
Unification SLD Resolution Computed Answers SLD Trees Four-Port Model

Logic Programming and
Deductive Databases

Chapter 5: SLD Resolution

Prof. Dr. Stefan Brass
Martin-Luther-Universität Halle-Wittenberg

Summer 2021

http://www.informatik.uni-halle.de/˜brass/lp21/

Stefan Brass: Logic Programming/deductive DBs 5. SLD Resolution 5-1 / 61

http://www.informatik.uni-halle.de/~brass/lp21/

Unification SLD Resolution Computed Answers SLD Trees Four-Port Model

Objectives

After completing this chapter, you should be able to:

define most general unifier of two termns or literals.

compute a most general unifier of two terms or literals.

define the resut of an SLD resolution step for a given
proof goal and applicable rule.

develop an SQL-proof tree for a given query and logic
program.

understand the Prolog debugger output.

Stefan Brass: Logic Programming/deductive DBs 5. SLD Resolution 5-2 / 61

Unification SLD Resolution Computed Answers SLD Trees Four-Port Model

Contents

1 Unification

2 SLD Resolution

3 Computed Answers

4 SLD Trees

5 Four-Port Model

Stefan Brass: Logic Programming/deductive DBs 5. SLD Resolution 5-3 / 61

Unification SLD Resolution Computed Answers SLD Trees Four-Port Model

Unification (1)

Unification is used in Prolog for parameter passing:
It matches the actual parameters with the formal
parameters of a predicate. It can fail.

It can also be seen as an assignment that is that is

symmetric: X = a and a = X are both legal and have
the same effect (X is bound to a),

one-time: Once a variable is bound to a value,
it is always automatically replaced by that value.
It is impossible to assign a new value.

Unification does pattern matching of tree-structures
(terms).

Stefan Brass: Logic Programming/deductive DBs 5. SLD Resolution 5-4 / 61

Unification SLD Resolution Computed Answers SLD Trees Four-Port Model

Unification (2)

Definition (Unifier):

A unifier of two literals A and B is a substitution θ
with A θ = B θ.

A and B are called unifiable if there is a unifier of A
and B.

θ is a most general unifier of A and B if for every other
unifier θ′ of A and B there is a substitution σ with
θ′ = θ ◦ σ.

θ ◦ σ denotes the composition of θ and σ, i.e. (θ ◦ σ)(A) = σ(θ(A)).

Stefan Brass: Logic Programming/deductive DBs 5. SLD Resolution 5-5 / 61

Unification SLD Resolution Computed Answers SLD Trees Four-Port Model

Unification (3)

Examples:

p(X , b) and p(a,Y) are unifiable with most general
unifier {X/a,Y /b}.

q(a) and q(b) are not unifiable.

Consider q(X) and q(Y):

{X/Y } is a most general unifier of these literals.

{Y /X} is another most general unifier of these literals.
(It maps both literals to q(X)).

{X/a,Y /a} is an example for a unifier that is not a
most general unifier.

Stefan Brass: Logic Programming/deductive DBs 5. SLD Resolution 5-6 / 61

Unification SLD Resolution Computed Answers SLD Trees Four-Port Model

Unification (4)

Lemma:

If there is a unifier of A and B, there is also a most
general unifier (MGU).

The most general unifier is unique up to variable renamings,
i.e. if θ and θ′ are both most general unifiers of A and B
there is a substitution σ which is a bijective mapping
from variables to variables such that θ′ = θ ◦ σ.

Notation:

Let mgu(A,B) be a most general unifier of A and B.

Stefan Brass: Logic Programming/deductive DBs 5. SLD Resolution 5-7 / 61

Unification SLD Resolution Computed Answers SLD Trees Four-Port Model

Unification (5)

unify(Literal/Term t, u): Substitution θ
if t = u then

θ := {};
else if t is a variable that does not occur in u then

θ := {t/u};
else if u is a variable that does not occur in t then

θ := {u/t};
else if t is f (t1, . . . , tn) and u is f (u1, . . . , un) then

θ := {};
for i := 1 to n do θ := θ ◦ unify(ti θ, ui θ);

else /* Different Functors/Constants */
θ := “not unifiable”;

Stefan Brass: Logic Programming/deductive DBs 5. SLD Resolution 5-8 / 61

Unification SLD Resolution Computed Answers SLD Trees Four-Port Model

Unification (6)

Example:

p(X ,X) and p(a, b) are not unifiable:

The first argument is unified with X/a.

However, then one has to unify p(a, a) and p(a, b). That
is not possible.

p(X ,X) and p(Y , f (Y)) are not unifiable:

First, one unifies X and Y , e.g. with {X/Y }.

Then one has to unify p(Y ,Y) and p(Y , f (Y)). It is not
possible to bind Y to f (Y), because Y occurs in f (Y).

{Y /f (Y)} would not make the terms equal.

Stefan Brass: Logic Programming/deductive DBs 5. SLD Resolution 5-9 / 61

Unification SLD Resolution Computed Answers SLD Trees Four-Port Model

Unification (7)

Example:
p

f

X

a
p

f

g

b c

Y

p

f

g

b c

a
p

f

g

b c

Y

Stefan Brass: Logic Programming/deductive DBs 5. SLD Resolution 5-10 / 61

Unification SLD Resolution Computed Answers SLD Trees Four-Port Model

Unification (8)

Example:

p

X X

p

f

Y

f

a

p

f

Y

f

Y

p

f

Y

f

a

Stefan Brass: Logic Programming/deductive DBs 5. SLD Resolution 5-11 / 61

Unification SLD Resolution Computed Answers SLD Trees Four-Port Model

Unification (9)

Exercises:

Compute the most general unifier if possible:

length([1, 2, 3],X) and length([], 0).

length([1, 2, 3],X) and length([E |R],N1).

append(X , [2, 3], [1, 2, 3]) and append([F |R], L, [F |A]).

p(f (X),Z) and p(Y , a).

p(f (a), g(X)) and p(Y ,Y).

q(X ,Y , h(g(X))) and q(Z , h(Z), h(Z)).

Use Prolog to check the solution.

Stefan Brass: Logic Programming/deductive DBs 5. SLD Resolution 5-12 / 61

Unification SLD Resolution Computed Answers SLD Trees Four-Port Model

Occur Check (1)

Suppose that the following to literals are unified:

p(X1, . . . ,Xn),

p(f (X0,X0), . . . , f (Xn−1,Xn−1)).

The unifier is
θ = {X1/f (X0,X0),

X2/f (f (X0,X0), f (X0,X0)),
. . .}.

The test, whether Xk appears in tk (“occur check”) costs
exponential time.

An explicit representation of θ would cost exponential time, too. But one
normally uses pointers from variables to their values to represent a
substitution internally: Then common subterms are stored only once.

Stefan Brass: Logic Programming/deductive DBs 5. SLD Resolution 5-13 / 61

Unification SLD Resolution Computed Answers SLD Trees Four-Port Model

Occur Check (2)

Unification is the basic step in Prolog evaluation.
It is bad if it can take exponential time.

Solutions:

Unification without occur check: dangerous.
This can give wrong solutions: E.g. consider the program consisting
of p ← q(X ,X) and q(Y , f (Y)). Prolog systems without occur
check answer “p” with “yes”. It is also possible that unification or
the printing of terms get into infinite loops.

With better data structures, the occur check has linear
runtime.

Static analysis of a Program can show where no occur
check is needed.

Stefan Brass: Logic Programming/deductive DBs 5. SLD Resolution 5-14 / 61

Unification SLD Resolution Computed Answers SLD Trees Four-Port Model

Contents

1 Unification

2 SLD Resolution

3 Computed Answers

4 SLD Trees

5 Four-Port Model

Stefan Brass: Logic Programming/deductive DBs 5. SLD Resolution 5-15 / 61

Unification SLD Resolution Computed Answers SLD Trees Four-Port Model

SLD-Resolution (1)

SLD-resolution is the theoretical basis of Prolog execution.

It is a theorem proving procedure that is complete for
Horn clauses.

SLD stands for “Linear resolution for Definite clauses with
Selection function”.

In resolution, the basic derivation step is to conclude A ∨ C from A ∨ B
and ¬B ∨ C : I.e. one matches complementary literals (with a unifier) and
composes the rests of the two clauses. It is a refutation proof procedure
that starts with the negation of the proof goal and ends with the empty
clause (the obvious contradiction). In linear resolution, one of the two
clauses is always the result of the previous step.

Stefan Brass: Logic Programming/deductive DBs 5. SLD Resolution 5-16 / 61

Unification SLD Resolution Computed Answers SLD Trees Four-Port Model

SLD-Resolution (2)

The idea of SLD-resolution is to simplify the query
(i.e. the proof goal) step by step to “true”.

If seen as refutation proof procedure, the current clause is the negation of
the query, and one ends with “false”.

Each step makes a literal from the query and a rule head
from the program equal with a unifier.

Then literal in the query is replaced by the body of the rule.
This gives a new query (hopefully simpler).

Facts are treated as rules with empty body.
Using facts makes the query shorter.

Stefan Brass: Logic Programming/deductive DBs 5. SLD Resolution 5-17 / 61

Unification SLD Resolution Computed Answers SLD Trees Four-Port Model

SLD-Resolution (3)

Example:

Consider the following program:

(1) ancestor(X, Y)← parent(X, Y).
(2) ancestor(X, Z)← parent(X, Y) ∧ ancestor(Y, Z).
(3) parent(X, Y)← mother(X, Y).
(4) parent(X, Y)← father(X, Y).
(5) father(julia, emil).
(6) mother(emil, birgit).

Let the query be
ancestor(julia, birgit).

Stefan Brass: Logic Programming/deductive DBs 5. SLD Resolution 5-18 / 61

Unification SLD Resolution Computed Answers SLD Trees Four-Port Model

SLD-Resolution (4)

The given query is the first proof goal:
ancestor(julia, birgit).

The only literal in the proof goal can be resolved with
(2) ancestor(X, Z)← parent(X, Y) ∧ ancestor(Y, Z).

The most general unifier of query literal and rule head is
{X/julia, Z/birgit}.

Now the new proof goal is
parent(julia, Y) ∧ ancestor(Y, birgit).

Stefan Brass: Logic Programming/deductive DBs 5. SLD Resolution 5-19 / 61

Unification SLD Resolution Computed Answers SLD Trees Four-Port Model

SLD-Resolution (5)

Prolog always works on the first literal of the proof goal
(this is a special selection function):

parent(julia, Y) ∧ ancestor(Y, birgit).

It can be resolved with rule (4):
(4) parent(X, Y)← father(X, Y).

This gives
father(julia, Y) ∧ ancestor(Y, birgit).

Then the fact (5) is applied (with unifier {Y/emil}).
(5) father(julia, emil).

This gives the proof goal:
ancestor(emil, birgit).

Stefan Brass: Logic Programming/deductive DBs 5. SLD Resolution 5-20 / 61

Unification SLD Resolution Computed Answers SLD Trees Four-Port Model

SLD-Resolution (6)
For the proof goal

ancestor(emil, birgit),
one can e.g. apply rule (1) ancestor(X, Y)← parent(X, Y).

This replaces the proof goal by:
parent(emil, birgit).

Now one can apply rule (3) parent(X, Y)← mother(X, Y).
and get the proof goal

mother(emil, birgit).

This is given as a fact (line (6) in the program), and one
gets the empty proof goal “ ”.

Thus, the query indeed follows from the given program,
and the answer “yes” is printed.

Stefan Brass: Logic Programming/deductive DBs 5. SLD Resolution 5-21 / 61

Unification SLD Resolution Computed Answers SLD Trees Four-Port Model

SLD-Resolution (7)

A sequence of proof goals that

starts with a query Q and

ends in the empty goal

is called a derivation of Q from the given program.

In the above derivation, the right program rule was
“guessed” in each step. Prolog will try all possibilities
with backtracking.

If a query contains variables, the answer computed by a
derivation is the composition of all substitutions applied.

Stefan Brass: Logic Programming/deductive DBs 5. SLD Resolution 5-22 / 61

Unification SLD Resolution Computed Answers SLD Trees Four-Port Model

SLD-Resolution (8)

Definition (Selection Function):

A selection function is a mapping that, given a proof
goal A1 ∧ · · · ∧ An, returns an index i in the range from 1
to n. (I.e. it selects a literal Ai .)

Note:

Prolog uses the first literal selection rule, i.e. it selects
always A1 in A1 ∧ · · · ∧ An.

As we will see, in deductive databases, a good selection
function is an important part of the optimizer.

The Prolog selection function also does not guarantee completeness for the
answer “no”. However, it is easy to implement with a stack.

Stefan Brass: Logic Programming/deductive DBs 5. SLD Resolution 5-23 / 61

Unification SLD Resolution Computed Answers SLD Trees Four-Port Model

SLD-Resolution (9)

Definition (SLD-Resolution Derivation Step):

Let A1 ∧ · · · ∧ An be a proof goal (query).

Suppose the selection function chooses Ai .

Let B ← B1 ∧ · · · ∧ Bm be a rule from the program.

Replace the variables in the rule by new variables, let the
result be B ′ ← B ′1 ∧ · · · ∧ B ′m.

Let Ai and B ′ be unifiable, θ := mgu(Ai ,B ′).

Then the result of the SLD-resolution step is
(A1 ∧ · · · ∧ Ai−1 ∧ B ′1 ∧ · · · ∧ B ′m ∧ Ai+1 ∧ · · · ∧ An)θ.

Stefan Brass: Logic Programming/deductive DBs 5. SLD Resolution 5-24 / 61

Unification SLD Resolution Computed Answers SLD Trees Four-Port Model

SLD-Resolution (10)

Definition (Applicable Rule):

In the above situation, the rule B ← B1 ∧ · · · ∧ Bm is
called applicable to the proof goal A1 ∧ · · · ∧ An.

I.e. after renaming the variables in the rule, giving
B ′ ← B ′1 ∧ · · · ∧ B ′m, the head literal B ′ unifies with the
selected literal Ai in the proof goal.

Note:

Several rules in the program can be applicable to the
same proof goal.

This leads to branches in the SLD-tree explained below.

Stefan Brass: Logic Programming/deductive DBs 5. SLD Resolution 5-25 / 61

Unification SLD Resolution Computed Answers SLD Trees Four-Port Model

SLD-Resolution (11)

It is important that the variables of the rule are renamed
such that there is no name clash with a variable in the
proof goal.

Or a previous substitution, see computed answer substitution below.

E.g. suppose the proof goal is p(X , a) and the rule to be
applied is p(b,X)←.

There is no unifier of p(X , a) and p(b,X).

However, variable names in rules are not important. If the
variable in the rule is renamed, e.g. to X1, the MGU is
{X/b, X1/a}.

Stefan Brass: Logic Programming/deductive DBs 5. SLD Resolution 5-26 / 61

Unification SLD Resolution Computed Answers SLD Trees Four-Port Model

SLD-Derivations (1)

Definition (SLD-Derivation, Successful SLD-Derivation):

Let a logic program P, a query Q, and a selection
function be given.

An SLD-derivation for Q is a (finite or infinite) sequence
of proof goals Q0, Q1, . . . ,Qn, . . . such that

Q0 = Q and

Qi for i ≥ 1 is the result of an SLD-derivation step
from Qi−1 and a rule from P.

An SQL-derivation is successful iff it is finite and ends in
the empty clause .

Stefan Brass: Logic Programming/deductive DBs 5. SLD Resolution 5-27 / 61

Unification SLD Resolution Computed Answers SLD Trees Four-Port Model

SLD-Derivations (2)

Definition (Failed SLD-Derivation):

An SLD-derivation Q0, . . . ,Qn is failed iff it is finite, the
last goal Qn is not the empty clause , and the given
program does not contain a rule that is applicable to Qn.

Summary: Classification of SLD-Derivations:

Successful: Finite, ends in .

Failed: Finite, ends not in , no applicable rule.

Incomplete: Finite, there is an applicable rule.

Infinite.

Stefan Brass: Logic Programming/deductive DBs 5. SLD Resolution 5-28 / 61

Unification SLD Resolution Computed Answers SLD Trees Four-Port Model

SLD-Derivations (3)

Example (shown also on next page with applied rules):

ancestor(julia, birgit).

parent(julia, Y) ∧ ancestor(Y, birgit).

father(julia, Y) ∧ ancestor(Y, birgit).

ancestor(emil, birgit).

parent(emil, birgit).

mother(emil, birgit).

.

Stefan Brass: Logic Programming/deductive DBs 5. SLD Resolution 5-29 / 61

Unification SLD Resolution Computed Answers SLD Trees Four-Port Model

SLD-Derivations (4)

ancestor(julia, birgit).
ancestor(X, Z)← parent(X, Y) ∧ ancestor(Y, Z).

parent(julia, Y) ∧ ancestor(Y, birgit).
parent(X, Y)← father(X, Y).

father(julia, Y) ∧ ancestor(Y, birgit).
father(julia, emil).

ancestor(emil, birgit).
ancestor(X, Y)← parent(X, Y).

parent(emil, birgit).
parent(X, Y)← mother(X, Y).

mother(emil, birgit).
mother(emil, birgit).

Stefan Brass: Logic Programming/deductive DBs 5. SLD Resolution 5-30 / 61

Unification SLD Resolution Computed Answers SLD Trees Four-Port Model

SLD-Derivations (5)

Exercise:

Let the following logic program be given:

append([], L, L).
append([F|R], L, [F|A]) ← append(R, L, A).

Give a successful SLD-derivation for
append([1], [2], [1,2]).

What are the applied rules and most general unifiers in
each step?

Stefan Brass: Logic Programming/deductive DBs 5. SLD Resolution 5-31 / 61

Unification SLD Resolution Computed Answers SLD Trees Four-Port Model

Contents

1 Unification

2 SLD Resolution

3 Computed Answers

4 SLD Trees

5 Four-Port Model

Stefan Brass: Logic Programming/deductive DBs 5. SLD Resolution 5-32 / 61

Unification SLD Resolution Computed Answers SLD Trees Four-Port Model

Computed Answers (1)

Definition (Computed Answer Substitution):

Given a logic program P and a query Q, let
Q0 = Q, Q1, . . . ,Qn

be a successful SLD-derivation for Q, and θ1, . . . , θn be
the most general unifiers applied in the SLD resolution steps.

Let θ be the composition θ1 ◦ · · · ◦ θn of these unifers,
restricted to the variables that occur in the query Q.

Then θ is a computed answer substitution for Q.
Or: The answer substitution computed by this SLD-derivation.

Stefan Brass: Logic Programming/deductive DBs 5. SLD Resolution 5-33 / 61

Unification SLD Resolution Computed Answers SLD Trees Four-Port Model

Computed Answers (2)
Example (For Program on Slide 18):

A successful derivation for parent(X, Y) is as follows:

Goal: parent(X, Y).
Rule: parent(X1, Y1)← mother(X1, Y1).
MGU: θ1 := {X/X1, Y/Y1}.

Goal: mother(X1, Y1).
Rule: mother(emil, birgit).
MGU: θ2 := {X1/emil, Y1/birgit}.

Goal: .

θ1 ◦ θ2 = {X/emil, Y/birgit, X1/emil, Y1/birgit}.

Computed answer substitution: {X/emil, Y/birgit}.
Stefan Brass: Logic Programming/deductive DBs 5. SLD Resolution 5-34 / 61

Unification SLD Resolution Computed Answers SLD Trees Four-Port Model

Computed Answers (3)
Theorem (Correctness of SLD-Resolution):

For every program P, query Q, and computed answer
substitution θ: P |= Q θ.

I.e. the program (set of Horn clauses) logically implies the query
(conjunction of positive literals) after the answer substitution is applied to
the query. As always, variables are treated as universally quantified.

Theorem (Completeness of SLD-Resolution):

For every program P, query Q, and substitution θ with
P |= Q θ, there is a computed answer substitution θ0 and
a substitution θ1 such that θ = θ0 ◦ θ1.

I.e. for every correct answer substitution, SLD-resolution either computes
it, or it computes a more general substitution.

Stefan Brass: Logic Programming/deductive DBs 5. SLD Resolution 5-35 / 61

Unification SLD Resolution Computed Answers SLD Trees Four-Port Model

Computed Answers (4)

Note (On the Completeness):

E.g. consider the program consisting of the rule
p(f (X))← .

Let the query be p(Y).

The substitution θ := {Y /f (a)} is correct, i.e. it satisfies
P |= Q θ, but SLD-resolution computes the more general
substitution θ0 := {Y /f (X)}.

θ0 is more general than θ, because it can be composed
with θ1 := {X/a} to give θ.

Stefan Brass: Logic Programming/deductive DBs 5. SLD Resolution 5-36 / 61

Unification SLD Resolution Computed Answers SLD Trees Four-Port Model

Computed Answers (5)

Note (On Prolog):

The correctness result holds only if the Prolog system
does the occur check, e.g. try the program P:

p ← q(X,X).
q(X, f(X)).

Prolog systems without occur check answer “p” with
“yes”, but p is not a logical consequence of P.

The completeness result holds only if the Prolog system
terminates. Prolog might run into an infinite loop before
it finds all answers.

Stefan Brass: Logic Programming/deductive DBs 5. SLD Resolution 5-37 / 61

Unification SLD Resolution Computed Answers SLD Trees Four-Port Model

Contents

1 Unification

2 SLD Resolution

3 Computed Answers

4 SLD Trees

5 Four-Port Model

Stefan Brass: Logic Programming/deductive DBs 5. SLD Resolution 5-38 / 61

Unification SLD Resolution Computed Answers SLD Trees Four-Port Model

SLD-Trees (1)

There are usually more than one SLD-derivation for a
given query, because for every proof goal, more than one
rule might be applicable.

Every successful SLD-derivation computes only one
answer substitution, but a query might have several
distinct correct answer substitutions.

Thus, it is important for the completeness of SLD-resolution, that there
can be several SLD-derivations for the same query.

The different SLD-derivations for a given query are
usually displayed in form of a tree, the SLD-tree.

Stefan Brass: Logic Programming/deductive DBs 5. SLD Resolution 5-39 / 61

Unification SLD Resolution Computed Answers SLD Trees Four-Port Model

SLD-Trees (2)

Definition (SLD-Tree):

The SLD-tree for a program P and a query Q
(and a given selection function) is constructed as follows:

Every node of the tree is labelled with a proof goal (query).
The root node is labelled with Q.

Let a node N be labelled with the proof goal
A1 ∧ · · · ∧ An, n ≥ 1.

Then N has a child node for every rule
B ← B1 ∧ · · · ∧ Bm

in P that is applicable to A1 ∧ · · · ∧ An.

The child node is labelled with the result of the
corresponding SLD-resolution step.

Stefan Brass: Logic Programming/deductive DBs 5. SLD Resolution 5-40 / 61

Unification SLD Resolution Computed Answers SLD Trees Four-Port Model

SLD-Trees (3)
Example:

Consider the following program:

(1) parent(X, Y)← mother(X, Y).
(2) parent(X, Y)← father(X, Y).
(3) father(julia, emil).
(4) mother(julia, frida).
(5) father(ian, emil).
(6) mother(ian, frida).

Let the query be
parent(julia, X).

The SLD-Tree is shown on the next page.
Stefan Brass: Logic Programming/deductive DBs 5. SLD Resolution 5-41 / 61

Unification SLD Resolution Computed Answers SLD Trees Four-Port Model

SLD-Trees (4)

SLD-Tree:

parent(julia, X)

mother(julia, X) father(julia, X)

Often, it is also useful to know the applied rules and/or
the computed answers. This information is shown in the
variant on the next page.

Stefan Brass: Logic Programming/deductive DBs 5. SLD Resolution 5-42 / 61

Unification SLD Resolution Computed Answers SLD Trees Four-Port Model

SLD-Trees (5)

SLD-Tree (with applied rules and computed answers):

parent(julia, X)
parent(X, Y)← mother(X, Y). parent(X, Y)← father(X, Y).

mother(julia, X)
mother(julia, frida).

X/frida

father(julia, X)
father(julia, emil).

X/emil

Stefan Brass: Logic Programming/deductive DBs 5. SLD Resolution 5-43 / 61

Unification SLD Resolution Computed Answers SLD Trees Four-Port Model

SLD-Trees (6)

Another Example (Is emil parent of julia?):

parent(julia, emil)
parent(X, Y)← mother(X, Y). parent(X, Y)← father(X, Y).

mother(julia, emil)
Fails.

father(julia, emil)
father(julia, emil).

yes.

Stefan Brass: Logic Programming/deductive DBs 5. SLD Resolution 5-44 / 61

Unification SLD Resolution Computed Answers SLD Trees Four-Port Model

SLD-Trees (7)

Please note that branching in an SLD-tree happens only
when there are several applicable rules.

There is exactly one child node for each applicable rule, i.e. a rule of which
the head literal is unifiable with the selected literal in the current node.
I.e. the branching is done only for disjunctions (∨).

If a rule has several body literals, these are added
together to the current goal.

I.e. for conjunctions (∧) no branching is done (otherwise the binding of
common variables would become difficult). If there is always only one
applicable rule, the SLD-tree is a single path from root to leaf, even if the
rules have many body literals. In the examples on the slides, the rules have
only a single body literal, because there is little space. On Slide 30 an
SLD-derivation (a single branch in the SLD-tree) is shown in which a rule
has two body literals.

Stefan Brass: Logic Programming/deductive DBs 5. SLD Resolution 5-45 / 61

Unification SLD Resolution Computed Answers SLD Trees Four-Port Model

SLD-Trees (8)

Exercise:

Consider again the program for list concatenation:

(1) append([], L, L).
(2) append([F|R], L, [F|A]) ← append(R, L, A).

What is the SLD-tree for
append(X, Y, [1,2]).

Which answers do the different paths in the SLD-tree
(i.e. the SLD-derivations) compute?

Stefan Brass: Logic Programming/deductive DBs 5. SLD Resolution 5-46 / 61

Unification SLD Resolution Computed Answers SLD Trees Four-Port Model

Infinite Paths (1)

Consider the following program:

(1) p(X) ← p(X).
(2) p(a).

The query p(X) has the following SLD-tree:

p(X)

X/ap(X)

X/ap(X)

X/a· · ·

Stefan Brass: Logic Programming/deductive DBs 5. SLD Resolution 5-47 / 61

Unification SLD Resolution Computed Answers SLD Trees Four-Port Model

Infinite Paths (2)

Prolog searches the SLD-tree depth first.
It also uses alternative rules always in the order that they are written down
in the program.

In this example, Prolog will get into an infinite loop and
will not compute the correct answer substitution {X/a}.
Thus, Prolog is not complete.

However, if one would search the SLD-tree breadth-first,
one would find all correct answer substitutions (because
of the completeness of SLD-resolution).

Stefan Brass: Logic Programming/deductive DBs 5. SLD Resolution 5-48 / 61

Unification SLD Resolution Computed Answers SLD Trees Four-Port Model

Infinite Paths (3)

But depth-first search is much more efficient to implement
(with a stack).

One solution is iterative deepening.
First, one searches the SLD-tree depth-first, but e.g. only to depth 5.
Then, one searches the SLD-tree again up to depth 10 (printing only
answers below depth 5). And so on.

In the XSB-system, it one can switch on “tabling” for
selected predicates. Then the system detects when the
same selected literal appears again.

Then infinite loops can happen only when more and more complicated
terms are constructed. For programs without function symbols (and
built-in predicates), termination is guaranteed.

Stefan Brass: Logic Programming/deductive DBs 5. SLD Resolution 5-49 / 61

Unification SLD Resolution Computed Answers SLD Trees Four-Port Model

Contents

1 Unification

2 SLD Resolution

3 Computed Answers

4 SLD Trees

5 Four-Port Model

Stefan Brass: Logic Programming/deductive DBs 5. SLD Resolution 5-50 / 61

Unification SLD Resolution Computed Answers SLD Trees Four-Port Model

Box Model (1)

Prolog uses SLD-resolution with

the first-literal selection function, and

depth-first search of the SLD-tree.

However, the Prolog debugger does not show the entire
proof goal (node label in the SLD-tree).

Instead, it views predicates as nondeterministic procedures
(procedures that can have more than one solution).

The four-port debugger model is standard among Prolog
systems.

Stefan Brass: Logic Programming/deductive DBs 5. SLD Resolution 5-51 / 61

Unification SLD Resolution Computed Answers SLD Trees Four-Port Model

Box Model (2)

Each predicate invocation (selected literal in the SLD-tree)
is represented as a box with four ports:

CALL A: Call of A, find first solution.

REDO A: Is there another solution for A?

EXIT A: A solution was found, A is proven.

FAIL A: There is no (more) solution for A.

father(X, emil)CALL
FAIL

EXIT
REDO

Stefan Brass: Logic Programming/deductive DBs 5. SLD Resolution 5-52 / 61

Unification SLD Resolution Computed Answers SLD Trees Four-Port Model

Box Model (3)

E.g. consider the following small program:

father(ian, emil).
father(julia, emil).
father(emil, arno).

Debugger output for the query father(X, emil):

CALL father(X, emil)

EXIT father(ian, emil)
Note that the proven instance is shown.

Then the solution X/ian is displayed.
Suppose one presses “;” to get more solutions.

Stefan Brass: Logic Programming/deductive DBs 5. SLD Resolution 5-53 / 61

Unification SLD Resolution Computed Answers SLD Trees Four-Port Model

Box Model (4)

Example debugger output, continued:

REDO father(X, emil)

EXIT father(julia, emil)

The solution X/julia is displayed. Some systems
already know that there is no further solution.
Otherwise, one can press again “;”.

REDO father(X, emil)

FAIL father(X, emil)

The system prints “no”.

Stefan Brass: Logic Programming/deductive DBs 5. SLD Resolution 5-54 / 61

Unification SLD Resolution Computed Answers SLD Trees Four-Port Model

Box Model (5)

Suppose the program is extended with the rule

siblings(X, Y)← father(X, Z) ∧ father(Y, Z) ∧ X \= Y.

The box model is:

siblings(X, Y)

CALL
FAIL

father(X, Z) father(Y, Z) X \= Y
EXIT
REDO

E.g. when the first or second body literal exists, the next body literal is
called. When the last body literal is proven, siblings exits.

Stefan Brass: Logic Programming/deductive DBs 5. SLD Resolution 5-55 / 61

Unification SLD Resolution Computed Answers SLD Trees Four-Port Model

Box Model (6)

Debugger Output for the query siblings(ian, Y):

(1) 0 CALL siblings(ian, Y).
(2) 1 CALL father(ian, Z).
(2) 1 EXIT father(ian, emil).
(3) 1 CALL father(Y, emil).
(3) 1 *EXIT father(ian, emil).
(4) 1 CALL ian \= ian.
(4) 1 FAIL ian \= ian.
(3) 1 REDO father(Y, emil).
(3) 1 EXIT father(julia, emil).
(5) 1 CALL julia \= ian.
(5) 1 EXIT julia \= ian.
(1) 0 EXIT siblings(ian, julia).

Stefan Brass: Logic Programming/deductive DBs 5. SLD Resolution 5-56 / 61

Unification SLD Resolution Computed Answers SLD Trees Four-Port Model

Box Model (7)

Remark:

The exact form of the output depends on the Prolog
system.

The above output contains a box number in the first
column and a nesting depth (call stack depth) in the
second column.

The asterisc “*” before EXIT marks that there are
possibly further solutions (nondeterministic exit).

Otherwise, the box is already removed, and not visited during backtracking
(i.e. no REDO-FAIL will be shown). Because of such optimizations, the
debugger output might violate the pure four-port model.

Stefan Brass: Logic Programming/deductive DBs 5. SLD Resolution 5-57 / 61

Unification SLD Resolution Computed Answers SLD Trees Four-Port Model

Box Model (8)

Consider now a predicate defined with two rules:

parent(X, Y) ← father(X, Y).
parent(X, Y) ← mother(X, Y).

The box model for parent is shown on the next page.
There, also a port NEXT appears. This is a speciality of ECLiPSe Prolog. It
shows when execution moves to another rule for the same predicate. In
general, different Prolog systems have extended the basic Four-Port Model
in various ways. E.g. SWI-Prolog can display a port “UNIFY” that shows
the called literal after unification with the rule head.

Stefan Brass: Logic Programming/deductive DBs 5. SLD Resolution 5-58 / 61

Unification SLD Resolution Computed Answers SLD Trees Four-Port Model

Box Model (9)

parent(X, Y)

FAIL

CALL

NEXT

REDO

EXIT
father(X, Y)

mother(X, Y)

REDO enters the inner box that was last left with EXIT.
Stefan Brass: Logic Programming/deductive DBs 5. SLD Resolution 5-59 / 61

Unification SLD Resolution Computed Answers SLD Trees Four-Port Model

Using the Debugger (1)

The debugger output is switched on by executing the
built-in predicate “trace” (as a query).

It is switched off with “notrace”. In SWI-Prolog, trace means only that
the next query is traced.

The debugger then displays a line for every port and waits
for commands after each line.

With “Return” one steps to the next port.

Other commands are listed in the manual.
Often, they are displayed when one enters “?”. The command “a” should
stop execution of the query (“abort”).

Stefan Brass: Logic Programming/deductive DBs 5. SLD Resolution 5-60 / 61

Unification SLD Resolution Computed Answers SLD Trees Four-Port Model

Using the Debugger (2)

It is possible to produce debugger output only selectively.

One can set breakpoints (“spypoints”) on a predicate
with e.g.

spy father/2.

If instead of “trace”, one uses “debug”, Prolog executes
the program without interruption until it reaches a
predicate with a spypoint set.

Then one can continue debugging as above or “leap” to the next spypoint
(usually with the command “l”). Of course, there are “nodebug” and
“nospy”.

Stefan Brass: Logic Programming/deductive DBs 5. SLD Resolution 5-61 / 61

	Unification
	Unification

	SLD Resolution
	SLD Resolution

	Computed Answers
	Computed Answer Substitution

	SLD Trees
	SLD Trees

	Four-Port Model
	The Four-Port/Box Model of the Debugger

