
Introduction Modules in SWI-Prolog

Logic Programming and
Deductive Databases

Chapter 9: Modules in Prolog
(Short Introduction)

Prof. Dr. Stefan Brass
Martin-Luther-Universität Halle-Wittenberg

Summer 2021

http://www.informatik.uni-halle.de/˜brass/lp21/

Stefan Brass: Logic Programming/deductive DBs 9. Modules in Prolog 9-1 / 17

http://www.informatik.uni-halle.de/~brass/lp21/


Introduction Modules in SWI-Prolog

Objectives

After completing this chapter, you should be able to:

use modules in Prolog.

Stefan Brass: Logic Programming/deductive DBs 9. Modules in Prolog 9-2 / 17



Introduction Modules in SWI-Prolog

Contents

1 Introduction

2 Modules in SWI-Prolog

Stefan Brass: Logic Programming/deductive DBs 9. Modules in Prolog 9-3 / 17



Introduction Modules in SWI-Prolog

Reasons for Using Modules (1)

Normally, all predicates in a Prolog program are in a
single namespace.

For small programs, this is no problem. For large
programs, there can be name clashes.

At least, most Prolog systems will print an error message, because the
clauses of that predicate will not be consecutive in the program.

Every predicate can be called from every other predicate
in the program.

However, auxiliary predicates are quite common in logic
programs. It should be easy to change these, because
they are used only in a small part of the program.

SWI-Prolog has a cross-referencing tool: [https://www.swi-prolog.org/gxref.html]

Stefan Brass: Logic Programming/deductive DBs 9. Modules in Prolog 9-4 / 17

https://www.swi-prolog.org/gxref.html


Introduction Modules in SWI-Prolog

Reasons for Using Modules (2)
It is a general principle in software development to clearly
separate interface from implementation, so that one can

change/improve the implementation, and

keep the interface stable.
The auxiliary predicates are only part of the implementation of a
module. One does not need to understand them when using the
interface predicates (predicates exported from the module). At least,
when the interface predicates are well documented.

Thinking about modules while developing a program can
help to achive a better structure.

When one develops a large program, one always has some structure of the
program into components in one’s mind. With modules, one can make this
explicit, and document it for other programmers who later have to understand
the program. Modules are another layer of abstraction above the predicates.

Stefan Brass: Logic Programming/deductive DBs 9. Modules in Prolog 9-5 / 17



Introduction Modules in SWI-Prolog

Portability Problems
The first Prolog systems did not contain modules, and
Prolog systems differ in their support of modules.

Since 2000, there is a ISO standard for modules in Prolog
(ISO/IEC 13211-2), but SWI Prolog and many other
Prolog systems do not follow this standard.

SWI Prolog as well as SICStus, Ciao and YAP were
inspired by the module support of Quintus Prolog.

Günter Kniesel (University of Bonn) writes: “Fear of
non-portability should not stop you from using modules:
An unmanageable, badly structured program is unusable
even on a single platform.”

[https://sewiki.iai.uni-bonn.de/ media/teaching/lectures/alp/2012/
08 - modules and objects.pdf]

Stefan Brass: Logic Programming/deductive DBs 9. Modules in Prolog 9-6 / 17

https://sewiki.iai.uni-bonn.de/_media/teaching/lectures/alp/2012/08_-_modules_and_objects.pdf
https://sewiki.iai.uni-bonn.de/_media/teaching/lectures/alp/2012/08_-_modules_and_objects.pdf


Introduction Modules in SWI-Prolog

Basics of Modules in Prolog

In Prolog, modules are namespaces for predicates.

I.e. predicate p/1 in module mod1 is different from
predicate p/1 in module mod2.

However, atoms and functors (data terms) are not
distinguished between modules. E.g. a in code from
module mod1 unifies with a in code from module mod2.

Stefan Brass: Logic Programming/deductive DBs 9. Modules in Prolog 9-7 / 17



Introduction Modules in SWI-Prolog

Contents

1 Introduction

2 Modules in SWI-Prolog

Stefan Brass: Logic Programming/deductive DBs 9. Modules in Prolog 9-8 / 17



Introduction Modules in SWI-Prolog

Defining a Module
Even without modules, one can structure a large Prolog
program in several source files, and consult all these files
in a “main file”.

The user of the program then only needs to consult the “main file”, this
consults all the other source files (similar to #include in C).

A module is simply a source file that starts with a
“module declaration”:

:- module(Name, [Pred1/Arity1, ...]).

“Name” is the name of the module.

“Pred1/Arity1, ...” are the exported predicates.

The source file name should be “Name.pl”, i.e. the
module name with the standard extension for Prolog.

Stefan Brass: Logic Programming/deductive DBs 9. Modules in Prolog 9-9 / 17



Introduction Modules in SWI-Prolog

Using a Module
To make predicates from another module available in the
current module, one writes:

:- use_module(Name, [Pred1/Arity1, ...]).

Here “Name” is the name of the source file (without extension),
not the module name, but normally, these are identical.

The file name is needed, because use_module loads the program code of
the module similar to consult (if the module is not already loaded). In
principle, it is not required that the source code of module “a” is in
file “a.pl”. But if one follows this convention, one does not have to
remember that use_module really needs the file name.

In order to make all exported predicates from module “Name”
available, one can simply write:

:- use_module(Name).
Stefan Brass: Logic Programming/deductive DBs 9. Modules in Prolog 9-10 / 17



Introduction Modules in SWI-Prolog

Name Conflicts in Imports
One cannot import two predicates with the same name
and arity from two different modules.

Therefore, it is possible to rename a predicate when it is
imported:

:- use_module(moduleA, [p/1 as pa]).

Since the list of exported predicates of a module might be
extended later, it is safer to explicitly list the imported
predicates in the use_module declaration.

Otherwise, one might later suddenly get an error message for a name conflict
in the imports, and has no documentation, from which of the two modules
the predicate originally was used.

It is possible to redefine an imported predicate within the
module, but this gives a warning (might be switched off).

Stefan Brass: Logic Programming/deductive DBs 9. Modules in Prolog 9-11 / 17



Introduction Modules in SWI-Prolog

Special Modules
All built-in predicates are defined in the module “system”.

All predicates defined outside modules are implicitly in the
module “user”.

The two module names are reserved. There cannot be two modules with
the same name (i.e. there is a flat namespace for modules). One can query
the current module with context_module(M).

SWI Prolog has an “autoload” feature to automatically
load undefined predicates from certain modules.

[https://www.swi-prolog.org/pldoc/man?section=module-autoload]

The “user” module autoloads from “system”, all other
modules autoload from “user” and “system”.

This has the effect that predicates defined outside modules (i.e. in “user”)
are global, i.e. can be used in every module.

Stefan Brass: Logic Programming/deductive DBs 9. Modules in Prolog 9-12 / 17

https://www.swi-prolog.org/pldoc/man?section=module-autoload


Introduction Modules in SWI-Prolog

Explicit Module Names
Internally, predicates are identified by module name,
predicate name, and arity.

One can explicitly refer to a predicate in a module with
the notation

module:pred(...).

This is even possible for predicates that were not exported!
I personally consider this as a bad design decision. However, it has some
advantages, e.g. when testing and debugging a program. One can call from
the top level prompt any predicate in the program and is not limited by
module boundaries.

Of course, it is normally bad style to call a predicate with
explicit module prefix.

Effectively, the export list of a module declaration only documents what
the author of the module intended to export. The user can override this.

Stefan Brass: Logic Programming/deductive DBs 9. Modules in Prolog 9-13 / 17



Introduction Modules in SWI-Prolog

Meta Predicates (1)
When a data term becomes a predicate call, a module
must be added to the function symbol in order to use it
as a predicate. Normally the current module is used.

If one wants to define and export a meta predicate like
findall, this is wrong.

E.g., consider: findall(X, p(X), L)

The called predicate p would normally be searched in the
library module that defines findall.

However, the called predicate p is really defined in the
module that calls findall.

To solve this problem, findall is specially declared as a
meta predicate in the library.

Stefan Brass: Logic Programming/deductive DBs 9. Modules in Prolog 9-14 / 17



Introduction Modules in SWI-Prolog

Meta Predicates (2)
The following declaration is used:

:- meta_predicate findall(?, 0, -).
[https://www.swi-prolog.org/pldoc/doc/ SWI /boot/bags.pl?show=src]

The declaration states that in the second argument (the call),
the current module prefix should be added to the functor
before findall is called.

The module prefix (of the context in the call to findall) is only added if
there is no module prefix yet. The number “0” is used to indicate that
there will be no additional arguments in the call. For other predicates, such
as a general map_list, the passed term is not the final call, but will get
more arguments (the input and output list elements). In that example,
2 would be used. The other arguments “?” and “-” in the meta predicate
declaration are normal mode indicators (not module sensitive).
[https://www.swi-prolog.org/pldoc/man?section=metapred]

Stefan Brass: Logic Programming/deductive DBs 9. Modules in Prolog 9-15 / 17

https://www.swi-prolog.org/pldoc/doc/_SWI_/boot/bags.pl?show=src
https://www.swi-prolog.org/pldoc/man?section=metapred


Introduction Modules in SWI-Prolog

Operators
In SWI Prolog, very module has its own operator table.

Each operator table is initialized with the operator table
of the “user” module.

One can declare operators in the export list of a module
declaration:

:- module(relatives,
[op(700, xfx, father_of),
father_of/2,...]).

When a module uses the module “relatives”, the
exported operators are defined in the using module.

If one explicitly lists the imports, one can use e.g. op(_,_,father_of).

Import/Export of operators is not portable (only to YAP).
Stefan Brass: Logic Programming/deductive DBs 9. Modules in Prolog 9-16 / 17



Introduction Modules in SWI-Prolog

References

SWI Prolog Reference: 6. Modules
[https://www.swi-prolog.org/pldoc/man?section=modules]

G. Kniesel: Advanced Logic Programming, Chapter 6: “Modules”
[https://sewiki.iai.uni-bonn.de/ media/teaching/lectures/alp/2012/

08 - modules and objects.pdf]

Michael T. Richter: Using SWI-Prolog’s modules.
[https://chiselapp.com/user/ttmrichter/repository/gng/doc/trunk/output/

tutorials/swiplmodtut.html]

SICStus Prolog: The Module System
[https://sicstus.sics.se/sicstus/docs/3.7.1/html/sicstus 7.html]

Daniel Cabeza and Manuel Hermenegildo: A New Module System for Prolog.
[http://oa.upm.es/14635/1/HERME REFWORKS 1999-1.pdf]

INCITS/ISO/IEC 13211-2:2000[S2016]: Information technology - Programming
languages - Prolog - Part 2: Modules

Stefan Brass: Logic Programming/deductive DBs 9. Modules in Prolog 9-17 / 17

https://www.swi-prolog.org/pldoc/man?section=modules
https://sewiki.iai.uni-bonn.de/_media/teaching/lectures/alp/2012/08_-_modules_and_objects.pdf
https://sewiki.iai.uni-bonn.de/_media/teaching/lectures/alp/2012/08_-_modules_and_objects.pdf
https://chiselapp.com/user/ttmrichter/repository/gng/doc/trunk/output/tutorials/swiplmodtut.html
https://chiselapp.com/user/ttmrichter/repository/gng/doc/trunk/output/tutorials/swiplmodtut.html
https://sicstus.sics.se/sicstus/docs/3.7.1/html/sicstus_7.html
http://oa.upm.es/14635/1/HERME_REFWORKS_1999-1.pdf

	Introduction
	Reasons for Using Modules
	Portability
	Basics of Modules in Prolog

	Modules in SWI-Prolog
	Modules in SWI-Prolog
	References


