
Logic Programming DBs as Sets of Facts Rules as Logical Formulas Queries Recursion Datalog Using a Prolog System

Logic Programming and
Deductive Databases

Chapter 1: Introduction

Prof. Dr. Stefan Brass
Martin-Luther-Universität Halle-Wittenberg

Summer 2021

http://www.informatik.uni-halle.de/˜brass/lp21/

Stefan Brass: Logic Programming/deductive DBs 1. Introduction 1-1 / 74

http://www.informatik.uni-halle.de/~brass/lp21/


Logic Programming DBs as Sets of Facts Rules as Logical Formulas Queries Recursion Datalog Using a Prolog System

Objectives

After completing this chapter, you should be able to:

explain the difference between declarative (logic)
programming and imperative programming.

explain what a deductive database is.

explain the main strengths/advantages of deductive
databases compared with classical relational DBs.

develop simple Prolog/Datalog programs.

Stefan Brass: Logic Programming/deductive DBs 1. Introduction 1-2 / 74



Logic Programming DBs as Sets of Facts Rules as Logical Formulas Queries Recursion Datalog Using a Prolog System

Contents

1 Logic Programming

2 DBs as Sets of Facts

3 Rules as Logical Formulas

4 Queries

5 Recursion

6 Datalog

7 Using a Prolog System

Stefan Brass: Logic Programming/deductive DBs 1. Introduction 1-3 / 74



Logic Programming DBs as Sets of Facts Rules as Logical Formulas Queries Recursion Datalog Using a Prolog System

Area / Context

Logic

Relational Databases Prolog Artificial Intelligence
Knowledge

Representation

Deductive Databases

“Knowledge Bases”

Stefan Brass: Logic Programming/deductive DBs 1. Introduction 1-4 / 74



Logic Programming DBs as Sets of Facts Rules as Logical Formulas Queries Recursion Datalog Using a Prolog System

Logic Programming (1)

Ideal of logic/declarative programming:

The program is a specification of the problem,

and the system automatically computes a possible
solution that satisfies the given conditions.

I.e. the programmer specifies

what is the problem, but not

how to compute a solution.

I.e. the program is a set of axioms, and computation is a
proof of a goal statement from the program.

Stefan Brass: Logic Programming/deductive DBs 1. Introduction 1-5 / 74



Logic Programming DBs as Sets of Facts Rules as Logical Formulas Queries Recursion Datalog Using a Prolog System

Logic Programming (2)

SQL is a declarative query language. The user specifies
only conditions for the requested data:

SELECT X.HOMEWORK, X.POINTS
FROM SOLVED X
WHERE X.STUDENT = 'Ann Smith'

Advantages of declarative languages:

Often simpler/shorter formulations: The user does not have
to think about efficient execution. Enhanced productivity.

Easier adaptation to changing environments.
For instance, parallel hardware (multi-core CPUs). Importance of Cache.

Better formalization, simpler verification, easier optimization.
Stefan Brass: Logic Programming/deductive DBs 1. Introduction 1-6 / 74



Logic Programming DBs as Sets of Facts Rules as Logical Formulas Queries Recursion Datalog Using a Prolog System

Logic Programming (3)

Can this work also for programming languages, not only
query languages?

Prolog (“Programming in Logic”) is

a programming language based on these ideas.

used in industry for real problems.

not an ideal logic programming language.
Sometimes one must know how it is executed and give some
execution information. A Prolog program is not pure logic.

Deductive databases are purer, but are still in the
research state.

Stefan Brass: Logic Programming/deductive DBs 1. Introduction 1-7 / 74



Logic Programming DBs as Sets of Facts Rules as Logical Formulas Queries Recursion Datalog Using a Prolog System

Logic Programming (4)

Programming Inefficiency ∗ Runtime Inefficiency ≥ Constant
(Robinson)

In declarative languages,

the productivity of the programmer is often greater than
in imperative languages, but

E.g. Prolog program 10-fold shorter than similar C++ Program.

the runtime of the program is often longer.

Programmers are expensive (“software crisis”),
computers become faster and cheaper.

I.e. the constant in the above inequality shrinks because of advances in
hardware technology.

Stefan Brass: Logic Programming/deductive DBs 1. Introduction 1-8 / 74



Logic Programming DBs as Sets of Facts Rules as Logical Formulas Queries Recursion Datalog Using a Prolog System

Logic Programming (5)

Algorithm = Logic + Control (Kowalski)
Imperative/Procedural Language: Explicit Control, Implicit Logic.
Declarative/Descriptive Language: Explicit Logic, Implicit Control.

Imperative languages (e.g. C) are coupled to the
Von Neumann architecture of today’s computers.

Declarative languages have a larger independence of
current hardware/software technology:

Simpler Parallelization

More powerful optimization
This includes using new algorithms: If the next version of Oracle
contains a new join algorithm, existing queries will profit from it.
Already using a new index is a new algorithm.

Stefan Brass: Logic Programming/deductive DBs 1. Introduction 1-9 / 74



Logic Programming DBs as Sets of Facts Rules as Logical Formulas Queries Recursion Datalog Using a Prolog System

Logic Programming (6)

Naturally, logic programming languages are especially
well-suited for knowledge-intensive tasks.

However, e.g. compilers for Prolog are normally written in Prolog.

E.g. expert systems and natural language processing are
typical applications of Prolog.

Also problems, where only constraints for a solution are
given (development of time-tables, schedules) are well
treated by logic programming.

In Prolog or special “Constraint Logic Programming” languages.
For NP-complete problems, there is anyway no good algorithm, so why
bother to write one down?

Stefan Brass: Logic Programming/deductive DBs 1. Introduction 1-10 / 74



Logic Programming DBs as Sets of Facts Rules as Logical Formulas Queries Recursion Datalog Using a Prolog System

Deductive Databases (1)
A Deductive Database is . . .

An integrated system consisting of a DB and a declarative
programming language (Prolog-like).

In my view, this is the most important motivation for working on deductive DBs.
The combination DB+PL is needed, and is often done, but so far only with
imperative languages (with problems at interface or non-declarative querying).

“Pure Prolog” with special support for managing large
sets of facts.

A relational DB with a new query language (Datalog) and
the possibility to define recursive views.

A restricted theorem prover: It can handle only quite
simple formulas, but very many of them.

“deduce” = “compute a logical consequence”.
Stefan Brass: Logic Programming/deductive DBs 1. Introduction 1-11 / 74



Logic Programming DBs as Sets of Facts Rules as Logical Formulas Queries Recursion Datalog Using a Prolog System

Deductive Databases (2)

A Deductive Database Consists of . . .

a relational database (EDB),
which defines relations/predicates “extensionally”,
i.e. by enumerating all tuples, and

a logic program (IDB),
which defines relations/predicates “intensionally”,
i.e. by giving rules (formulas of a particular kind).

Example for extensional vs. intensional:
time-table/schedule for busses (very regular data).

Stefan Brass: Logic Programming/deductive DBs 1. Introduction 1-12 / 74



Logic Programming DBs as Sets of Facts Rules as Logical Formulas Queries Recursion Datalog Using a Prolog System

History of the Field (1)

∼322 BC Syllogisms [Aristoteles]
∼300 BC Axioms of Geometry [Euklid]
∼1700 Plan of Mathematical Logic [Leibniz]

1847 “Algebra of Logic” [Boole]
1879 “Begriffsschrift” (Early Logical Formulas)

[Frege] (Member of Leopoldina in Halle)
∼1900 More natural formula syntax [Peano]

1910/13 Principia Mathematica (Collection of
formal proofs) [Whitehead/Russel]

1930 Completeness Theorem [Gödel/Herbrand]
1936 Undecidability [Church/Turing]

Stefan Brass: Logic Programming/deductive DBs 1. Introduction 1-13 / 74



Logic Programming DBs as Sets of Facts Rules as Logical Formulas Queries Recursion Datalog Using a Prolog System

History of the Field (2)

1960 First Theorem Prover
[Gilmore/Davis/Putnam]

1963 Resolution-Method for Theorem proving
[Robinson]

∼1969 Question Answering Systems [Green et.al.]
1970 Linear Resolution [Loveland/Luckham]
1970 Relational Data Model [Codd]
∼1973 Prolog [Colmerauer, Roussel, et.al.]

(Started as Theorem Prover for Natural Language Understanding)
(Compare with: Fortran 1954, Lisp 1962, Pascal 1970, Ada 1979)

∼1973 Algorithm = Logic + Control [Kowalski]
1976 Minimal Model Semantics

[van Emden, Kowalski]

Stefan Brass: Logic Programming/deductive DBs 1. Introduction 1-14 / 74



Logic Programming DBs as Sets of Facts Rules as Logical Formulas Queries Recursion Datalog Using a Prolog System

History of the Field (3)
1977 Conference “Logic and Databases”

[Gallaire, Minker]
1977 First Compiler for Prolog [Warren]
1982 Start of the “Fifth Generation Project” in Japan

(ended 1994) (caused research grants worldwide)
1986 “Magic Sets”
1986 Perfect Model Semantics
1986 First Deductive DB Systems
1987 CLP(R): Arithmetic Constraints [Jaffar]
1988 CHIP: Finite Domain Constraints

[Van Hentenryck]
1988 Well-Founded and Stable Model Semantics
∼1989 First Textbooks on Deductive DBs

Stefan Brass: Logic Programming/deductive DBs 1. Introduction 1-15 / 74



Logic Programming DBs as Sets of Facts Rules as Logical Formulas Queries Recursion Datalog Using a Prolog System

History of the Field (4)
∼1992 Second DDB Prototype System Generation

1996 ISO Standard for Prolog
1996 smodels: Answer Set Programming System (ASP)

[Nimelä/Simons]
2002 LogicBlox founded (commercial deductive Database)
2007 clasp (→ clingo, Potassco): Efficient ASP Systems

[Torsten Schaub u.a., Potsdam]
2009 Datalog for Query-Answering over Ontologies

[Cal̀ı, Gottlob, Lukasiewicz]
2010 Workshop “Datalog reloaded”
2010 Dedalus: Datalog in Time and Space (for Distributed Sys.)

[Alvaro, Marczak, Conway, Hellerstein, Maier, Sears]
2016 Soufflé Project (Datalog for static analysis of Java)

Stefan Brass: Logic Programming/deductive DBs 1. Introduction 1-16 / 74



Logic Programming DBs as Sets of Facts Rules as Logical Formulas Queries Recursion Datalog Using a Prolog System

Applications in Industry
Prolog is being successfully used in industry.

Boeing, British Airways, Kodak, Swiss Life, IBM (Machine Translation),
Philips Research, SRI (natural language).
Microsoft Windows NT used a small Prolog interpreter in order to generate
optimal configurations for networks.
Knowledgeware’s Application Development Workbench (a CASE tool,
1995: 60.000 Licenses sold) contains around 250.000 lines of Prolog code.
The company estimates that it would have been around 10 times larger if
written in C. [Frühwirth/Abdennadher 1997]

At Ericsson a special deductive DBMS for their own use
has been developed.

Constraint Logic Programming is very successful in industry.
It is estimated that 1996 constraint technology for 100 million $ was sold.
(1996, data mining tools for 120 million $ were sold. Microsoft’s turnover
was 10.000 million $.) [Frühwirth/Abdennadher 1997]

Stefan Brass: Logic Programming/deductive DBs 1. Introduction 1-17 / 74



Logic Programming DBs as Sets of Facts Rules as Logical Formulas Queries Recursion Datalog Using a Prolog System

Contents

1 Logic Programming

2 DBs as Sets of Facts

3 Rules as Logical Formulas

4 Queries

5 Recursion

6 Datalog

7 Using a Prolog System

Stefan Brass: Logic Programming/deductive DBs 1. Introduction 1-18 / 74



Logic Programming DBs as Sets of Facts Rules as Logical Formulas Queries Recursion Datalog Using a Prolog System

Example Database (1)

parents
Child Father Mother
emil arno birgit
frida chris doris
gerd chris doris
ian emil frida
julia emil frida
klaus gerd helga

couple
Man Woman
arno birgit
chris doris
emil frida
gerd helga
klaus lena

man
Name
arno

...

woman
Name
birgit

...

Stefan Brass: Logic Programming/deductive DBs 1. Introduction 1-19 / 74



Logic Programming DBs as Sets of Facts Rules as Logical Formulas Queries Recursion Datalog Using a Prolog System

Example Database (2)

◦◦arno birgit

◦◦emil frida

ian julia

◦◦chris doris

◦◦gerd helga

◦◦klaus lena

Stefan Brass: Logic Programming/deductive DBs 1. Introduction 1-20 / 74



Logic Programming DBs as Sets of Facts Rules as Logical Formulas Queries Recursion Datalog Using a Prolog System

Identifiers in Prolog

In Prolog, identifiers start with a lowercase letter.
Otherwise they contain uppercase and lowercase letters, as well as digits
and the underscore symbol “_”. The reason for this restriction is that in
Prolog, variables are distinguished from constants etc. by starting them
with an uppercase letter.

Alternatively, one can use any sequence of characters
enclosed in single quotes ’ (apostrophe).

If one wants that the names in the example start with an
uppercase letter, quotes are needed: ’Arno’.

Of course, one must decide for one, arno and ’Arno’ are not the same in
Prolog (it is case-sensitive). However, arno and ’arno’ are the same.

Stefan Brass: Logic Programming/deductive DBs 1. Introduction 1-21 / 74



Logic Programming DBs as Sets of Facts Rules as Logical Formulas Queries Recursion Datalog Using a Prolog System

Predicates (1)

Logic is the science of statements and their interrelationships,
especially consequence.

Consider a statement with placeholders,
e.g. “C is child of F (father) and M (mother)”.

Let us abbreviate this to “parents(C , F , M)”.

The statement can be true or false if concrete values are
given for the placeholders.

E.g. in the situation described in the above DB:

parents(emil, arno, birgit) is true,

parents(emil, chris, doris) is false.

Stefan Brass: Logic Programming/deductive DBs 1. Introduction 1-22 / 74



Logic Programming DBs as Sets of Facts Rules as Logical Formulas Queries Recursion Datalog Using a Prolog System

Predicates (2)

“parents” is an example for a predicate symbol.
It has three arguments: child, father, mother.

Formally, a predicate is a function that assigns true or
false to given values for the arguments.

A predicate symbol is a name for such a function.
One could also choose another name, such as p or child_of. One only has
to use one name consistently. Logic and Prolog do not understand the
meaning of the name, they only know the specified facts and rules.

Since logic analyses statements, it carefully distinguishes
between symbols and their interpretation.

Relation names are defined in the DB schema, relations in the state.

Stefan Brass: Logic Programming/deductive DBs 1. Introduction 1-23 / 74



Logic Programming DBs as Sets of Facts Rules as Logical Formulas Queries Recursion Datalog Using a Prolog System

Predicates (3)

The extension of a predicate is the set of argument tuples
for which the predicate is true.

(emil, arno, birgit) belongs to the extension of parents (in the situation
of the above DB state), while (emil, chris, doris) does not.

Predicates (with finite extension) are really the same as
(database) relations.

E.g. given a relation, one can see it as predicate that is true for the tuples
in the relation, and false for all other arguments. In the opposite direction,
one chooses the extension of the predicate as the relation.

In Prolog, one can define predicates with infinite
extension, e.g. odd(n) is true iff n is an odd number.

Stefan Brass: Logic Programming/deductive DBs 1. Introduction 1-24 / 74



Logic Programming DBs as Sets of Facts Rules as Logical Formulas Queries Recursion Datalog Using a Prolog System

Predicates (4)

In logic and Prolog, the arguments of a predicate are
identified by position.

I.e. one must know that the first argument is the child, the second the
father, and the third the mother. The names of the placeholders in the
original statement (C , F , M) are not important.

In SQL, the columns of a table (attributes of a relation)
are identified by name.

However, one could also define a logic programming
language that uses argument names.

If there are few arguments, and one applies consistent style rules for
ordering the arguments, then the Prolog notation is quicker (more
concise). With many arguments, the SQL notation is safer.

Stefan Brass: Logic Programming/deductive DBs 1. Introduction 1-25 / 74



Logic Programming DBs as Sets of Facts Rules as Logical Formulas Queries Recursion Datalog Using a Prolog System

Example DB as Facts (1)

parents(emil, arno, birgit).
parents(frida, chris, doris).
parents(gerd, chris, doris).
parents(ian, emil, frida).
parents(julia, emil, frida).
parents(klaus, gerd, helga).

couple(arno, birgit).
couple(chris, doris).
couple(emil, frida).
couple(gerd, helga).
couple(klaus, lena).

Stefan Brass: Logic Programming/deductive DBs 1. Introduction 1-26 / 74



Logic Programming DBs as Sets of Facts Rules as Logical Formulas Queries Recursion Datalog Using a Prolog System

Example DB as Facts (2)

man(arno).
man(chris).
man(emil).
man(gerd).
man(ian).
man(klaus).

woman(birgit).
woman(doris).
woman(frida).
woman(helga).
woman(julia).
woman(lena).

Stefan Brass: Logic Programming/deductive DBs 1. Introduction 1-27 / 74



Logic Programming DBs as Sets of Facts Rules as Logical Formulas Queries Recursion Datalog Using a Prolog System

Contents

1 Logic Programming

2 DBs as Sets of Facts

3 Rules as Logical Formulas

4 Queries

5 Recursion

6 Datalog

7 Using a Prolog System

Stefan Brass: Logic Programming/deductive DBs 1. Introduction 1-28 / 74



Logic Programming DBs as Sets of Facts Rules as Logical Formulas Queries Recursion Datalog Using a Prolog System

Logical Formulas (1)

If there were only such elementary statements, logic
would not be very interesting.

However, one can combine statements with logical
connectives, e.g.:

∧: logical “and” (conjunction)

∨: logical “or” (disjunction)

¬: logical “not” (negation)

←: logical “if”

↔: logical “iff” (if and only if)

Stefan Brass: Logic Programming/deductive DBs 1. Introduction 1-29 / 74



Logic Programming DBs as Sets of Facts Rules as Logical Formulas Queries Recursion Datalog Using a Prolog System

Logical Formulas (2)

One can also introduce variables:

∀X : “for all X” (universal quantification)

∃X : “there is an X” (existential quantification)

In SQL, such formulas are used as query language.
SQL has no universal quantifier, except in a specific context: >= ALL.
However, one can simulate it with EXISTS-subqueries. Actually, it is a
result of mathematical logic that one kind of quantifier suffices.

Prolog is a restricted automated theorem prover:
Knowledge can be specified not only as facts (as in RDBs),
but also as rules (special kind of formulas).

Stefan Brass: Logic Programming/deductive DBs 1. Introduction 1-30 / 74



Logic Programming DBs as Sets of Facts Rules as Logical Formulas Queries Recursion Datalog Using a Prolog System

Rules (1)

One can define predicates not only by facts, but also by
“if-then” rules:

father(X, Y)← parents(X, Y, Z).
“If Y and Z are parents of X, then Y is father of X”.

A rule has two parts:

Rule Head: The left hand side, the conclusion.

Rule Body: The right hand side, the condition.

If the rule body is satisfied (for certain values of X, Y, Z),
the rule head can be derived (with the same values of X, Y, Z).

Stefan Brass: Logic Programming/deductive DBs 1. Introduction 1-31 / 74



Logic Programming DBs as Sets of Facts Rules as Logical Formulas Queries Recursion Datalog Using a Prolog System

Rules (2)

The above rule defines the predicate “father” and uses
the predicate “parents”.

I.e. it assumes that there is information about parents that can be used to
derive information about father. Prolog does not require a specific
sequence of declaration: One could also define “parents” below the rule
for “father”. This is also important because two predicates can reference
each other with mutual recursion (see below). In predicate logic, there is
no such distinction between definition and use.

Derived predicates correspond to database views.

A rule with the predicate p in the head is called a
“rule about p”.

E.g. the above rule is a rule about father.

Stefan Brass: Logic Programming/deductive DBs 1. Introduction 1-32 / 74



Logic Programming DBs as Sets of Facts Rules as Logical Formulas Queries Recursion Datalog Using a Prolog System

Rules (3)

Names starting with a capital letter are variables: One
can insert any value for a variable.

I.e. the variables are universally quantified (“for all”, ∀) in front of the rule.
Of course, during a single rule application, one must replace different
occurrences of the same variable by the same value.

E.g. when one replaces X with emil, Y with arno, and Z
with birgit, one gets:
father(emil, arno)← parents(emil, arno, birgit).

The right hand side of the rule is true (it is given as a fact),
thus the left hand side is derived.

Stefan Brass: Logic Programming/deductive DBs 1. Introduction 1-33 / 74



Logic Programming DBs as Sets of Facts Rules as Logical Formulas Queries Recursion Datalog Using a Prolog System

Rules (4)

Suppose one substitutes e.g. X with emil, Y with chris,
and Z with doris:
father(emil, chris)← parents(emil, chris, doris).

The right hand side cannot be proven, thus nothing can
be derived with this rule instance (the condition is false,
nothing follows about the head).

This does not mean that the rule head must be false: There might be
another rule / rule instance that permits to derive it (see below).

Of course, Prolog and deductive databases do not simply
try all possible values for the variables.

Stefan Brass: Logic Programming/deductive DBs 1. Introduction 1-34 / 74



Logic Programming DBs as Sets of Facts Rules as Logical Formulas Queries Recursion Datalog Using a Prolog System

Rules (5)

Of course, one can choose better variable names
(they only have to start with an uppercase letter):

father(Child, Father)←
parent(Child, Father, Mother).

This renaming of variables does not change the meaning
of the rule in any way.

Variables are implicitly ∀-quantified in front of each rule.
I.e. the scope of each variable is the rule.

Two different rules can have variables with the same
name, but there is no connection between them.

Stefan Brass: Logic Programming/deductive DBs 1. Introduction 1-35 / 74



Logic Programming DBs as Sets of Facts Rules as Logical Formulas Queries Recursion Datalog Using a Prolog System

Multiple Rules (1)

Of course, a predicate “mother” can be defined in the
same way: mother(X, Z)← parents(X, Y, Z).

One can define several rules about a predicate:
(“parent” and “parents” are different predicate symbols.)

parent(X, Y) ← father(X, Y).
parent(X, Y) ← mother(X, Y).

Both rules can be used to derive facts about parent:

E.g. parent(emil, arno) follows from the first rule
Plus the rule about father and the fact parents(emil, arno, birgit).

and parent(emil, birgit) from the second.

Stefan Brass: Logic Programming/deductive DBs 1. Introduction 1-36 / 74



Logic Programming DBs as Sets of Facts Rules as Logical Formulas Queries Recursion Datalog Using a Prolog System

Multiple Rules (2)

Suppose that in the first rule, X is replaced by emil,
and Y by birgit:

parent(emil, birgit)← father(emil, birgit).

The condition (rule body) is false in the intended
interpretation, and indeed, father(emil, birgit)
cannot be derived from the given facts and rules.

However, the consequence (rule head) is true:
parent(emil, birgit) follows from the other rule.

If the rule body is true, the head must be true, too. If the rule body is
false, this rule alone does not say anything about the head (unless we
know that there is no other rule about the predicate).

Stefan Brass: Logic Programming/deductive DBs 1. Introduction 1-37 / 74



Logic Programming DBs as Sets of Facts Rules as Logical Formulas Queries Recursion Datalog Using a Prolog System

Multiple Body Literals

A rule can have several conditions which are conjunctively
connected (logical “and”):

grandparent(X, Z) ← parent(X, Y) ∧
parent(Y, Z).

E.g. one successful application of the rule is:
grandparent(ian, birgit) ← parent(ian, emil) ∧

parent(emil, birgit).

Both conditions in the body (“body literals”) follow from
the given facts and rules.

Then this rule can be applied and permits to derive that
birgit is grandparent of ian.

Stefan Brass: Logic Programming/deductive DBs 1. Introduction 1-38 / 74



Logic Programming DBs as Sets of Facts Rules as Logical Formulas Queries Recursion Datalog Using a Prolog System

Constants in Rules

Of course, one can use also constants in rules
(not only variables):

person(X, m) ← man(X).
person(X, f) ← woman(X).

Here the second argument of the predicate indicates
whether the person is male (m) or female (f).

In this example, a constant appears in a body literal:
grandmother(X, Y) ← grandparent(X, Y),

person(Y, f).

Stefan Brass: Logic Programming/deductive DBs 1. Introduction 1-39 / 74



Logic Programming DBs as Sets of Facts Rules as Logical Formulas Queries Recursion Datalog Using a Prolog System

Example: Summary (1)

Facts (Database):

parents(emil, arno, birgit).
...

couple(arno, birgit).
...

man(arno).
...

woman(birgit).
...

Stefan Brass: Logic Programming/deductive DBs 1. Introduction 1-40 / 74



Logic Programming DBs as Sets of Facts Rules as Logical Formulas Queries Recursion Datalog Using a Prolog System

Example: Summary (1)

Rules (Derived Predicates, Views):

father(X, Y) ← parents(X, Y, Z).
mother(X, Z) ← parents(X, Y, Z).
parent(X, Y) ← father(X, Y).
parent(X, Y) ← mother(X, Y).
grandparent(X, Z) ← parent(X, Y) ∧ parent(Y, Z).
person(X, m) ← man(X).
person(X, f) ← woman(X).

Stefan Brass: Logic Programming/deductive DBs 1. Introduction 1-41 / 74



Logic Programming DBs as Sets of Facts Rules as Logical Formulas Queries Recursion Datalog Using a Prolog System

Contents

1 Logic Programming

2 DBs as Sets of Facts

3 Rules as Logical Formulas

4 Queries

5 Recursion

6 Datalog

7 Using a Prolog System

Stefan Brass: Logic Programming/deductive DBs 1. Introduction 1-42 / 74



Logic Programming DBs as Sets of Facts Rules as Logical Formulas Queries Recursion Datalog Using a Prolog System

Queries (1)

Given the above program (“knowledge base”),
one can pose queries (goals for the theorem prover),
for example:

? grandparent(ian, birgit).
−→ Yes.

? grandparent(klaus, arno).
−→ No.

? mother(frida, X).
−→ X = doris.

Stefan Brass: Logic Programming/deductive DBs 1. Introduction 1-43 / 74



Logic Programming DBs as Sets of Facts Rules as Logical Formulas Queries Recursion Datalog Using a Prolog System

Queries (2)

Example queries (proof goals), continued:

? mother(X, doris).
−→ X = frida.

X = gerd.

? mother(X, Y).
−→ X = emil, Y = birgit.

X = frida, Y = doris.
X = gerd, Y = doris.

...
...

? father(emil, X) ∧ mother(emil, Y).
−→ X = arno, Y = birgit.

Stefan Brass: Logic Programming/deductive DBs 1. Introduction 1-44 / 74



Logic Programming DBs as Sets of Facts Rules as Logical Formulas Queries Recursion Datalog Using a Prolog System

Queries (3)

Syntactically, queries are the same as rule bodies
(a conjunction of literals).

Queries (Goals) are not very powerful, e.g. they normally
do not permit disjunction.

Actually, modern Prolog systems have disjunction in rule bodies and
queries. However, this is not really necessary.

However, one can extend the knowledge base with new
rules that define temporary predicates.
These new predicates can also be used in the query.

SQL-99 permits to define temporary views in queries (WITH-clause).

Stefan Brass: Logic Programming/deductive DBs 1. Introduction 1-45 / 74



Logic Programming DBs as Sets of Facts Rules as Logical Formulas Queries Recursion Datalog Using a Prolog System

Exercises

Define a predicate “married_with”.
This takes the information from “couple”, but should be symmetric: If X is
married with Y, then Y is married with X.

Define a predicate “siblings”.
The condition X 6= Y can be used in the rule body.

Define a predicate “uncle”.

Define a predicate for consistency checks: Is there a
person which is male and female at the same time?

Define a predicate “inconsistent” that is derivable if there is such a
problem. Of course, additional predicates can be defined.

Stefan Brass: Logic Programming/deductive DBs 1. Introduction 1-46 / 74



Logic Programming DBs as Sets of Facts Rules as Logical Formulas Queries Recursion Datalog Using a Prolog System

Contents

1 Logic Programming

2 DBs as Sets of Facts

3 Rules as Logical Formulas

4 Queries

5 Recursion

6 Datalog

7 Using a Prolog System

Stefan Brass: Logic Programming/deductive DBs 1. Introduction 1-47 / 74



Logic Programming DBs as Sets of Facts Rules as Logical Formulas Queries Recursion Datalog Using a Prolog System

Recursive Rules (1)

It is possible to use a predicate in its own definition:
ancestor(X, Y) ← parent(X, Y).
ancestor(X, Z) ← parent(X, Y) ∧ ancestor(Y, Z).

Initially, no facts about ancestor are known, thus only
the first rule is applicable.

Then, ancestor(X, Y) is known if Y is parent of X.

This can be inserted in the second rule, and it is derived
that grandparents are also ancestors.

Another application of the second rule yields that
great-grandparents are ancestors, too. And so on.

Stefan Brass: Logic Programming/deductive DBs 1. Introduction 1-48 / 74



Logic Programming DBs as Sets of Facts Rules as Logical Formulas Queries Recursion Datalog Using a Prolog System

Recursive Rules (2)

Finally, all ancestor relationships that hold in the database
are derived.

The example DB contains only three generations, so there are already no
great-grandparents. But the recursion works with any number n of
generations: After n − 2 iterations, no new facts are derived.

Of course, a recursive rule like
p(X)← p(X).

is useless: It never yields anything new.
In Prolog, such a rule would actually create an infinite loop. This shows
that Prolog is not an ideal logic programming language. In logic, the rule is
a tautology: It is always trivially satisfied. Deductive databases can process
such rules without problems.

Stefan Brass: Logic Programming/deductive DBs 1. Introduction 1-49 / 74



Logic Programming DBs as Sets of Facts Rules as Logical Formulas Queries Recursion Datalog Using a Prolog System

Recursive Rules (3)

The important point is that although one of the rules
that defines “ancestor” uses “ancestor”, it never refers
to the same fact as it tries to prove.

As in other programming languages, in Prolog one has to
reduce the “problem size” in the recursive call, or the
recursion will not come to an end.

E.g. given the query “? ancestor(julia, birgit)”,
Prolog will first try the nonrecursive rule.

Prolog tries the rules in the order they are written down. This dependence
on the rule order again violates the ideal of logic programming. Deductive
DBs are again better, but at the expense of performance.

Stefan Brass: Logic Programming/deductive DBs 1. Introduction 1-50 / 74



Logic Programming DBs as Sets of Facts Rules as Logical Formulas Queries Recursion Datalog Using a Prolog System

Recursive Rules (4)

Using the nonrecursive rule, Prolog has to prove
parent(julia, birgit), but this fails.

Now it uses the recursive rule. It inserts the data from the
query and finds that it has to prove

parent(julia, Y) ∧ ancestor(Y, birgit).

Thus, it first finds the parents of julia, and then
processes the recursive calls:

ancestor(emil, birgit).

ancestor(frida, birgit).

Stefan Brass: Logic Programming/deductive DBs 1. Introduction 1-51 / 74



Logic Programming DBs as Sets of Facts Rules as Logical Formulas Queries Recursion Datalog Using a Prolog System

Recursive Rules (5)

The recursive call ancestor(emil, birgit) is proven
with the nonrecursive rule: birgit is mother of emil.

Thus, the answer “Yes” is printed.

The recursive call ancestor(frida, birgit) fails.
Prolog first tries to prove that birgit is parent of frida. This fails.
Then it creates again two recursive calls by inserting frida’s parents:
ancestor(chris, birgit) and ancestor(doris, birgit). These immediately
fail since there are no parents of chris and doris in the database.

The problem size is reduced because every recursive call
goes one generation up in the database and somewhere,
there are no further data.

Stefan Brass: Logic Programming/deductive DBs 1. Introduction 1-52 / 74



Logic Programming DBs as Sets of Facts Rules as Logical Formulas Queries Recursion Datalog Using a Prolog System

Recursion in SQL-99

Ancestors cannot be computed in SQL-92
(one needs one more join for every generation).

However, SQL-99 permits recursion:

WITH
RECURSIVE ancestor(Child, Anc) AS

SELECT Child, Par FROM parent
UNION
SELECT P.Child, A.Anc
FROM parent P, ancestor A
WHERE P.Par = A.Child

SELECT Anc FROM ancestor
WHERE Child = 'julia'

Stefan Brass: Logic Programming/deductive DBs 1. Introduction 1-53 / 74



Logic Programming DBs as Sets of Facts Rules as Logical Formulas Queries Recursion Datalog Using a Prolog System

Applications of Recursion
Important for processing hierarchical data, and data that
has the form of a graph.

E.g. the WWW is a directed graph of documents.

Documents are hierarchically structured,
e.g. XML defines tree-structure (plus IDREF).

“Object Exchange Model”, Models for semistructured data: graphs.

CAD: Parts are often hierarchically composed out of
smaller parts.

CASE: Call structure of procedures is a graph.

Getting an unknown number of pieces from a string.
Exercise in database course: Cut off initials from president name.
Structured strings are a bad database design, but that was given.

Stefan Brass: Logic Programming/deductive DBs 1. Introduction 1-54 / 74



Logic Programming DBs as Sets of Facts Rules as Logical Formulas Queries Recursion Datalog Using a Prolog System

Contents

1 Logic Programming

2 DBs as Sets of Facts

3 Rules as Logical Formulas

4 Queries

5 Recursion

6 Datalog

7 Using a Prolog System

Stefan Brass: Logic Programming/deductive DBs 1. Introduction 1-55 / 74



Logic Programming DBs as Sets of Facts Rules as Logical Formulas Queries Recursion Datalog Using a Prolog System

Datalog vs. Prolog (1)

Deductive DBs Permit Less Control, More Logic:

Order of rules is not relevant.

Order of conditions in the rule body often not relevant
(depending on system/chosen optimizations).

No cut (used in Prolog to prune the search tree).
The cut will be explained further below. Sometimes, the cut only gives
hints to the Prolog system for faster execution. But in practical Prolog
programming it is used also in a way that modifies the logical meaning of
the program. This violates the logic programming idea.

Termination is guaranteed if no lists, term constructors or
datatype functions are used.

Stefan Brass: Logic Programming/deductive DBs 1. Introduction 1-56 / 74



Logic Programming DBs as Sets of Facts Rules as Logical Formulas Queries Recursion Datalog Using a Prolog System

Datalog vs. Prolog (2)

Reason (Database vs. Programming Language):

The Prolog programmer knows how predicates are used
(called): Which arguments are given (input), and which
are variables (output).

Closed system: There is only one main predicate, which calls all others.

Databases allow very different queries.
When a predicate (view) is defined, one normally does not know how it will
be used in queries. Needs query optimizer.

Query evaluation should be guaranteed to terminate,
program execution cannot.

But modern DDB systems allow the complete Pure Prolog.

Stefan Brass: Logic Programming/deductive DBs 1. Introduction 1-57 / 74



Logic Programming DBs as Sets of Facts Rules as Logical Formulas Queries Recursion Datalog Using a Prolog System

Datalog vs. Prolog (3)

All Advantages of Databases:

Persistence (Possibility to store data that live longer than
a single program execution)

Multi-User, Security, Access Control, Integrity.

Transactions (Atomicity, Backup&Recovery,
Concurrency Control).

But current DDB prototypes have not necessarily all
database functions.

Stefan Brass: Logic Programming/deductive DBs 1. Introduction 1-58 / 74



Logic Programming DBs as Sets of Facts Rules as Logical Formulas Queries Recursion Datalog Using a Prolog System

Datalog vs. Prolog (4)

Deductive DBs are Better for Large Sets of Facts:

Prolog implementations are very inefficient if the data
does not fit into real main memory.

If the data resides on disks, set-oriented evaluation
techniques are better, since one anyway has to read whole
blocks (e.g. Merge Join, B-Trees).

Efficiency is a Problem for Deductive DBs:

If Prolog works for a program, the program is executed at
least 10 times faster in Prolog systems than in current
deductive database systems.

Stefan Brass: Logic Programming/deductive DBs 1. Introduction 1-59 / 74



Logic Programming DBs as Sets of Facts Rules as Logical Formulas Queries Recursion Datalog Using a Prolog System

Contents

1 Logic Programming

2 DBs as Sets of Facts

3 Rules as Logical Formulas

4 Queries

5 Recursion

6 Datalog

7 Using a Prolog System

Stefan Brass: Logic Programming/deductive DBs 1. Introduction 1-60 / 74



Logic Programming DBs as Sets of Facts Rules as Logical Formulas Queries Recursion Datalog Using a Prolog System

More about Prolog Syntax

In Prolog, every fact (or rule) must be terminated with
“.” (full stop).

It is required that the full stop is followed by white space (a space or a line
break). The reason is that “.” is also an operator in Prolog (list
constructor). If it is used that way, it is not followed by white space.

One should avoid spaces between the predicate and the
opening parenthesis “(”.

This is used to distinguish operator syntax from the standard syntax.
Operator syntax is treated in a later chapter.

Comments in Prolog start with “%” and extend to the end
of the line. (Alternative: /* ... */ as in C.)

Stefan Brass: Logic Programming/deductive DBs 1. Introduction 1-61 / 74



Logic Programming DBs as Sets of Facts Rules as Logical Formulas Queries Recursion Datalog Using a Prolog System

No Declarations in Prolog

Prolog is a concise language: One does not have to
declare predicates or constants.

Predicates are automatically declared by writing facts or rules about them.
This is a bit dangerous because typing errors might not be detected.
However, most Prolog systems require at least that (1) facts and rules
about one predicate are not interrupted by facts/rules about another
predicate (2) at least one fact/rule exists for every predicate that is called.
This gives already some protection.

Prolog is untyped. However, many type systems have
been proposed and implemented for Prolog.

It is easy to write a type checker for Prolog in Prolog, because Prolog has
good metaprogramming facilities (processing programs as data).

Stefan Brass: Logic Programming/deductive DBs 1. Introduction 1-62 / 74



Logic Programming DBs as Sets of Facts Rules as Logical Formulas Queries Recursion Datalog Using a Prolog System

Rule Syntax

In Prolog, one writes

“:- ” instead of “←”,

a comma “,” for conjunction (instead of “∧”).

E.g. the rule that defines grandparent is written as:

grandparent(X, Z) :- parent(X, Y), parent(Y, Z).

Where a space is permitted, one can use newline, spaces,
tabs (Prolog is free format):

grandparent(X, Z):-
parent(X, Y),
parent(Y, Z).

Stefan Brass: Logic Programming/deductive DBs 1. Introduction 1-63 / 74



Logic Programming DBs as Sets of Facts Rules as Logical Formulas Queries Recursion Datalog Using a Prolog System

Anonymous Variables (1)

When a variable appears only once in a rule, its name is
not important.

Prolog then permits to use an underscore “_” instead of
the variable name (“anonymous variable”).

I.e. each occurrence of the underscore stands for a new variable. Even if
the underscore appears twice in a rule, it is not the same variable.

E.g. the rule about mother can be written as:
mother(Child, Mother) :- parents(Child, _, Mother).

Stefan Brass: Logic Programming/deductive DBs 1. Introduction 1-64 / 74



Logic Programming DBs as Sets of Facts Rules as Logical Formulas Queries Recursion Datalog Using a Prolog System

Anonymous Variables (2)

I.e. the underscore can be used to fill in arguments that
are not needed.

This is necessary since arguments are identified by position. It corresponds
to a projection in databases.

Most Prolog systems give a warning (“singleton variables”)
if a non-anonymous variable appears only once in a rule.

This is intended to catch typing errors in variables. Variables do not have
to be declared, but a typing error will yield a variable that appears only
once. If one wants to have a meaningful name, one can start that name
with an underscore to switch off the warning.

Stefan Brass: Logic Programming/deductive DBs 1. Introduction 1-65 / 74



Logic Programming DBs as Sets of Facts Rules as Logical Formulas Queries Recursion Datalog Using a Prolog System

Using a Prolog System (1)

Write the logic program into a file, e.g. “family.pl”.
The extension “.pl” is usual for Prolog sources. Unfortunately, it is also
used for Perl programs (Prolog was first!). Some Prolog systems permit to
choose the extension “.pro” during installation. Of course, one can use
any extension, but if it is not the standard extension, one later has to
specify it explicitly.

Start the Prolog system (e.g. “pl” under UNIX).

It should display the prompt “?-”.
This means that it is in query mode. Above, “?” was used for queries.

Read the file with the command “[family].”.
The brackets are an abbreviation for the built-in predicate “consult”, e.g.
“consult(family).”. Commands are queries to special predicates.

Stefan Brass: Logic Programming/deductive DBs 1. Introduction 1-66 / 74



Logic Programming DBs as Sets of Facts Rules as Logical Formulas Queries Recursion Datalog Using a Prolog System

Using a Prolog System (2)

Do not forget the full stop “.” at the end!
Every Prolog fact, rule, query, or command must be terminated with a full
stop. Otherwise, Prolog assumes that the command continues on the next
line and either silently waits for more input or displays a prompt like “|”.
Of course, one can then still write the full stop.

If one has to specify a path (or a filename that is not a
Prolog identifier) one must put it in single quotes ’ (to
make it a Prolog identifier), e.g.
[’C:/stefan/courses/lp03/examples/family.pl’].

Note that the backslash “\” is usually interpreted as
escape symbol, thus it must be doubled: “\\”.

Stefan Brass: Logic Programming/deductive DBs 1. Introduction 1-67 / 74



Logic Programming DBs as Sets of Facts Rules as Logical Formulas Queries Recursion Datalog Using a Prolog System

Using a Prolog System (3)

If one wants to enter rules and facts interactively,
one can read the special file “user”, e.g. “[user].”.

The input usually ends with the UNIX end-of-file marker Crtl+D.

Facts and rules can be distributed over several files, e.g.
“[myfacts,myrules1,myrules2].”

Most Prolog systems assume that rules about one predicate are stored
consecutively in the file. If one loads another file that contain rules about
the same predicate, the first rules are forgotten. Normally a warning is
printed in this case. However, it is possible (depending on the system) that
one reloads a file with the rules about a predicate removed, and the old
rules still remain in memory (until one exists from the Prolog system). This
is normally no problem, since one will not call the old predicate.

Stefan Brass: Logic Programming/deductive DBs 1. Introduction 1-68 / 74



Logic Programming DBs as Sets of Facts Rules as Logical Formulas Queries Recursion Datalog Using a Prolog System

Using a Prolog System (4)

Once facts and rules are defined, one can enter queries
(from the “?-” prompt), e.g.

grandparent(julia, X).

Prolog prints only one solution at a time.

If one wants more solutions, one must press the “;” key
(this stands in Prolog for “or”).

When there are no more solutions, Prolog will print “No”. This “a
tuple at a time” processing (which may also print duplicates) is also
a difference to deductive databases.

If one does not want more solutions, one must press the
“Enter” key.

Stefan Brass: Logic Programming/deductive DBs 1. Introduction 1-69 / 74



Logic Programming DBs as Sets of Facts Rules as Logical Formulas Queries Recursion Datalog Using a Prolog System

Using a Prolog System (5)

If a query should get into an infinite loop, one can press
“Crtl+C”.

This normally will enter the Prolog debugger. Pressing “a” (for “abort”)
will stop the query and leave the debugger.

One can leave the Prolog system with “halt.”.
“quit” and “exit” will not work in most systems. If one really wants, one
can of course define them by a rule. Again: Don’t forget the full stop “.”
at the end.

For predicates with 0 arguments (like halt), one does not
write “()” in Prolog.

“halt().” is a syntax error.

Stefan Brass: Logic Programming/deductive DBs 1. Introduction 1-70 / 74



Logic Programming DBs as Sets of Facts Rules as Logical Formulas Queries Recursion Datalog Using a Prolog System

Using a Prolog System (6)

Most systems have an online manual which documents at
least all built-in predicates, e.g. try

help(consult/1).

Note that the number of arguments usually has to be
specified.

In Prolog, different predicates can have the same name if they have a
different number of arguments. E.g. in SWI-Prolog, one can also call
“help.” to bring up the online manual. This is documented in
“help(help/0).”.

Stefan Brass: Logic Programming/deductive DBs 1. Introduction 1-71 / 74



Logic Programming DBs as Sets of Facts Rules as Logical Formulas Queries Recursion Datalog Using a Prolog System

Exercises (1)
The Table DEPT has the columns

DEPTNO (Department Number),

DNAME (Department Name),

LOC (Location):

DEPT
DEPTNO DNAME LOC

10 ACCOUNTING NEW YORK
20 RESEARCH DALLAS
30 SALES CHICAGO
40 OPERATIONS BOSTON

How would these data look as Prolog facts?
Stefan Brass: Logic Programming/deductive DBs 1. Introduction 1-72 / 74



Logic Programming DBs as Sets of Facts Rules as Logical Formulas Queries Recursion Datalog Using a Prolog System

Exercises (2)

EMP
EMPNO ENAME JOB MGR SAL DEPTNO
7369 SMITH CLERK 7902 800 20
7499 ALLEN SALESMAN 7698 1600 30
7521 WARD SALESMAN 7698 1250 30
7566 JONES MANAGER 7839 2975 20
7654 MARTIN SALESMAN 7698 1250 30
7698 BLAKE MANAGER 7839 2850 30
7782 CLARK MANAGER 7839 2450 10
7788 SCOTT ANALYST 7566 3000 20
7839 KING PRESIDENT 5000 10
7844 TURNER SALESMAN 7698 1500 30
7876 ADAMS CLERK 7788 1100 20
7900 JAMES CLERK 7698 950 30
7902 FORD ANALYST 7566 3000 20
7934 MILLER CLERK 7782 1300 10

Stefan Brass: Logic Programming/deductive DBs 1. Introduction 1-73 / 74



Logic Programming DBs as Sets of Facts Rules as Logical Formulas Queries Recursion Datalog Using a Prolog System

Exercises (3)

Formulate These Queries in Prolog and in SQL:

Print number, name of the department in Boston.

List number and name of all employees in the research
department.

List the names of all employees who are manager or
president of the company.

List all employees who earn more than their direct
supervisor. One can use a condition like X > Y.

List all employees who are directly or indirectly managed
by “JONES”.

Stefan Brass: Logic Programming/deductive DBs 1. Introduction 1-74 / 74


	Logic Programming
	Logic Programming / Declarative Programming

	DBs as Sets of Facts
	Databases as Sets of Facts

	Rules as Logical Formulas
	Rules as Logical Formulas

	Queries
	Queries

	Recursion
	Recursion

	Datalog
	Datalog

	Using a Prolog System
	How to use a Prolog System


