];

The immediate consequence operator TP has to be
implemented with database techniques.
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Basic Method (2)

Problems:

Assignment of whole database states I?
It would be better to update only single relations.

The relations for the EDB-predicates are given and do not
change during the evaluation.

Nonrecursive rules should be applied only once.
In general, every fact should be derived only once.

Not all facts in the minimal model are relevant for the
given query (→ Magic Sets, Chapter 13).

After the transformation, all facts in the minimal model are relevant.
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Basic Method (3)

Interpretation vs. Compilation:

Above, a bottom-up interpreter was shown.

Often, the same logic program is executed several times
for different database states.

I.e. at different times, when updates had occurred in the meantime.

The time invested in analysis of the input program and
query optimization should be amortized over several
executions of the program.

The goal is to translate Datalog into imperative programs
(relational algebra + Control structures).
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Example: Input

Let the given program be:

parent(X, Y) ← mother(X, Y).
parent(X, Y) ← father(X, Y).
ancestor(X, Y) ← parent(X, Y).
ancestor(X, Z) ← parent(X, Y) ∧ ancestor(Y, Z).
answer(X) ← ancestor(julia, X).

The last rule was automatically added for the query
ancestor(julia, X).

EDB-Predicates (stored in the database):

father

mother
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Example: Output

(1) parent := mother ∪ father;
(2) ancestor := ∅;
(3) ancestor new := parent;
(4) while ancestor new 6= ∅ do
(5) ancestor := ancestor ∪ ancestor new;
(6) ancestor new :=
(7) π$1,$3(parent

$2=$1
ancestor new);

(8) ancestor new := ancestor new \ ancestor;
(9) od;

(10) answer := π$2
(
σ$1=’julia’(ancestor)

)
;

(11) print answer;
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Example: Remark

Here, a version of relational algebra is used that refers to
columns by position, not by name.

Some more theoretical database textbooks use this convention because it
is easier to define, e.g. there can be no name clashes.

Usually, the columns of IDB-predicates have no names,
but one could of course assign artifical names.

E.g., if one uses an SQL-database.

$i is the i-th column of the input relation.

For the join R
$i=$j

S, the i-th column of R must be equal
to the j-th column of S.
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Example: Exercise

Please execute the above program for the following
database state:

mother

Child Mother

emil birgit
frida doris
julia frida

father

Child Father

emil arno
frida chris
julia emil
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EDB- vs. IDB-Predicates (1)

The distinction between EDB- and IDB-predicates is not
important for the semantics (minimal model), and also
not for SLD-resolution, but it is fundamental for
bottom-up query evaluation.

Above (in the chapter about Pure Prolog), it was
assumed that the EDB-predicates are defined in the logic
program (as facts). This is usual in Prolog.

However, in database applications there are often
thousands or millions of facts, but only a few rules.
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EDB- vs. IDB-Predicates (2)

A fact can be seen as special case of a rule (a rule with
empty body), but since this special case is so common, it
deserves a special treatment.

It is a general principle of efficiency improvement to treat simple and very
common special cases separately.

Furthermore,

facts are changed by updates, whereas

a query might be executed several times, and

view definitions are stable.
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EDB- vs. IDB-Predicates (3)

Definition:

Given a logic program P, a predicate p that occurs in P is
an IDB-predicate (of P), if P contains at least one rule
A← B1 ∧ · · · ∧ Bm with pred(A) = p and m ≥ 1, or an
EDB-predicate (of P) otherwise.

Let PIDB(P) be the set of IDB-predicates of P, and
PEDB(P) be its set of EDB-predicates.

IDB(P) := {A← B1 ∧ · · · ∧ Bm ∈ P |
pred(A) ∈ PIDB(P), m ≥ 0}.

EDB(P) := {A | A← true ∈ P, p(A) ∈ PEDB(P)}.
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EDB- vs. IDB-Predicates (4)

Interpreter with Distinction EDB-IDB:

(1) Idb := EDB(P);
(2) P ′ := IDB(P);
(3) I := ∅;
(4) Inew := TP′(I ∪ Idb);
(5) while Inew 6= I do
(6) I := Inew;
(7) Inew := TP′(I ∪ Idb);
(8) od;
(9) print I(answer);
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Predicate Depencencies (1)

Definition:

The predicate-dependency graph of a logic program P is
the directed graph DG(P) = (V ,E ) with

the set V of nodes is the set of all predicates that occur
in P,

there is an edge from p to q, i.e. (p, q) ∈ E ⊆ V× V, if
and only if there is a rule A← B1 ∧ · · · ∧ Bm in P and
i ∈ {1, . . . , m}, such that pred(Bi ) = p and
pred(A) = q.

Some authors use the other direction of the arrows.
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Predicate Dependencies (2)

Example:
parent(X, Y) ← mother(X, Y).
parent(X, Y) ← father(X, Y).
ancestor(X, Y)← parent(X, Y).
ancestor(X, Z)← parent(X, Y) ∧

ancestor(Y, Z).
answer(X) ← ancestor(julia, X).

answer

ancestor

parent

mother father
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Predicate Dependencies (3)

Definition:

Let a logic program P be given.

A predicate q depends on a predicate p iff there is a path
(consisting of one or more edges) from p to q in DG(P).

A predicate p is recursive iff p depends on itself.

The nodes {p1, . . . , pk} of a strongly connected
component (SCC) of DG(P) are called recursive clique.

Two predicates p and q that belong to the same recursive
clique are mutually recursive.
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Predicate Dependencies (4)

Exercise:
Compute the predicate dependency graph and the (mutually)
recursive predicates for the following program:

rule and rhs contain a context free grammar. The program computes the
nonterminal symbols from which the empty string can be derived.

empty until(Rule, 0) ← rule(Rule, , ).
empty until(Rule, Next) ← empty until(Rule, Pos) ∧

succ(Pos, Next) ∧
rhs(Rule, Next, NonTerm) ∧
empty(NonTerm).

empty(Left) ← rule(Rule, Left, RightSize) ∧
empty until(Rule, RightSize).
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Predicate Dependencies (5)

Definition:

A rule A← B1 ∧ · · · ∧ Bm is a recursive rule iff there is
i ∈ {1, . . . ,m}, such that pred(Bi) depends on pred(A).

Note that not all rules about a recursive predicate are recursive rules.

Let P be a logic program and C ⊆ PIDB(P). Then

rec(P, C) is the set of recursive rules from P about
predicates in C .

nrec(P, C) is the set of nonrecursive rules from P about
predicates in C .
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Predicate Dependencies (6)

Definition:
The reduced predicate-dependency graph of a program P is
the directed acyclic graph RG(P) = (V̂ , Ê ) with

V̂ := {C ⊆ PIDB(P) | C is recursive clique}
∪ {p ∈ PIDB(P) | p is non-recursive}.

(C1,C2) ∈ Ê if and only if C1 6= C2 and there are
p1, p2 ∈ PIDB(P) with

p1 ∈ C1 or p1 = C1,

p2 ∈ C2 or p2 = C2,

there is an edge p1 −→ p2 in DG(P).
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Predicate Dependencies (7)

Exercise:

Compute the reduced predicate dependency graph:
p1 ← q1 ∧ q2.
p1 ← q1 ∧ q3.
p2 ← p1.
p3 ← q3.
p3 ← p1.
p3 ← p2.
p4 ← p2 ∧ p3.
p5 ← p4 ∧ q2.

p6 ← p5.
p4 ← p6.
p7 ← p5 ∧ p3.
p7 ← q4 ∧ p7.
p8 ← p2.
p9 ← p8 ∧ p7.
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Predicate Dependencies (8)

Definition:

Let P be a logic program and RG(P) = (V̂ , Ê ) be its
reduced predicate-dependency graph.

A predicate evaluation sequence for P is a sequence
C1, . . . ,Ck of the nodes of this graph such that

for all i , j ∈ {1, . . . , k}: (Ci ,Cj) ∈ Ê =⇒ i < j

(i.e. there are only forward edges).

One gets such a sequence by topologically sorting V̂ with
respect to the order relation Ê .
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Predicate Dependencies (9)

A predicate evaluation sequence always exists.
However, it may be not unique.

Example: A predicate evaluation sequence for

parent(X, Y) ← mother(X, Y).
parent(X, Y) ← father(X, Y).
ancestor(X, Y)← parent(X, Y).
ancestor(X, Z)← parent(X, Y) ∧ ancestor(Y, Z).
answer(X) ← ancestor(julia, X).

is parent, {ancestor}, answer.

Exercise: Compute a predicate evaluation sequence for
the program on Slide 23.
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Predicate Dependencies (10)

Interpreter with evaluation sequence

(1) Idb := EDB(P);
(2) Compute evaluation sequence C1, . . . ,Ck;
(3) I := ∅;
(4) for i := 1 to k do
(5) /* Extend I by evaluating Ci : */
(6) ... see next slide ...

(16) od;
(17) print I(answer);
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Predicate Dependencies (11)

(6) if Ci is nonrecursive predicate p then
(7) I := I ∪ Tnrec(P, {p})(I ∪ Idb);
(8) else /* Ci is recursive clique */
(9) Inew := Tnrec(P, Ci )(I ∪ Idb);

(10) while Inew 6= ∅ do
(11) I := I ∪ Inew;
(12) Inew := Trec(P, Ci )(I ∪ Idb);
(13) Inew := Inew \ I;
(14) od;
(15) fi;
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Predicate Dependencies (12)

Remark (Rule Dependency Graph):

One can also define a rule-dependency graph in which the
rules are represented as nodes, and there is an edge from
rule R1 to rule R2 if the body of R2 contains a predicate
that appears in the head of R1.

This graph contains so many edges that it is never used
(but see predicate-rule graph below).

An advantage might be that the recursive rules are
exactly the rules occurring in cycles.
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Predicate Dependencies (13)

Remark (Predicate-Rule Graph):

An improvement is the predicate-rule graph: It is a
bipartite graph with rules and predicates as nodes.

There is an edge from predicate p to rule R if p appears
in the body of R.

There is an edge from rule R to predicate p if p appears
in the head of R.

But the predicate dependency graph is the smallest of the
three, and together with the rules, the information in the
other graphs can easily derived.
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Translation of Rules (1)

Statements like the following must still be further refined:
I := I ∪ Tnrec(P,Ci )(I ∪ Idb);

For nonrecursive components (and seminaive evaluation
of recursive ones, see below), rules can be executed one
after the other.

I.e., if head and body predicates are disjoint,
I := I ∪ T{R1,...,Rn}(I)

is equivalent to
I := I ∪ T{R1}(I); . . . I := I ∪ T{Rn}(I);
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Translation of Rules (2)

Example:

Input rule: p(X , a)← q(X ,Y ) ∧ r(Y , b).

The principles are:

Do a selection for constants in the body,
Or if a variable appears more than once in the same body literal.

a join for common variables of different body literals, and

a projection for the head.

Translation into relational algebra:

p := p ∪π$1,a
(

q
$2=$1

σ$2=b(r)
)
.
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Translation of Rules (3)

Example, continued:

The same principles are applied for a translation to SQL.

Input rule (again): p(X , a)← q(X ,Y ) ∧ r(Y , b).

Execution in an SQL database:
INSERT INTO p (SELECT DISTINCT B1.$1, ’a’

FROM q B1, r B2
WHERE B1.$2=B2.$1 AND B2.$2=’b’)

Of course, the $i could be replaced by other column names.
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Translation of Rules (4)

Input Rule (again): p(X , a)← q(X ,Y ) ∧ r(Y , b).

Direct implementation with “Nested Loop Join”:
(1) foreach B1 ∈ q do
(2) X := B1[1]; Y := B1[2];
(3) foreach B2 ∈ r do
(4) if B2[1] = Y and B2[2] = ’b’ then
(5) /* Insert tuple into p */
(6) ... see next slide ...

(16) fi;
(17) od;
(18) od;

Stefan Brass: Logic Programming/deductive DBs 12. Bottom-Up Evaluation 12-34 / 79



Basic Approach Predicate Dependencies Translation of Rules First Compiler Seminaive Evaluation Remarks

Translation of Rules (5)

Insertion with duplicate test:
(6) Duplicate := false;
(7) foreach A ∈ p do
(8) if A[1] = X and A[2] = ’a’ then
(9) Duplicate := true; break;

(10) fi;
(11) od;
(12) if not Duplicate then
(13) new A′; A′[1] = X; A′[2] = ’a’;
(14) append A′ to p;
(15) fi;
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Translation of Rules (6)

Exercises:

Name some alternatives for evaluating this rule.
E.g. another join method, using indexes. Are there other possibilities for
eliminating duplicates?

If this is the only/first rule about p, is it possible to work
without the duplicate test?

Or is further knowledge necessary (key constraints)?

For nonrecursive programs, it is possible to eliminate
duplicates only once at the end. What are the advantages
and disadvantages?
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Translation of Rules (7)

Exercises, continued:

Why might this method (deferred duplicate elimination)
be dangerous in recursive programs?

Name some advantages and disadvantages of using a
commercial DBMS (translation into SQL) compared with
the direct translation to Pascal.

At this state, it might be difficult to find convincing disadvantages. When
discussing seminaive evaluation below, it will become clear that some kind
of versioned relations are needed that are missing in todays commercial
databases.
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Translation of Rules (8)

Remark (General Approach):

It is not difficult to write a program for translating
Datalog rules into relational algebra or SQL.

However, a good translation into program code (Pascal, C, abstract
machine) that contains a query optimizer and efficiently accesses external
memory is a big project (basically, one reimplements a DBMS).

When a variable appears for the first time, one has to
remember its value (or a reference to the value), and for
every future occurrence of the same variable, one must do
a comparison.

E.g., when translating to SQL, one will use a table that maps X to B1.$1

after the first body literal is processed.
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Nonrecursive Programs (1)

If there are several rules about a predicate, one can
combine the respective algebra expressions / SQL queries
with ∪/UNION.

For non-recursive programs, one can successively replace
the IDB-predicates in the algebra expression for answer
by their definitions (algebra expressions).

Like a macro expansion. This process is called “unfolding”.

In this way, one gets a single algebra expression that
contains only EDB-predicates and computes the query
result.
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Nonrecursive Programs (2)

If one works with SQL, one can also translate an entire
nonrecursive Datalog program into a single SQL query.

This is obvious, since SQL is at least as powerful as relational algebra: If a
translation to relational algebra is possible, the resulting algebra expression
can be translated to SQL.

One can also define views for the IDB predicates.

Many DBMS will internally do a view expansion.
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Nonrecursive Programs (3)

When the IDB predicates are eliminated, the optimizer
has more possibilities (it is not bound by the partitioning
of the program into different predicate definitions).

The optimizer than can globally work on the entire query instead of
optimizing only locally every single rule.

Thus, this single big query will often be executed more
efficiently than the sequential execution of all rules.
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Nonrecursive Programs (4)

Another important advantage of the single big query is
that the IDB predicates do not have to be “materialized”
in this way (explicitly stored).

Database systems often use internally iterators for
subexpressions that compute the next tuple only when it
is actually needed.

Since main memory is restricted, it is important to store
intermediate results only when really necessary, e.g. when
sorting.
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Nonrecursive Programs (5)

An exception occurs if the same predicate is used several
times: The DBMS might not detect the common
subexpression and recompute the same intermediate
tuples.

The effect is not so clear and deserves are careful
analysis: If the work for recomputation is cheap, that
might still be the better alternative.

Also, if different parts of the extension of the predicates
are used, treating the two subexpressions separately might
be much better.
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Nonrecursive Programs (6)

Exercise:

Translate the following program into a single algebra
expression (and a single SQL query):

parent(X, Y) ← mother(X, Y).
parent(X, Y) ← father(X, Y).
grandfather(X, Z) ← parent(X, Y) ∧ father(Y, Z).
answer(X) ← grandfather(julia, X).

Do an algebraic optimization and discuss different query
evaluation plans.

If you took Database Systems II B”.
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Recursive Programs

In this case, there are two interpretations (I, Inew ):
Inew := Trec(P,Ci )(I ∪ Idb);

Actually three, but I and Idb define disjoint predicates.

Solution: One uses only a single interpretation (database),
but introduces different variants of the predicates. E.g.

ancestor(X, Z)← parent(X, Y) ∧ ancestor(Y, Z)
is translated like

ancestor new(X, Z)← parent(X, Y) ∧ ancestor(Y, Z).
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Compiler for Datalog (1)

One can get a compiler from an interpreter by partial
evaluation.

The interpreter is executed as far as possible.
The logic program is already known (at compile time), but the input
relations (values for the EDB predicates) will only be known at runtime. If
an EDB predicate is known to be small and very stable (lookup tables),
one could think about using it in the compilation.

Whenever a statement depends on the actual data, one
prints the statement instead of executing it.

Of course, it might be possible to specialize/simplify the statement.

Stefan Brass: Logic Programming/deductive DBs 12. Bottom-Up Evaluation 12-47 / 79



Basic Approach Predicate Dependencies Translation of Rules First Compiler Seminaive Evaluation Remarks

Compiler for Datalog (2)

Notation/Auxillary Procedures:

Pnew
IDB(P) := {p new | p ∈ PIDB(P), p is recursive}.

translate(C) translates rule sets as explained in the last
section.

make head new(C) changes every predicate p in a rule
head to p new .

Stefan Brass: Logic Programming/deductive DBs 12. Bottom-Up Evaluation 12-48 / 79



Basic Approach Predicate Dependencies Translation of Rules First Compiler Seminaive Evaluation Remarks

Compiler for Datalog (3)

(1) foreach p ∈ PIDB(P) ∪ Pnew
IDB(P) do

(2) print "CREATE TABLE p (...)"; od;
(3)
(4) Compute evaluation sequence C1, . . . ,Ck;
(5) for i := 1 to k do /* Evaluate Ci : */
(6) ... see next slide ...

(16) od;
(17)
(18) print "SELECT * FROM answer";
(19) foreach p ∈ PIDB(P) ∪ Pnew

IDB(P) do
(20) print "DROP TABLE p"; od;
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Compiler for Datalog (4)

(6) if Ci is nonrecursive predicate p then
(7) translate

(
nrec(P,Ci)

)
;

(8) else /* Ci is recursive clique */
(9) translate

(
make head new(nrec(P,Ci))

)
;

(10) print "WHILE ";
(11) print while cond(Ci);
(12) print " DO ";
(13) print while body(Ci ,P);
(14) print " OD;";
(15) fi;
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Compiler for Datalog (5)

(1) procedure print while cond(Ci):
(2) First := true;
(3) foreach p ∈ Ci do
(4) if not First then
(5) print " OR ";
(6) else
(7) First := false;
(8) fi;
(9) print "p new 6= ∅";

(10) od;
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Compiler for Datalog (6)

(1) procedure print while body(Ci ,P):
(2) foreach p ∈ Ci do
(3) print "p := p ∪ p new;";
(4) od;
(5) translate

(
make head new(rec(P,Ci))

)
;

(6) foreach p ∈ Ci do
(7) print "p new := p new \ p;";
(8) od;
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Seminaive Evaluation (1)

The first algorithm, which simply iterates to TP-operator
until a fixpoint is reached, is called “naive bottom-up
evaluation”.

The main disadvantage is that in every iteration, it
recomputes the facts already known from previous
iterations.

The goal now is that every applicable rule instance is
applied only once.

Actually, one would like to derive only fact only once. But if a fact can be
derived with different rule instances, this is at least difficult.
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Seminaive Evaluation (2)

With the improved algorithm above that uses the
predicate dependency graph, the goal (single application
of every applicable rule instance) was reached for
nonrecursive programs.

But for recursive programs, nothing has changed.
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Seminaive Evaluation (3)

Translation Result so far:

(1) ancestor new := parent;
(2) while ancestor new 6= ∅ do
(3) ancestor := ancestor ∪ ancestor new;
(4) ancestor new :=
(5) π$1,$3(parent

$2=$1
ancestor);

(6) ancestor new := ancestor new \ ancestor;
(7) od;
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Seminaive Evaluation (4)

Naive Evaluation, Iteration 1:

ancestor new(X, Z)← parent(X, Y) ∧ ancestor(Y, Z)

grandparents

parents

Stefan Brass: Logic Programming/deductive DBs 12. Bottom-Up Evaluation 12-57 / 79



Basic Approach Predicate Dependencies Translation of Rules First Compiler Seminaive Evaluation Remarks

Seminaive Evaluation (5)

Naive Evaluation, Iteration 2:

ancestor new(X, Z)← parent(X, Y) ∧ ancestor(Y, Z)

grandparents

great-grandparents

parents

grandparents
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Seminaive Evaluation (6)

Naive Evaluation, Iteration 3:

ancestor new(X, Z)← parent(X, Y) ∧ ancestor(Y, Z)

grandparents

great-grandparents

great2-grandparents

parents

grandparents

great-grandparents
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Seminaive Evaluation (7)

Basic Idea:

Solution: Seminaive/Differential Evaluation.

If there is only one recursive body literal, it suffices to
match it only with new facts, i.e. facts that were derived
in the last iteration.

In the example, one could replace ancestor in the body
by ancestor new :

ancestor new := π$1,$3(parent
$2=$1

ancestor new);
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Seminaive Evaluation (8)

The general case is a bit more complicated:

If there are several recursive body literals, one also has
to consider combinations of old and new body literals.

It might be a problem that the same relation is used in
head and body.

Chaos could occur when a relation is modified while it is accessed.
However, if one uses an SQL database, this would make sure that
the SELECT-query in an INSERT-statement is completely evaluated
before the tuples are actually inserted. Then there could be only
problems when there are several rules or several mutually recursive
predicates (the rule applications in one iteration should be based on
the same database state).
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Seminaive Evaluation (9)

Seminaive evaluation is defined by a program
transformation using new, system-defined predicates.

For every recursive predicate p, three additional variants
are introduced:

p old : Tuples that existed already when the previous
iteration started.

p diff : Tuples that were newly derived in the previous
iteration.

p: Value after previous iteration (p old ∪ p diff ).

p new : Tuples to be computed in this iteration.
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Seminaive Evaluation (10)

Seminaive Evaluation, Iteration 3:

Parents

Grandparents

 ancestor old

Great-Grandparents
}

ancestor diff


ancestor

Great2-Grandparents
}

ancestor new
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Seminaive Evaluation (11)

Seminaive Evaluation, Iteration 3:

ancestor new(X, Z)← parent(X, Y) ∧ ancestor diff (Y, Z)

great2-grandparents

great-grandparents
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Seminaive Evaluation (12)

Example: p(X, Z)← p(X, Y) ∧ p(Y, Z).

p old

p diff

p old

p diff


p

Result of the transformation:
p new(X, Z) ← p diff (X, Y) ∧ p(Y, Z).
p new(X, Z) ← p old(X, Y) ∧ p diff (Y, Z).
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Seminaive Evaluation (13)

For n recursive body literals, 2n − 1 combinations of “old”
and “diff” must be considered.

In practice, this would not be as bad as it sounds theoretically, because
rules with more than two recursive body literals are very seldom.

However, since there is also a relation for the union
(p = p old ∪ p diff ), one can write this down with
n rules.

Of the 2n possible combinations of “old” and “diff”,
seminaive evaluation only avoids one combination,
namely, where all tuples are old.
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Seminaive Evaluation (14)

However, since the “old” tuples are possibly collected over
many iterations, there are often many more “old” tuples
than “diff” tuples (only 1 iter.).

In this case, avoiding the combination of old with old
tuples really saves work.

Furthermore, it might be important that every rule
instance is applied only once:

For avoiding duplicate tests.

For using the right number of duplicates in aggregation
functions like sum and avg.
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Seminaive Evaluation (15)

Initialization (before the while-loop):
(1) p old := ∅;
(2) p diff := Facts from nonrecursive rules;
(3) p := p diff ;
(4) p new := ∅;

After every iteration:
(1) p old := p old ∪ p diff ; /* Or: p old := p; */
(2) p diff := p new \ p old;
(3) /* Or: p diff := p new \ p; */
(4) p := p old ∪ p diff ;
(5) p new := ∅;
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Seminaive Evaluation (16)

Managing different variants of a relation:

Of course, it is quite inefficient to really use four relations
per recursive predicate.

Especially the copying of tuples between different relations seems
superfluous work.

But with a standard SQL database, there seems to be no
perfect solution.

As mentioned above, if there are not many recursive body literals, one
could avoid one of the four relations. Furthermore, if there is only a single
rule with a single recursive body literal, two relations would suffice as
shown in the ancestor-example.
Another approach is to use a single relation with an additional column for
the iteration step in which the tuple was derived.

Stefan Brass: Logic Programming/deductive DBs 12. Bottom-Up Evaluation 12-69 / 79



Basic Approach Predicate Dependencies Translation of Rules First Compiler Seminaive Evaluation Remarks

Seminaive Evaluation (17)

If one builds a deductive DBMS from scratch, one can
use a new data structure, e.g. consisting of:

A B-tree/hash table to detect duplicates. Derived tuples
are immediately checked, only p new \ p is stored.

A file/linked list, in which new tuples are only appended
at the end. Then p old , p diff and p new can be
implemented by position pointers.

End of the list before the previous iteration step, after the previous
iteration step, and the current end of the list. Then after each
iteration only these pointers must be updated, no tuples copied.
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Seminaive Evaluation (18)

In the above data structure, every tuple is stored twice: In
the B-tree in sort order, in the list in derivation sequence.

In a standard SQL DBMS, a heap file with a B-tree index
over all attributes would look similar.

However, standard DBMS do not guarantee to store
tuples in the heap file in insertion sequence.

Actually, effort is invested to ensure that if a short tuple arrives after a
large tuple, the short tuple might be used to fill a block that did not have
enough space for the large tuple. Furthermore, it is not clear whether the
order on the ROWIDs is meaningful.
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Seminaive Evaluation (19)

Own data structure for recursive predicates:

...
p old : Tupel 1 to 102

...
p diff : Tupel 103 to 120

...
p new \ p: Tupel 121 to 129
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Seminaive Evaluation (20)

Own data structure for recursive predicates:

After switching to
next iteration step

...
p old : Tupel 1 to 120

...
p diff : Tupel 121 to 129

...
p new \ p: No tuples yet
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Using a RDBMS (1)

As mentioned before, a relatively easy implementation
option for a deductive DBMS is to use a relational DBMS
as a basis, and translate the given logic program into SQL
plus control structures.

This will not give optimal performance:

Versioned relations as needed for seminaive evaluation
are not supported.

Alteratively, the following kind of statement would be useful: Insert
a tuple into R and S, if it is not already in R.

(continued on next slide)
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Using a RDBMS (2)

Reasons for suboptimal performance when using a
standard relational DBMS, continued:

Only INSERT is needed for IDB-relations, no UPDATE or
DELETE. The storage structures should be optimized for
this case.

No size information is known about the IDB-relations
when the logic program is translated, and during
seminaive iteration, the size changes drastically.

Runtime optimization might help here.

Stefan Brass: Logic Programming/deductive DBs 12. Bottom-Up Evaluation 12-76 / 79



Basic Approach Predicate Dependencies Translation of Rules First Compiler Seminaive Evaluation Remarks

Using a RDBMS (3)

Other important issued when implementing a deductive
DBMS based on a standard RDBMS:

Modern RDBMS support temporary relations (no
recovery, no multi-user access). These should be used for
IDB-relations.

It is important not to materialize IDB predicates, at
least when the predicate is used only once.

One should use stored procedures in order to avoid
network traffic between server and client during the
execution of the logic program.

Stefan Brass: Logic Programming/deductive DBs 12. Bottom-Up Evaluation 12-77 / 79



Basic Approach Predicate Dependencies Translation of Rules First Compiler Seminaive Evaluation Remarks

Further Optimizations (1)

Tests have shown that a large fraction of the runtime is
used for duplicate elimination.

Therefore, the optimizer should do an analysis which
rules can never produce duplicates.

Recursive rules produce larger and larger intermediate
results, which are usually kept until the end of the
iteration.

It would be better to use the tuples immediately and
then delete them.

This can only work if the recursive rule will not produce duplicates.
Otherwise the old tuples are needed to ensure termination.
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Further Optimizations (2)

An optimal situation is when only a single tuple of the
recursive predicate is needed at each time point.

/* Computes position of first space in string */
first space(Pos) ← no space before(Pos) ∧

string(Pos, ’ ’).
no space before(1).
no space before(Next) ← no space before(Pos) ∧

string(Pos, Char) ∧
Char 6= ’ ’ ∧
succ(Pos, Next).
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