
5. Practical Prolog Programming 5-1

Deductive Databases and Logic Programming

(Summer 2011)

Chapter 5: Practical Prolog
Programming

• The Cut and Related Constructs

• Prolog vs. Pascal

• Definite Clause Grammars

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2011

5. Practical Prolog Programming 5-2

Objectives

After completing this chapter, you should be able to:

• explain the effect of the cut.

• write Prolog programs for practical applications.

• use context-free grammars in Prolog.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2011

5. Practical Prolog Programming 5-3

Overview

1. The Cut and Related Constructs

'

&

$

%

2. Prolog vs. Pascal

3. Definite Clause Grammars

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2011

5. Practical Prolog Programming 5-4

The Cut: Effect (1)

• The cut, written “!” in Prolog, removes alterna-

tives that otherwise would have been tried during

backtracking. E.g. consider this rule:

p(t1, . . . , tk) :- A1, ..., Am, !, B1, ..., Bn.

• Until the cut is executed, processing is as usual.

• When the cut is reached, all previous alternatives

for this call to the predicate p are removed:

� No other rule about p will be tried.

� No other solutions to the literals A, . . . , Am will

be considered.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2011

5. Practical Prolog Programming 5-5

The Cut: Effect (2)

• Example:
p(X) :- q(X), !, r(X).

p(X) :- s(X).

q(a).

q(b).

r(X).

s(c).

• With the cut, the query p(X) returns only X=a.

• Without the cut, the solutions are X=a, X=b, X=c.

• Exercise: Can the second rule about p ever be used?

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2011

5. Practical Prolog Programming 5-6

The Cut: Effect (3)

Four-Port Model without Cut:

p(X)

CALL -

q(X)
-

�
r(X)

- EXIT

�

-

FAIL �
s(X)

6

REDO�v�

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2011

5. Practical Prolog Programming 5-7

The Cut: Effect (4)

Four-Port Model with Cut:

p(X)

CALL -

q(X)
-

!
-

�

-

6

r(X)
- EXIT

�

-

FAIL �
s(X)

6

REDO�v�

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2011

5. Practical Prolog Programming 5-8

The Cut: Effect (5)

• A call to the cut immediately succeeds (like true).

• Any try to redo the cut not only fails, but imme-

diately fails the entire predicate call.

• In the SLD-tree, the cut “cuts away” all still open

branches between

� the node where the cut was introduced (i.e. the

child of which contains the cut), and

� the node where the cut is the selected literal.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2011

5. Practical Prolog Programming 5-9

The Cut: Effect (6)

p(X)
��

���
���

q(X),!,r(X)

HH
HHH

HHH

s(X)

. . .

�
��
�
��

�
�

�
�

!,r(a)

@
@
@
@

!,r(b)

. . .

�
��
�
��

r(a)

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2011

5. Practical Prolog Programming 5-10

The Cut: Effect (7)

• Before and after the cut, the backtracking is normal

(only not through the cut):

p(X,Y) :- q1(X), q2(X,Y).
p(X,Y) :- r1(X), r2(X), !, r3(X,Y), r4(Y).
p(X,Y) :- s(X,Y).
q1(a).
q1(b). q2(b,c).
r1(d).
r1(e). r2(e).
r3(e,f).
r3(e,g). r4(g).
s(h,i).

• The query p(X,Y) has solutions X=b,Y=c and X=e,Y=g.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2011

5. Practical Prolog Programming 5-11

Cut: Improving Runtime (1)

• One application of the cut is to improve the runtime

of a program by eliminating parts of the proof tree

that cannot yield solutions or at least cannot yield

any new solutions.

• Consider the predicate abs that computes the ab-

solute value of a number:
abs(X,X) :- X >= 0.

abs(X,Y) :- X =< 0, Y is -X.

• When the first rule is successful, it is clear that the

second rule does not have to be tried.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2011

5. Practical Prolog Programming 5-12

Cut: Improving Runtime (2)

• Consider now the goal p(X), abs(X,Y), Y > 5

with the facts p(3), p(0), p(-7).

• First p(X) succeeds with X bound to 3, then abs(3,Y)

succeeds for Y=3, but then 3 > 5 fails.

• Now backtracking would normally first try to find

an alternative solution for abs(3,Y), since there is

another rule about abs that has not yet been tried.

• This is obviously useless, and the runtime can be

improved by immediately backtracking to p(X).

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2011

5. Practical Prolog Programming 5-13

Cut: Improving Runtime (3)

• With the cut, one can tell the Prolog system that

when the first rule succeeds, the second rule cannot

give anything new:

abs(X,X) :- X >= 0, !.

abs(X,Y) :- X =< 0, Y is -X.

• Of course, one could have (should have) written

the condition in the second rule X < 0.

• Then some (but not all) Prolog systems are able

to discover themselves that the rules are mutually

exclusive.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2011

5. Practical Prolog Programming 5-14

Cut: Improving Space (1)

• Making clear that a predicate has no other solution

improves also the space (memory) efficiency.

• The Prolog system must keep a record (“choice-

point”) for each predicate call that is not yet com-

plete (for backtracking into the predicate call later).

• Even worse, certain data structures within the Pro-

log system must be “frozen” when it is necessary

to support later backtracking to this state.

• Then e.g. variable bindings must be logged (on the

“trail”) so that they can later be undone.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2011

5. Practical Prolog Programming 5-15

Cut: Improving Space (2)

• In imperative languages, when a procedure call re-

turns, its stack frame (containing local variables

and other information) can be reused.

• In Prolog, this is not always the case, because it

might be necessary to reactivate the procedure call

and search for another solution.

• E.g. consider the following program:
p(X) :- q(X), r(X).

q(X) :- s(X), t(X).

s(a). s(b). t(a). t(b). r(b).

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2011

5. Practical Prolog Programming 5-16

Cut: Improving Space (3)

• The call q(X) first exits with X=a, but then r(a)

fails, thus the call q(X) is entered again, which in

turn reactives s(X).

Upon backtracking, also the binding of X must be undone.

• In the above example, not much can be improved,

because there really are alternative solutions.

• However, when a predicate call has only one solu-

tion, it should be executed like a procedure call in

an imperative language.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2011

5. Practical Prolog Programming 5-17

Cut: Improving Space (4)

• Predicate calls that can have at most one solution

are called deterministic.
Sometimes one calls the predicate itself deterministic, but then one
usually has a specific binding pattern in mind. E.g. append is determi-
nistic for the binding pattern bbf, but it is not deterministic for ffb.

• For efficient execution, it is important that the Pro-

log system understands that a predicate call is de-

terministic. Here a cut can help.
Actually, the cut in the definition of abs makes the predicate determi-
nistic. In general, it might be important that abs(0,X) succeeds “two
times”, Prolog is not allowed to automatically remove one solution.
Deductive databases are set-oriented, there more powerful optimizers
are possible.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2011

5. Practical Prolog Programming 5-18

Cut: Improving Space (5)

• Consider abs applied to a list:
abs_list([], []).

abs_list([X|R], [Y|S]) :- abs(X, Y),

abs_list(R, S).

• When the Prolog system thinks that abs is nonde-

terministic, it will keep the stackframe for each call

to abs (and for the calls to abs_list).

• When a predicate calls a nondeterministic predica-

te, it automatically becomes nondeterministic, too.
Only for the last body literal of the last rule about a predicate, the
stack frame of the predicate is reused (under certain conditions), and
thus does not remain, even when this body literal is non-deterministic.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2011

5. Practical Prolog Programming 5-19

Cut: Improving Space (6)

• In the above example, making abs deterministic (by

means of a cut) is a big improvement.

• Then most Prolog systems will automatically de-

duce that also abs_list is deterministic.

For the only possible binding patterns bf and bb.

• Usually, the outermost functor of the first argument

is considered: Since it is “[]” for the first rule, and

“.” for the second, always only one of the two rules

is applicable (if the first argument is bound).

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2011

5. Practical Prolog Programming 5-20

Cut: Improving Space (7)

• It is also possible to remove unnecessary stack fra-

mes at a later point.

• E.g. suppose that abs (and thus abs_list) remain

nondeterministic, and consider the goal:

abs_list([-3,7,-4], X), !, p(X).

• The call to abs_list will leave many stack frames

behind, but these are deleted by the cut.

It is probably better style to avoid the nondeterminism at the place
where it occurs. However, one should not use too many cuts, and it
might be easier to clean up the stack only at a few places.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2011

5. Practical Prolog Programming 5-21

Cut: If-Then-Else (1)

• The cut is also used to encode an “if then else”.

• Consider the following predicate:
p(X, Y) :- q1(X), !, r1(X, Y).

p(X, Y) :- q2(X), !, r2(X, Y).

p(X, Y) :- r3(X, Y).

• This is equivalent to (assuming that q1 and q2 are

deterministic):

p(X, Y) :- q1(X), r1(X, Y).

p(X, Y) :- \+ q1(X), q2(X), r2(X, Y).

p(X, Y) :- \+ q1(X), \+ q2(X), r3(X, Y).

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2011

5. Practical Prolog Programming 5-22

Cut: If-Then-Else (2)

• The formulation with the cut is a bit shorter.

The difference becomes the bigger, the more cases there are.

• Furthermore, the runtime is shorter: In the version

without the cut, q1(X) is computed up to three

times.

• But removing the cut in first version would com-

pletely change the semantics of the program.

The cut is no longer only an “optimizer hint”.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2011

5. Practical Prolog Programming 5-23

Cut: If-Then-Else (3)

• The logical semantics of programs with negation as

failure (“\+”) has be extensively studied and there

are good proposals.

• I do not know of successful tries to give the cut a

clear logical (declarative) semantics.

The cut can basically be understood only operationally. One problem
is that the cut is used for many different purposes, and it might be
difficult to automatically discover for which one.

• Pure logic programmers try to avoid the cut, at

least when it affects the logic of the program.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2011

5. Practical Prolog Programming 5-24

Cut: If-Then-Else (4)

• Prolog has an “if-then” operator -> that can be

used to have the advantages of the cut, while ma-

king the logical intention clear.

• E.g. one could write the above procedure as
p(X, Y) :- q1(X) -> r1(X,Y);

q2(X) -> r2(X,Y);

r3(X,Y).

• A -> B has basically the same effect as A, !, B.

However, if there should be further rules about p, this cut does not
remove the possibility to try these rules. It does remove alternative
solutions for A, and it does remove the possibility to try the disjunctive
alternatives within the rule.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2011

5. Practical Prolog Programming 5-25

Cut: Negation

• Conversely, one can implement negation as failure

with the cut (not is only another name for \+):

not(A) :- call(A), !, fail.

not(_).

• The first rule ensures that if A succeeds, not(A)

fails.

• The second rule makes not(A) true in all other cases

(i.e. when A fails).

Of course, if A should run into an infinite loop, also not(A) does not
terminate.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2011

5. Practical Prolog Programming 5-26

Cut: One Solution (1)

• Suppose that email addresses of professors are sto-

red as facts, and that the same person can have

several email addresses:

prof_email(brass, ’sbrass@sis.pitt.edu’).

prof_email(brass, ’brass@acm.org’).

prof_email(spring, ’mspring@sis.pitt.edu’).

...

• The cut can be used to select a single address of

a given professor:

prof_email(brass, E), !, send_email(E).

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2011

5. Practical Prolog Programming 5-27

Cut: One Solution (2)

• Prolog has a built-in predicate once that can be

used instead of the cut:

once(prof_email(brass, E)), send_email(E).

• once is defined as:

once(A) :- call(A), !.

• In the example, the following is equivalent:

prof_email(brass, E) -> send_email(E).

However, the solution with once makes the intention

clearer.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2011

5. Practical Prolog Programming 5-28

Cut: Dangers (1)

• The cut can make programs wrong if predicates are

called with unexpected binding patterns.

• E.g. the predicate for the absolute value can also

be written as follows (using the cut as in the if-

then-else pattern):

abs(X,X) :- X >=0, !.

abs(X,Y) :- Y is -X.

• Since the second rule is executed only when the

first rule is not applicable, it might seem that the

test X =< 0 used earlier is superfluous.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2011

5. Practical Prolog Programming 5-29

Cut: Dangers (2)

• This is indeed true for the binding pattern bf, but

consider now the call abs(3,-3)!

• In general, the rule is that the cut must be exactly

at the point where it is clear that this is the right

rule: Not too early and not too late.

• Here the unification must happen after the cut:
abs(X,Y) :- X >= 0, !, X = Y.

abs(X,Y) :- Y is -X.

• This would work also with binding pattern bb.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2011

5. Practical Prolog Programming 5-30

Cut: Dangers (3)

• Consider this predicate:

person(X, male) :- man(X), !.

person(X, female) :- woman(X).

• Since man and woman are disjoint, the cut was only

added to improve the efficiency.

• It works if person is called with binding pattern bf

or bb. However, consider what happens if person is

called with binding pattern ff!

It is interesting that here the more general binding pattern poses a
problem, whereas in the abs example, the more specific binding pattern
is not handled.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2011

5. Practical Prolog Programming 5-31

Types of Cuts

• Cuts in Prolog programs are usually classified into

� Green Cuts: Do not modify the logical meaning

of the program, only improve the runtime/space

efficiency.

Some authors also distinguish blue cuts: In this case, a good Pro-
log system should be able to determine itself that there are no
further solutions. Blue cuts are intended only for very simple Pro-
log systems. “Grue Cuts”: Green or blue cuts.

� Red cuts: Modify the declarative meaning of the

program.

Good Prolog programmers try to use red cuts only very seldom.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2011

5. Practical Prolog Programming 5-32

Cut: Summary, Outlook

• The cut is necessary for efficient Prolog program-

ming, but it destroys the declarative meaning of the

programs and can have unexpected consequences.

• The better Prolog implementations get, the less

important will be the cut.

• Newer logic programming languages usually try to

replace the cut by other constructs that have a

more declarative meaning.

• If possible, use ->, \+, once instead.

• Use the cut only as last resort.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2011

5. Practical Prolog Programming 5-33

Overview

1. The Cut and Related Constructs

2. Prolog vs. Pascal

'

&

$

%

3. Definite Clause Grammars

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2011

5. Practical Prolog Programming 5-34

Prolog vs. Pascal

• “Prolog is different, but not that different.”

This citation is probably from O’Keefe, The Craft of Prolog.

• In general, one can translate a given imperative

algorithm (from Pascal, C, etc.) into Prolog.

The resulting program might be not the best possible program for the
task, just as a word-by-word translation from e.g. German to English
gives bad English. But at least, if one knows how to solve a problem
in an imperative language, one should also be able to write a Prolog
program for it.

• The goal of this section is to teach some typical

patterns of Prolog programming.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2011

5. Practical Prolog Programming 5-35

Data Types (1)

Pascal Prolog

integer integer

real float

char ASCII-code (integer)
atom

string list of ASCII-codes
atom
string (in some Prologs)

file stream
atom (alias, in some Prologs)
switching standard IO

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2011

5. Practical Prolog Programming 5-36

Data Types (2)

Pascal Prolog

enumeration type set of atoms

(variant) record composed term
(union/struct in C) functor(field1, ..., fieldN)

array list
set of facts: a(i, valI)

term: a(val1, ..., valN)

pointer structured terms (e.g., lists)
otherwise like array index

— partial data structures
(terms with variables)

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2011

5. Practical Prolog Programming 5-37

Variables (1)

• One can assign a value to a Prolog variable only

once.
This is the biggest difference to imperative programming.

• Afterwards it is automatically replaced everywhere

by its value.
I.e. it ceases to exist as a variable.

• Thus, there is no possibility to assign a different

value during normal, forward execution.
Of course, with backtracking, one can go back to the point where the
variable was still unbound. But then all other variable bindings that
happend since that point in time are also undone.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2011

5. Practical Prolog Programming 5-38

Variables (2)

• Thus, one uses a different variable for every value:

� procedure p(n: integer, var m: integer);
begin

m := n ∗ 2;
m := m + 5;
m := m ∗ m

end

� p(N, M) :-
M1 is N ∗ 2,
M2 is M1 + 5,
M is M2 ∗ M2.

This is an artificial example. Normally, one would compute the
value of m in a single expression.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2011

5. Practical Prolog Programming 5-39

Variables (3)

• Using a new variable for every assignment is ob-

viously possible for sequential/linear code.

• Loops are formulated in Prolog by recursion, thus

one can also get a fresh set of variables for every

iteration (see Slide 5-53 for more efficient solution):

� for i := 1 to n do writeln(i);

� loop(N) :- loop body(1, N).
loop body(I, N) :- I > N.
loop body(I, N) :- I =< N, write(I), nl,

Next I is I + 1,
loop body(Next I, N).

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2011

5. Practical Prolog Programming 5-40

Variables (4)

• For variables passed between procedures (in/out-

parameters), a Pascal variable is split into two Pro-

log variables: One for the input value, and one for

the output value (“accumulator pair”).

� procedure double(var n: integer);
begin

n := n ∗ 2
end

� double(N In, N Out) :-
N Out is N In ∗ 2.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2011

5. Practical Prolog Programming 5-41

Variables (5)

• Global variables in Pascal should be made predicate

parameters in Prolog.

Values that are passed unchanged from predicate to predicate are
called “context arguments”.

• If there are too many global variables, one can pack

them into a structure (composed term) which can

be passed as a unit.

One should declare a predicate for each variable to get/set the value
in the structure.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2011

5. Practical Prolog Programming 5-42

Variables (6)

• One can represent a global variable also with a fact

in the dynamic database:

� x := x+1

� x(X), retract(x(X)), !, X1 is X+1, assert(x(X1)).
There is always only one fact about the predicate x which contains
the current value of X.

• Some Prolog systems have support for destructive

assignments and global variables, but that is very

system-dependent.
In GNU-Prolog, there is, e.g., g_assign/2, g_read/2, g_array_size/2. In
SWI-Prolog, see flag/3, setarg/3. In Sepia/ECLiPSe, see setval/2.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2011

5. Practical Prolog Programming 5-43

Conditions: If, Case (1)

• Example:

procedure min(i, j: integer; var m: integer);
begin if i < j then m := i else m := j end

• There are basically three possibilities to translate

conditional statements:

� One rule per case, body contains the complete

condition (i.e. the negation of all previous cases):

min(I, J, M) :- I < J, M = I.
min(I, J, M) :- \+ (I < J), M = J.

Of course, one would write I >= J instead of \+ (I < J). But not
all conditions can be inverted so simply.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2011

5. Practical Prolog Programming 5-44

Conditions: If, Case (2)

• Translations of if-statements, continued:

� A rule per case, each starts with the “else if”-

condition and a cut:
min(I, J, M) :- I < J, !, M = I.
min(I, J, M) :- M = J.

� Using the conditional operators, i.e. a rule with

a body of the form (Cond-> Then ; Else):

min(I, J, M) :- (I < J -> M = I; M = J).

� If possible, it is best to express the condition in

the head of the rule (see next slide).

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2011

5. Practical Prolog Programming 5-45

Conditions: If, Case (3)

• Example (condition in the rule head):

� procedure p(c: color; var i: integer);
begin

case c of red: i := 1;
green: i := 2;
blue: i := 3;

end
end

� p(red, I) :- I = 1.
p(green, I) :- I = 2.
p(blue, I) :- I = 3.

Of course, one would simplify this further to, e.g., p(red, 1).

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2011

5. Practical Prolog Programming 5-46

Conditions: If, Case (4)

• The first solution (complete condition in every rule)

is logically cleanest, it also permits to understand

each rule in isolation.

• However:

� There is a certain duplication of code.

� In many Prolog systems, it will leave a choice

point behind if the first alternative is chosen.

Some Prolog systems are intelligent enough to understand that
I < J and I >= J exclude each other, thus no choice point is nee-
ded. The solution with the cut or -> does not have this problem.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2011

5. Practical Prolog Programming 5-47

Conditions: If, Case (5)

• In general, it is better to use the explicit conditional

operator -> instead of the cut !, because this makes

the purpose of the cut clear.

� However, this makes the syntactical structure of

the rules more complicated.

• Most Prolog systems have an index (hash table)

over the outermost functor of the first argument.

� Thus, if it is possible to code the condition in the

rule head (first argument), this will be especially

efficient, and no choicepoint will be generated.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2011

5. Practical Prolog Programming 5-48

Loops: Tail-Recursion (1)

• Loops are usually written as end-recursions.

• One should try to make sure that only a constant

amount of memory is needed, not an amount linear

in the number of executions of the loop body.

• A Prolog system reuses the memory of a rule invo-

cation when the last body literal is called and there

are no more alternatives.

If necessary, one can use a cut to make clear that other rules are not
applicable. It is best when the recursive call is the last literal of the
last rule about the predicate.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2011

5. Practical Prolog Programming 5-49

Loops: Tail-Recursion (2)

• Example (list length):

procedure length(l: list; var n: integer);
begin

n := 0;
while l <> nil do begin

n := n + 1;
l := l ↑.next

end
end

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2011

5. Practical Prolog Programming 5-50

Loops: Tail-Recursion (3)

• Direct Translation to Prolog:

length(L, N) :-
length(L, 0, N).

length(L, N In, N Out) :-
L = [], !,
N Out = N In.

length(L, N In, N Out) :-
N Next is N In + 1,
[|L Next] = L,
length(L Next, N Next, N Out).

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2011

5. Practical Prolog Programming 5-51

Loops: Tail-Recursion (4)

• Using the rule head for the conditions (makes the

cut unnecessary):

length(L, N) :-
length(L, 0, N).

length([], N In, N Out) :-
N Out = N In.

length([|L Next], N In, N Out) :-
N Next is N In + 1,
length(L Next, N Next, N Out).

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2011

5. Practical Prolog Programming 5-52

Loops: Tail-Recursion (5)

• Alternative (elegant, but not tail recursive):

length([], 0).
length([|L Rest], N) :-

length(L Rest, N Rest),
N is N Rest + 1.

• In this case, the system must return to a rule invo-

cation after the recursive call.

• Thus, many systems will need memory that is linear

in the length of the list. But efficiency is not all!
The memory will become free after the call to the length predicate.
If the lists are not extremely long, the more elegant solution should
be preferred.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2011

5. Practical Prolog Programming 5-53

Loops: Tail-Recursion (6)

• Consider again the for-loop:

� for i := 1 to n do writeln(i);

� loop(N) :- loop body(1, N).
loop body(I, N) :- I > N.
loop body(I, N) :- I =< N, write(I), nl,

Next I is I + 1,
loop body(Next I, N).

• The last call (for I = N+1) probably leaves a choice

point behind.

• But then the stack frames of all recursive calls are

protected, and the memory complexity is linear.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2011

5. Practical Prolog Programming 5-54

Loops: Tail-Recursion (7)

• In this case, it might be better to use a cut to make

clear that the second rule is no alternative when the

first rule is applicable:

loop body(I, N) :- I > N, !.
loop body(I, N) :- write(I), nl,

Next I is I + 1,
loop body(Next I, N).

• In this case, one has only the choice between two

solutions that are both not nice.

A good Prolog system might discover that the two conditions I > N
and I =< N are mutually exclusive. Then there is no problem.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2011

5. Practical Prolog Programming 5-55

Loops: Backtracking (1)

• Some loops can also be written with “repeat” and

backtracking.

• This is only possible if only the side effect of the

loop body is important (input/output, changes to

the dynamic database), but no variable bindings

must be kept from one iteration to the next.

• If it is possible, it is very efficient.
Not only the stack frames of predicate invocations are reused, but also
all term structures that were built up. This is important for simple
Prolog systems that have no garbage collection: There, space on
the heap is recycled only upon backtracking. For loops that run an
indefinite amout of time (command loops etc.), this should be used.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2011

5. Practical Prolog Programming 5-56

Loops: Backtracking (2)

• procedure skip(c: character);
var c1: character;
begin

repeat
read(c1)

until c1 = c
end

• skip(C) :- repeat,
get code(C1),
C1 = C,
!.

The cut is important to avoid the re-execution of the loop if later in
the program something fails and backtracking starts.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2011

5. Practical Prolog Programming 5-57

Loops: Backtracking (3)

• Another typical pattern for a backtracking loop is

to iterate over all solutions to a predicate:

print all composers :-
composer(FirstName, LastName),
write(LastName),
write(’, ’),
write(FirstName),
nl,
fail.

print all composers.

The fact at the end ensures that the predicate ultimatively succees.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2011

5. Practical Prolog Programming 5-58

Overview

1. The Cut and Related Constructs

2. Prolog vs. Pascal

3. Definite Clause Grammars

'

&

$

%

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2011

5. Practical Prolog Programming 5-59

Definite Clause Grammars (1)

• In Prolog, one can directly write down grammar

rules (of context-free grammars).
Actually, the grammar formalism is even more expressive, since one
can include arbitrary Prolog code as an additional condition for the
applicability of a grammar rule.

• A simple preprocessor translates the grammar rules

into standard Prolog rules.

• Thus, Prolog has a tool like yacc/bison built-in.
yacc/bison are standard tools used in compiler construction: Given a
context-free grammar (with certain restrictions), they produce a C
program that checks the syntactic correctness of the input. One can
extend the grammar with program code for processing the input.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2011

5. Practical Prolog Programming 5-60

Definite Clause Grammars (2)

• However, the goal of the Prolog grammar formalism

is not compiler construction, but natural language

processing (e.g., machine translation):

� There one needs more complicated grammars.

� E.g., non-deterministic grammars are possible in

Prolog, but not in compiler-construction tools.
In natural language (e.g., English), there are ambiguous words,
phrases, and sentences. These can easily be processed with back-
tracking in Prolog. In programming languages (e.g., C, Prolog),
the meaning of every construct must be completely clear.

� However, the efficiency requirements are not so

strong, since the inputs are usually not very long.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2011

5. Practical Prolog Programming 5-61

Definite Clause Grammars (3)

• Comparison with yacc/bison, continued:

� In Prolog, arbitrary context-free grammars are

possible, in yacc/bison only LALR(1) grammars.
The condition in compiler construction tools ensures that efficient
parsing is possible: The decisions for building the parse tree are
done backtrack-free with only a single token lookahead.

� In Prolog, grammar rules can be mixed with arbi-

trary program code. This can contain additional

checks for selecting a grammar rule.
In yacc/bison, one can include C code that is executed when a
grammar rule is applied. In this way, one can, e.g. generate out-
put. However, the C code cannot influence the parsing decisions,
e.g. choose one of several possible grammar rules.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2011

5. Practical Prolog Programming 5-62

Definite Clause Grammars (4)

• The grammar on the next slide describes the com-

mands of a simple text adventure game:

� Such games are similar to books, in which the

reader can give the main actor commands and

influence in this way the storyline.
Therefore, they are called “interactive fiction”. Titles like “Zork”
by Infocom were very popular.

• In principle, the user can input any English sen-

tence. In practice, most commands

� move the player around in the adventure world

� apply objects found in certain locations.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2011

5. Practical Prolog Programming 5-63

Definite Clause Grammars (5)

command --> verb, noun_phrase.
command --> [go], direction.
command --> direction.
command --> [quit].
direction --> [north].
direction --> [south].
direction --> [east].
direction --> [west].
verb --> [take].
verb --> [examine].
noun_phrase --> noun.
noun_phrase --> [the], noun.
noun --> [key].
noun --> [lamp].

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2011

5. Practical Prolog Programming 5-64

Definite Clause Grammars (6)

• Nonterminal grammar symbols (syntactic catego-

ries) are written like standard Prolog predicates.

• Terminal symbols (expected input tokens) are writ-

ten in [. . .].

• The syntactic analysis is done with the predicate

“phrase”, e.g.

� phrase(command, [take, the, lamp]). −→ yes.

� phrase(command, [lamp, the, north]). −→ no.

Of course, one needs more than “yes/no”. This is done by attributes
of the grammar symbols (predicate arguments). See below.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2011

5. Practical Prolog Programming 5-65

Implementation (1)

• In principle, every nonterminal symbol N is transla-

ted into a Prolog predicate that is true for all lists

of input tokens that are derivable from N .

• A naive solution (not the Prolog solution) would

generate rules like

command(X) :- append(Y, Z, X),

verb(Y), noun_phrase(Z).

command([go|X]) :- direction(X).

command(X) :- direction(X).

command([quit]).

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2011

5. Practical Prolog Programming 5-66

Implementation (2)

• The above solution is too inefficient: Especially the

arbitrary splitting of the input list with append cau-

ses a lot of unnecessary backtracking.

• The real implementation of grammar rules uses a

data structure called “difference lists”:

� E.g. the list [a, b, c] is represented by a pair of

lists [a, b, c | X] and X.

� A special case is the pair [a, b, c, d, e], [d, e]:

This also represents the list [a, b, c].

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2011

5. Practical Prolog Programming 5-67

Implementation (3)

• Thus, every nonterminal symbol is translated into

a predicate with two arguments:

� Input list (total rest of input tokens before the

nonterminal symbol is processed).

� Output list (rest of input after the nonterminal).

• The difference between both lists are the input

symbols derivable from the nonterminal symbol:

command(X, Z) :- verb(X, Y), noun_phrase(Y, Z).

command(X, Z) :- X = [go|Y], direction(Y, Z).

command(X, Z) :- direction(X, Z).

command(X, Z) :- X = [quit|Z].

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2011

5. Practical Prolog Programming 5-68

Implementation (4)

• I.e. every predicate cuts off from the input list the

prefix it can process, and hands the rest to the next

predicate.

• The syntax analysis is then done by calling the pre-

dicate for the start symbol of the grammar with the

complete input list and the empty list as the rest:

command([take, the lamp], []).

• Thus, the predicate phrase is defined as:
phrase(Start, Input) :- Goal =.. [Start,Input,[]],

call(Goal).

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2011

5. Practical Prolog Programming 5-69

Attributes (1)

• Usually, it is not sufficient to know that the input is

syntactically correct, but one needs to collect data

from the input.

• Therefore, the nonterminal symbols can have argu-

ments (which correspond to attributes in attribute

grammars).

• The preprocessor for grammar rules simply extends

the given literals by two further arguments for the

input and output token lists.
The given arguments are left untouched.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2011

5. Practical Prolog Programming 5-70

Attributes (2)

command(V,O) --> verb(V), noun_phrase(O).
command(go,D) --> [go], direction(D).
command(go,D) --> direction(D).
command(quit,nil) --> [quit].
direction(n) --> [north].
direction(s) --> [south].
direction(e) --> [east].
direction(w) --> [west].
verb(take) --> [take].
verb(examine) --> [examine].
noun_phrase(O) --> noun(O).
noun_phrase(O) --> [the], noun(O).
noun(key) --> [key].
noun(lamp) --> [lamp].

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2011

5. Practical Prolog Programming 5-71

Further Possibilities (1)

• One can include arbitrary Prolog code in the syntax

rules.

• It must be written in {. . .} in order to protect it

from the rewriting done by the preprocessor.

• E.g. it might be easier to store a list of game ob-

jects as facts, and to use only a single grammar

rule for nouns:

noun(O) --> [O], {object(O, _, _)}.

The additional arguments of object could be the initial location and
the description of the object.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2011

5. Practical Prolog Programming 5-72

Further Possibilities (2)

• The cut !, the disjunction (which can also be writ-

ten |), and the if-then symbol -> do not need to

be included in {. . .}.

One can also use parentheses (. . .) to structure the alternatives.

• For instance, the optional article before the noun

can also be encoded in a single rule:

noun_phrase(O) --> ([the] | []), noun(O).

• The cut can help to improve the efficiency of the

syntax analysis.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2011

5. Practical Prolog Programming 5-73

Further Possibilities (3)

• The left hand side of the syntax rule can contain a

“look-ahead terminal”, e.g.

p, [a] --> q, [a].

means that the production p --> q can only be ap-

plied if a is the next token.

This is translated to p(X1,X4) :- q(X1,X2), X2=[a|X3], X4=[a|X3], i.e.
the look-ahead terminal” is inserted back into the input stream af-
ter the rule is processed. In the example, X2 = X4, thus the a is not
consumed.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2011

5. Practical Prolog Programming 5-74

Efficiency Improvments

• Avoid left recursion.
This is usually not only inefficient, but wrong: At least for incorrect
inputs it easily gets into an endless recursion.

• Think about possible cuts, especially before tail re-

cursions.

• It might be possible to use the Prolog index over

the first argument.
lookahead(Token), [Token] --> [Token].

stmt --> lookahead(Token), stmt(Token).

stmt(if) --> [if], cond, [then], stmt.
...
stmt(id) --> [id], [’:=’], expression.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2011

5. Practical Prolog Programming 5-75

Formal Syntax

g_rule --> g_head, [’-->’], g_alt.
g_head --> non_terminal, ([’,’], terminal | []).
g_alt --> g_if, ([’|’], g_alt | []).
g_if --> g_rhs, ([’->’], g_rhs | []).
g_rhs --> g_item, ([,], g_rhs | []).
g_item --> terminal.
g_item --> non_terminal.
g_item --> variable.
g_item --> [’!’].
g_item --> [’(’], g_alt, [’)’].
g_item --> [’{’], prolog_goal, [’}’].
non_terminal --> any_callable_prolog_term.
terminal --> [’[’], (toks | []), [’]’].
toks --> any_prolog_term, ([’,’, toks | []).

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2011

5. Practical Prolog Programming 5-76

Lexical Analysis (1)

• The input to the syntax analysis (parser) is usually

a list of word symbols, called tokens.

• Of course, one could also use a list of characters

(atoms or ASCII codes).

• However, since the combination of characters to

words is simple, a more efficient algorithm (without

backtracking) can be used.

• This reduces a long list of characters to a short list

of words. Then the more complex algorithm can

work on a shorter input.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2011

5. Practical Prolog Programming 5-77

Lexical Analysis (2)

• The module that is responsible for transforming

a sequence of characters into a sequence of word

symbols (lexical analysis) is called the scanner.

• The separation of lexical analysis and syntax analy-

sis is also useful because the scanner can suppress

� white space between tokens

Usually, any sequence of spaces, tabulator characters, and line
ends is permitted.

� comments.

• This simplifies the syntax analysis.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2011

5. Practical Prolog Programming 5-78

Lexical Analysis (3)

• The following example program reads input charac-

ters until the line end.

• It skips spaces and composes sequences of letters

to words. Other characters (punctation marks etc.)

are treated as one-character tokens.

• The main work is done by a predicate scan that

gets the current input character as first argument:

scanner(TokList) :-

get_char(C),

scan(C, TokList).

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2011

5. Practical Prolog Programming 5-79

Lexical Analysis (4)

scan(’\n’, []) :- !.

scan(’ ’, TokList) :- !,

get_char(C),

scan(C, TokList).

scan(C, [Word|TokList]) :-

letter(C), !,

read_word(C, Letters, NextC),

name(Word, Letters),

scan(NextC, TokList).

scan(C, [Sym|TokList]) :-

name(Sym, [C]),

get_char(NextC),

scan(NextC, TokList).

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2011

5. Practical Prolog Programming 5-80

Lexical Analysis (5)

• The predicate read_word reads a list of letters star-

ting with character C. It returns the character NextC

that follows after the word:

read_word(C, [C|MoreC], NextC) :-

letter(C), !,

get_char(C2),

read_word(C2, MoreC, NextC).

read_word(C, [], C).

• The predicate letter defines which characters can

appear in words:

letter(’a’).

...

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2011

