7. Magic Sets 7-1

Deductive Databases and Logic Programming
(Winter 2007 /2008)

Chapter 7: Magic Sets

e SIP-Strategies (“Sideways Information Passing’)
e Adorned Program, Magic Predicates
e Correctness and Efficiency

e Problems and Improvements

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2007

7. Magic Sets 7-2

Objectives '

After completing this chapter, you should be able to:

e perform the magic set transformation for a given
input program (and explain how it works)

e Name different SIP strategies
e compare magic sets with SLD resolution

e Name some problems of the magic set method and
sketch possible solutions.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2007

7. Magic Sets 7-3

Overview I

[1. Introduction (Examples, Motivation, Idea)]

2. SIP Strategies, Adorned Program

3. The Magic Set Transformation

4. Improvements

5. Efficiency Comparison with SLD-Resolution

6. SLDMagic Method

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2007

7. Magic Sets

parent(X,Y) o
parent(X,Y) “
grandparent(X,Z) <«

answer(X) —

o father
& mother

Introduction (1)'

Example (Grandparents of Julia):

e Logic Program (IDB-Predicates and Query):

mother(X,Y).
father(X,Y).
parent (X, Y)A
parent(Y,Z).
grandparent(julia, X).

e EDB-Predicates (stored in the database):

Stefan Brass: Deductive Databases and Logic Programming

Univ. Halle, 2007

7. Magic Sets 7-5

Introduction (2) l

e Naive/Seminaive Bottom-Up Evaluation computes
all parent- and grandparent-relationships of all per-
sons in the database.

Problem:

e Until now, the actual query is considered only at
the very end of query evaluation — after the entire
minimal model was computed.

e [herefore, the method is not goal-directed: It com-
putes many superfluous facts, which are not rele-
vant for the query.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2007

7. Magic Sets 7-6

Introduction (3) l

e [he “Magic Set” Transformation rewrites the pro-
gram such that the rules can only “fire” when their
result (the derived fact) is relevant for the query.

Solution:

e [This Is done by making the occurring queries and
subqueries explicit. They are encoded as facts of
“magic predicates’. E.g. the query

? grandparent(julia, X)
IS represented as

m_grandparent bf(julia).

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2007

7. Magic Sets 7-7

Introduction (4) l

More About Encoding of Queries:

e Consider again the correspondance:
o Query: ? grandparent(julia, X)
¢ Magic Fact: m grandparent bf(julia).

e Magic facts should be representable in a database,
and therefore should not contain variables.

e Solution: The binding pattern indicates the position
of the variables (their name is not important).

e Only the values of constants in the query (bound
arguments) are explicitly stored in the magic fact.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2007

7. Magic Sets 7-8

Introduction (5) l

Example Output, First Part:

e Rules are restricted by an additional body literal so
that they can fire only if there is a matching query:

parent(X,Y) «— m_parent bf(X) A
mother(X,Y).
parent(X,Y) «— m_parent bf(X) A

father(X,Y).
grandparent(X,Z) <« m grandparent bf(X) A
parent(X,Y) A
parent(Y,Z).
answer(X) — true A
grandparent(julia, X).

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2007

7. Magic Sets 7-9

Introduction (6) l

Example Output, Second Part:

m_grandparent bf(julia) <« true.
m parent bf(X) «— m_grandparent bf(X).

m parent bf(Y) «— m_grandparent bf(X) A
parent(X,Y).

e Of course, the original query must be represented
as a magic fact in the rewritten program.

e In addition, magic facts corresponding to the oc-
curring subqueries must be derivable.

e Example: To compute the grandparents of X, one
must first compute the parents of X.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2007

7. Magic Sets 7-10

Introduction (7) l

Summary (Equivalence):
e The "Magic Set” transformation produces a pro-
gram which is equivalent for the given query:
¢ The extension of the predicate “answer” in the

minimal model of the transformed program is
the same as in the minimal model of the original

program.

e But often the minimal model of the transformed
program is much smaller than the minimal model
of the original program.

It contains only IDB-facts that are relevant for the given query.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2007

7. Magic Sets 7-11

Introduction (8)

Summary (Equivalence), Continued:

e This equivalence (for the predicate answer) is inde-
pendend of the extensions of the EDB-predicates:

¢ NoO database access is needed during the trans-
formation.

Therefore, the transformation itself is quite efficient (one usually
assumes that external memory accesses are expensive).

¢ T he transformed program can be executed se-
veral times, even when the database state was
changed in the meantime.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2007

7. Magic Sets 7-12

Introduction (9) l

Input Program
(simple, but not efficient)

I

“Magic Set” Transformation

I

Output Program

(returns the same answers,
but is evaluated more efficiently)

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2007

7. Magic Sets 7-13

Introduction (10)

Magic Sets and Built-in Predicates:

e [he magic set transformation can also improve the
termination of programs with built-in predicates:

¢ E.g., append has an infinite extension.

¢ But for a concrete query, only a finite number of
facts might be needed.
E.g., when two given lists are appended.
¢ In this way, the magic set transformation might
turn an infinite minimal model into a finite one.

Of course, it depends on the program and the query whether this
WOrks.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2007

7. Magic Sets 7-14

Introduction (11)'

Top-Down vs. Bottom-Up:

e Before the magic set transformation, there were
two competing evaluation approaches:

¢ Top-down evaluation (e.g. SLD-resolution):
Starts from the query, simplifies it, until facts
can be used. Advantage: Goal-directed.

¢ Bottom-up evaluation (e.g., seminaive method):
Starts from the facts, computes derived facts,
until answers to the query are reached. Advanta-
ge: Avoids duplicate work, ensures termination.

e Magic sets combine the advantages of both.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2007

7. Magic Sets 7-15

Introduction (12)'

Magic Sets — A Source Code Level Transformation:

e [he underlying “bottom-up machine” can remain
unchanged.

e It is always good to separate problems and solve
them one after the other.

e One can understand the method on a high level of
abstraction (Herbrand models instead of internal
data structures).

e However, it is probably advantageous for an imple-
mentation to treat the magic predicates specially.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2007

7. Magic Sets 7-16

Introduction (13)'

IDB predicates as procedures:

e With magic sets, IDB predicates can be understood
as procedures with input and output arguments:

¢ Input: Relation M with bindings for the input
arguments (this is the ““Magic Set").

¢ Output: Relation R for all arguments.

It does not suffice to return only a relation for the output argu-
ments because the connection to the input arguments would not
be clear if M contains more than one tuple.

o If E is the original extension of the predicate,
R = E X M holds (this is a semi-join).

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2007

7. Magic Sets 7-17

Introduction (14)

IDB predicates as procedures, continued:

e Example: R:
M- Procedure parent bf
m parent bf emil |arno
emil — | parent bf | — emil |birgit
frida frida | chris
frida |doris

The database might contain many more mother/father relationships,
but only the required parent tuples are derived.

e However, for recursive predicates, M might still be
extended later.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2007

7. Magic Sets 7-18

Overview I

1. Introduction (Examples, Motivation, Idea)

(2. SIP Strategies, Adorned Program]

3. The Magic Set Transformation
4. Improvements
5. Efficiency Comparison with SLD-Resolution

6. SLDMagic Method

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2007

7. Magic Sets 7-19

SIP-Strategies (1) l

Motivation:

e SIP = ,, Sideways Information Passing*”

When rules are evaluated, information is passed ‘“sideways’: from a
body literal that is evaluated earlier to one that is evaluated later.

e grandparent(X,Z) < parent(X,Y) A parent(Y,Z).
¢ Variable binding from the caller: X = julia.
¢ T his is passed to the first body literal.

¢ BYy evaluating this body literal, one gets bindings
for Y, e.g. Y= -enmil and Y = frida.

¢ T hese are passed to the second body literal.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2007

7. Magic Sets 7-20

SIP-Strategies (2) l

e However, for the query “? grandparent(X,arno)”, it
IS more efficient to start the evaluation of
grandparent(X,Z) < parent(X,Y) A parent(Y,Z)
with the second body literal.
¢ Then the binding Z = arno can be used.

¢ This gives bindings for Y, which can be passed
to the first body literal.

e If instead one evaluates the first body literal first,
this is done with the binding pattern ff, and one
has to compute the complete extension of parent.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2007

7. Magic Sets 7-21

SIP-Strategies (3) l

Definition:
e Given a rule A «— By A--- AN By and a binding pat-
tern g for pred(A),

e a SIP-strategy defines an evaluation sequence for
the body literals, i.e. a permutation

W:{l,...,m}—>{1’,..7m}’
e and for every k € {1,...,m} a valid binding pattern
57r(k:) S valid(pred(Bﬁ(k))) such that

k—1

input(BW(k), 57r(k)) C input(A, 3) U .Ul vaﬁ“s(BW(j)).
]:

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2007

7. Magic Sets 7-22

SIP-Strategies (4) l
Note:

e This is the same condition for = and (. () as in the
definition of ‘“range restricted rule’ .

e A given evaluation sequence determines “maximally
bound’” binding patters for the body literals:

¢ Values for variables in “bound” argument posi-
tions in the head literal are known.

¢ Values for variables in body literals that were
evaluated earlier are known.

¢ All other variables do not have a known value yet,
thus they lead to 'free” argument positions.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2007

7. Magic Sets 7-23

SIP-Strategies (5)

e Most SIP-strategies choose the above “maximal”
binding pattern that uses all existing bindings.

e [herefore, the real decision is the evaluation se-
quence for the body literals. The binding patterns
are then often automatically determined.

However, the possible evaluation sequences depend on the valid bin-
ding patterns for the body literal: Some predicates can only be eva-
luated if certain arguments are bound.

e A SIP-strategy can ignore existing bindings and
choose a more general binding pattern.

Possible reasons are explained on the next slide.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2007

7. Magic Sets 7-24

SIP-Strategies (6)

Reasons for not choosing the maximal binding pattern:
e Not all binding patters might be implemented.

This is obvious for built-in predicates, but happens also for IDB-
predicates in separately compiled modules (modules define “exported
binding patterns”).

e One needs the more general binding pattern anyway

at some other place in the program.

In this way, one avoids duplicating the rules. But unless the other
binding pattern is £f...f, one computes more tuples (if calls disjoint).

e to simplify the magic rules.

An even more general kind of “SIP-strategy’ permits to choose a
subset of the earlier evaluated body literals for the magic rule.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2007

7. Magic Sets 7-25

SIP-Strategies (7) l

e Consider this rule (with only IDB predicates):

Exercise:

ship_to(ProdName, City) <«
has_ordered(CustNo, ProdNo) A
customer_city(CustNo, City) A
product_name(ProdNo, ProdName).

e Select a good evaluation sequence for each of the
following calls, and state the binding patterns:

¢ ship_to(X, ’Halle’).
¢ ship_to(’Van Tastic’, X).
¢ ship_to(’Van Tastic’, ’Halle’).

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2007

7. Magic Sets 7-26

SIP-Strategies (8) l

Framework for SIP-Strategies:

o let A« By AN---AN By be called with binding pat-
tern 5. One chooses first w(1) (i.e. the first body
literal to evaluate), then «(2), and so on.

e Given that one has already chosen «(1),...,7(k),
the -th body literal is possible with binding pat-
tern 8’ € valid (pred(B;)) iff the literal has not been
chosen yet, i.e. i€ {1,..., m}—{n(1),...,n(k)} and

k
input(B;, B') Cinput(A,B) U | fuars(BW(j)).
=1

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2007

7. Magic Sets 7-27

SIP-Strategies (9) l

e Consider the following rule is called with p(X, 3):
p(X,Y)— X <Y Aqg(X).

Example:

e At the beginning, only the second body literal is
evaluable (with binding pattern f).

The only valid binding pattern for < is bb, therefore the first body
literal cannot be evaluated at this point (although it has more bound
arguments than ¢(X): the value for Y is already known).

e Thus, all SIP-strategies must select (1) = 2.

o After ¢(X) is evaluated, the value of X is known,
and the first literal becomes evaluable: 7 (2) = 1.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2007

7. Magic Sets 7-28

SIP-Strategies (10) l

Common SIP-Strategies:

e Among all possible (7,3), choose one such that g3
has the smallest number of free argument positions.

e Among all possible (7,3), choose one such that 3
has the largest number of bound arguments.

e Among all possible (7, 3), choose one such that 7 is
minimal, and among those one such that 5 has the
largest number of bound argument positions.

This strategy evaluates body literals in the sequence given by the
programmer as far as possible.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2007

7. Magic Sets 7-29

SIP-Strategies (11) '

Example:
e Consider the rule
p(X1, X2) «+ q(X1,Y) Ar(Xyq, Xo, 21, Z2)
and the call p(a,b).

e A SIP-strategy that tries to maximize the number
of bound argument positions begins the evaluation
with the second body literal: r(X1, Xo, Z1,Z5).

e A SIP-strategy that minimizes the number of free
argument positions chooses ¢(Xq,Y) first.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2007

7. Magic Sets

7-30

Further Input for SIP-Strategies:

optimizer of a deductive DBMS.

account:
o Keys
Indexes

o
o Size of Relations
O

SIP-Strategies (12) l

e [he SIP-strategy is an important component of the

e It should take also the following information into

Number of different values in an attribute

Stefan Brass: Deductive Databases and Logic Programming

Univ. Halle, 2007

7. Magic Sets 7-31

SIP-Strategies (13) l

Goals of SIP-Strategies:

o Try to keep intermediate results small.
e "Fail as early as possible™.

e Call expensive predicates only when cheap tests we-
re successful. Expensive predicates are:

¢ Recursive predicates

¢ Predicates that need themselves many joins and
possibly a duplicate elimination.

¢ Built-in predicates with complicated computati-
ons or slow network accesses.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2007

7. Magic Sets 7-32

SIP-Strategies (14) l

Exercises:

¢ p(X,Z) « q(X,Y1,Y2,Y3)Ar(Y1, Z), with call p(a,b),
when the first argument of ¢ and r is a key.

e Suppose p is defined by p(X) «— ¢g1(X) A go(X) and
IS called with binding pattern £f. Cost estimates:

& g1.f produces 100 tuples in 100 ms.

g1:b checks a single value in 3ms (index).

qo. £ produces 1000 tuples in 200 ms.

g>:b checks a single value in 100 ms (FT scan).
Sorting/intersecting the two sets costs 1000 ms.

S o0 O

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2007

7. Magic Sets 7-33

Overview I

1. Introduction (Examples, Motivation, Idea)

2. SIP Strategies, Adorned Program

[3. The Magic Set Transformation]

4. Improvements
5. Efficiency Comparison with SLD-Resolution

6. SLDMagic Method

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2007

7. Magic Sets 7-34

Adorned Program (1)

Goal:

e [he first step of the transformation is to make the
binding patterns of the IDB-predicates explicit.

This simplifies the definition of the main magic set transformation.

e [.e. the predicate p is renamed to p_3. Several ver-
sions of a predicate are produced for different g.

Sometimes one IDB-predicate is called with different binding patterns.

e Furthermore, the body literals are ordered in the
evaluation sequence.

In this way, the information from the SIP-strategy is encoded in the
program.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2007

7. Magic Sets 7-35

Adorned Program (2) l

Definition:
e Let a logic program P, valid binding patterns valid
and a SIP-strategy S be given.

e For each predicate p € Prpg(P), p # answer, and
every binding pattern 8 € valid(p) a new predicate

p_ 3 is introduced.
e For a literal A = p(t1,...,tn) and binding pattern
B € valid(p) let

(p B(t1,...,tn) if p € Prpp(P),
adorn(A, B8) 1= | P 7#= answer
| p(t1,...,tn) Otherwise.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2007

7. Magic Sets 7-36

Adorned Program (3) l

Definition, continued:

e The program AD(P) contains for each rule
A« B{AN---ANBmn from IDB(P)

and each binding pattern 8 € valid (pred(A))

the rule
adorn(A, B) « adorn(BW(l), 67T(1)) A A
adorn(B (m)s Br(m)):
where m and (31,...,0m are determined by the SIP-
strategy S.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2007

7. Magic Sets 7-37

Adorned Program (4)

Note:

e It is theoretically simpler to process every rule for
each possible binding pattern.

e [he unnecessary binding patterns are eliminated
when one later deletes all predicates (and their de-
finitions) on which “answer” does not depend.

e In practice, only necessary p (3 are constructed.

E.g. one manages a set of all combinations (p,3) that still have to
be processed. This is intialized with {(answer,f...f)}. In each step,
one takes an element from this set and generates the rules for p_3. If
the rule bodies contain new combinations of predicates and binding
patterns, one inserts them into the set.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2007

7. Magic Sets 7-38

Adorned Program (5) l

e Binding patterns chosen by the SIP-strategy for
EDB-/builtin predicates are important to determine
which index/implementation variant is to be used.

e But the names of these predicates are determined in
the database/the system, they cannot be changed.

In contrast, names of IDB-predicates (# answer) are only important
within the program.

e Furthermore, the explicit binding patterns are a pre-
paration for the magic set transformation. This is
not useful for EDB-predicates, because their com-
plete extensions are already stored.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2007

7. Magic Sets 7-39

Adorned Program (6) l

Exercise:

e Compute AD(P) (as far as relevant for answer).
Use a good SIP-strategy:

¢ parent(X,Y)
parent(X,Y)
grandparent (X, Z)
answer (X)

mother(X,Y).

father(X,Y).
parent(X,Y) A parent(Y,Z).
grandparent(julia, X).

rT 11

¢ append([], L, L) « true.
append(X, L, Y) <« cons(H,T,X) A cons(H,TL,Y) A
append(T, L, TL).
answer(X) «— append([a], [b, c], X).

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2007

7. Magic Sets 7-40

Adorned Program (7) l

Exercise, continued:
e Compute AD(P) (as before):

¢ ,,Same Generation Cousins*:
sg(X,X) «— person(X).
sg(X,Y) «— parent(X,Xp) A parent(Y,Yp) A

sg(Xp, Yp).
answer(X) <« sg(julia,X).

¢ Abstract Example:

answer(yes) <« p(a,b).

p(X,Z) — q(X,Y) Aq(Y,2).
q(X,Y) — r(a,X,Y).

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2007

7. Magic Sets 7-41

Adorned Program (8) l

Lemma:
e Let 7 be the minimal model of P and 7’ be the
minimal model of AD(P)U EDB(P).

e For every p € Prpp(P), p # answer, and every
B € valid(p):
Z'[lp-Bl = Z[p].
e Furthermore: Z'[answer] = Z[[answer].

I.e. this part of the transformation has not changed the minimal mo-
del in an important way. It only renamed predicates (and possibly
duplicated them).

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2007

7. Magic Sets 7-42

Magic Set Transformation (1)'

Notation:
e For a literal A =p B(t1,...,tn) let
magzc[A] .= mpﬁ(tila c . 7tik)7
where 1 <11 < --- <1 < n are the argument posi-
tions with 3(i;) = b.

e For a literal A = answer(Xq,...,X,) with the special
predicate answer let magic[A] := true.

Example:

e magic[parent bf(X,Y)] := m_parent bf(X).

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2007

7. Magic Sets 7-43

Magic Set Transformation (2)'

Definition:
e let P = EDB(P)UIDB(P) be a logic program
and AD(P) be the version of IDB(P) with explicit
binding patterns.

e Then MAG(P) contains the following rules:
¢ For each rule A« B{ A---ANBpy in AD(P):
A «— magiclA] AN By A -+ A B,
¢ For each rule A «— By AN--- AN By in AD(P) and
every i € {1,...,m} with pred(B;) € Prpp(P):
magic|B;] < magiclA] ANBy N---ANB;_1.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2007

7. Magic Sets 7-44

Magic Set Transformation (3)'

Definition:
e Rules of the type
A «— magic[A] ANB1{ A --- A\ Bp,

are called “modified rules’ .

e Rules of the type
magic|B;] < magic[A] ANBy A--- AN B;_1

are called “magic rules’ .

e A “magic fact” is a fact (ground atom) of the form
m_p_(3. All other facts are called “non-magic facts’.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2007

7. Magic Sets 7-45

Magic Set Transformation (4)'

Exercises:

e Check that the defined “magic set” transformation
gives the result on Slide 7-8 and 7-9 (without suf-
fix bf) for the “grandparent” example (Slide 7-4).

e Compute the result of the transformation for append
with binding pattern bbf.

append([], L, L) « true.

append(X, L, Y) <« cons(H,T,X) A cons(H,TL,Y) A
append(T, L, TL).

answer (X) «— append([a], [b, c], X).

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2007

7. Magic Sets 7-46

Correctness (1) l
Lemma:

o Let 74p be the minimal model of AD(P)UEDB(P),
Tyrac be the minimal model of MAG(P)UEDB(P).

e For all non-magic facts A the following holds:
o If IMAG — A, then IAD — A.

Proof Sketch: Induction on the number of derivation steps. A non-
magic fact can only be derived by a “modified rule”, but this is
only a restricted version of the corresponding rule in AD(P).

o If Tgop = A and Iy 4 = magiclA],
then IMAG — A.

Proof Sketch: Induction on the number of derivation steps of A
from Zap.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2007

7. Magic Sets 7-47

Correctness (2)

T heorem:

e Let Z4op and Zy;ac be as above, and Z be the mi-
nimal model of EDB(P)UIDB(P). Then the follo-
wing holds:

Ty aclanswer]| = Z4pllanswer] = Z[answer].

e [.e. the transformed program is equivalent to the
original program in the sense that it returns the
same answers.

The two programs are not logically equivalent. Actually, that is not
even defined, because the programs are based on different signatures.
The programs could be called “answer-equivalent’.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2007

7. Magic Sets 7-48

Correctness (3) l

o Let P be range-restricted with respect to wval:d.

T heorem:

e Then MAG(P) is range-stricted with respect to
valid', where

valid'(q) = { {f...f} if ¢ has the form p_.8/m_p 3

valid(q) otherwise.

e [.e. the transformed program can be evaluated by
iteration of the T'p-Operator.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2007

7. Magic Sets 7-49

Overview I

1. Introduction (Examples, Motivation, Idea)

2. SIP Strategies, Adorned Program

3. The Magic Set Transformation

[4. Improvements]

5. Efficiency Comparison with SLD-Resolution

6. SLDMagic Method

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2007

7. Magic Sets

7-50

Example:

magic
magic
magic

A

times.

B
By

B3]

rT 11

magic|
magic|
magic|
magic|

Supplementary Predicates (1)'

e Rule from AD(P), all B; with IDB-predicates:
A «— B1 N Bo A\ Bs3.

e Result of the magic set transformation:

N B1.

| AN B1 A Bo.
| AN By A B> A\ Bs.

e [he same joins and selections are computed several

Stefan Brass: Deductive Databases and Logic Programming

Univ. Halle, 2007

7. Magic Sets 7-51

Supplementary Predicates (2)'

Solution:

e Compute each join only once, store the result in a
new ‘supplementary predicate’:

magic|B1] < magic[Aq].

S1 — magic[Aq] N B1.
magic[Bs] «— S7.

So — S1 N B>
magic[Bz] «— S5.

A — So A B3

e [he arguments of the S; are those variables from
magic[A]ANB1A---AB,;, that are still needed, i.e. that
occur in B;4q,...,Bm, A.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2007

7. Magic Sets 7-52

Supplementary Predicates (3)

e [he deductive DBMS CORAL uses this method
(“Magic Sets with Supplementary Predicates”).

CORAL is installed on our SUN machines. Before calling it, one must
use setenv CORALROOT /usr/central/coral. Then it can be called with
$CORALROOT/bin/coral. A manual is in $CORALROOT/doc/manual.ps (use
gv to display it). Homepage: http://www.cs.wisc.edu/coral/.

In CORAL, rules are written into modules, an example sg.P is shown
on the next slide. Facts are written outside modules, e.g. into *.F-
files. The files are processed with, e.g., consult(sg.P). For modules,
this does the magic set transformation, the result is stored in sg.P.M
(quite readable, i.e. one can look at the result of the transformation).

Strings are written, e.g., "abc". If it has the form [a-z] [a-zA-Z0-9_.]%*,
no " is needed. Computation: Y = X+1. Query syntax: 7 sg(julia, X).
To get all answers immediately: clear(interactive_mode) . Also useful:
help., quit., list_rels.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2007

7. Magic Sets 7-53

Supplementary Predicates (4)'

Example (CORAL):

e Rules in Coral are written in modules, with exported
predicates and possible binding patterns defined.
module same_generation_cousins.
export sg(bf).

sg(X,X) :- person(X).
sg(X,Y) :- parent(X,Xp), sg(Xp,Yp), parent(Y,Yp).

end_module.

export also works with several binding patterns, e.g. sg(bf,ff). More
bound arguments in the call are possible, but not so efficient.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2007

7. Magic Sets 7-54

Supplementary Predicates (5)'

e Example:

sg(X,Y) « parent(X,Xp) A sg(Xp, Yp) A parent(Y, Yp).
e Result (if parent is an EDB-predicate):
sup 2 1(X,Xp) <« m_sg bf(X) A
parent (X, Xp).
m_sg_bf(X) — sup 2 1(X,Xp).
sg bf(X,Y) — sup 2. 1(X,Xp) A
sg bf(Xp, Yp) A
parent(Y, Yp).
e In CORAL, the -th supplementary predicate of the
n-th rule is named “sup n 2".

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2007

7. Magic Sets 7-55

Supplementary Predicates (6)'

e Example (continued):
sg(X,X) < person(X).
e [he transformation of this non-recursive rule that
only uses an EDB-predicate iIs easy:
sg bf(X,X) < m_sg bf(X) A person(X).
e Coral also supports other transformations.

Try one of: “@magic+."”, "“@sup_magic+.” (this is the default),
“@factoring+.”, “no_rewriting+.”, “sup_magic_indexing+.".

e [he SIP-strategy is left-to-right.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2007

7. Magic Sets 7-56

Supplementary Predicates (7)'

Note:

e In this method, magic sets are always directly deri-
ved from supplementary predicates.

e One can try to replace the magic predicates by the
supplementary predicates.

e If 3 magic predicate is defined by only one rule (only
one call of p_B), this is simply a macro-expansion.

e Otherwise, one would have to duplicate rules.

e Depending on the application, it might be an ad-
vantage to distinguish different calls of a predicate.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2007

7. Magic Sets 7-57

Rectification (1) l

e Problem/Example:

p(Y1,Y2,Y3) «— q(X, X,Y7,Y5,Y3).
q(a,b,Y1,Y5,Y3) «— (Y1) Ar(Y2) Ar(Y3).

e T he basic magic set method as explained above
distinguishes only between “bound” and “free” ar-
gument positions.

e It calls g with the binding pattern fffff.

e Suppose that there are n facts about r. Then n3
facts about g will be derived, although the rule does
not match the call.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2007

7. Magic Sets 7-58

Rectification (2)

e Since the body of the first rule is not unifiable with
the head of the second rule, SLD-resolution would
immediately stop (without looking at the r-facts).

Such a situation probably does not happen often in practice. But since
one wants to prove that magic sets are (in some sense) as efficient
as (or really as goal-directed as) SLD-resolution, this is a problem.

e T he magic set method can pass only concrete va-
lues for the arguments to a called predicate.

e [he basic method cannot pass the information to q
that the first two arguments must be equal.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2007

7. Magic Sets 7-59

Rectification (3) l

e A logic program is rectified iff no body literal con-

Definition:

tains the same variable more than once, i.e. for
every body literal p(t1,...,tn), if t; = t; for i # j,
then t¢; is a constant.

Remark:

e In the magic predicates, free argument positions are
projected away (not represented). If the program is
rectified, this does not lead to a loss of information.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2007

7. Magic Sets 7-60

Rectification (4) l

e Every logic program that does not contain function

symbols (structured terms) can be transformed into
an equivalent, rectified program.

Again, equivalent means that it produces the same answer.

e [he rectification is done by introducing predicate
variants that contain at different argument positi-
ons the same arguments: plitin) (¢, ... ¢.) corre-
sponds to p(t;,,...,t;,), €.9.

o ¢(1L1.23.4)(x v1,Y5,Y3) means q(X,X,Yq, Yo, Y3).

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2007

7. Magic Sets 7-61

Rectification (5)

e One specializes the rules of the original predicate
once for each such predicate variant:

¢ E.g., the critical rule ¢(a,b,...) «— ... is dele-
ted in the specialization for the predicate variant
q(171727374>-

Note that this is a predicate name. In practice, one of course has
to encode it without exponent, parentheses, commas.

e In general, one tries to unify the rule head with
p(ti;,...,t;,). If it is unifiable, the result is encoded
with the new predicates: p{i1:-+in) in the head, and
in the body as needed to ensure rectification.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2007

7. Magic Sets 7-62

Rectification (6)

e As explained above, rectification is applied befo-
re the adorned program is computed and the SIP-

strategy is applied.

e However, one could do the rectification also to-
gether with the adornment.

e [hen binding patterns consist not of b and £, but of
“constant”, “variable-1",6 “variable-2", and so on.

Note that it is no problem if a bound variable appears twice in a
body literal. SO one might need fewer predicate variants in this way.
Note also that if one wants to come close to SLD-resolution, only
SIP-strategies are interesting that do not ignore existing bindings.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2007

7. Magic Sets 7-63

Overview I

1. Introduction (Examples, Motivation, Idea)

2. SIP Strategies, Adorned Program
3. The Magic Set Transformation

4. Improvements

(5. Efficiency Comparison with SLD—Resqution}

6. SLDMagic Method

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2007

7. Magic Sets 7-64

Problem: Tail Recursion (1)'

Example:

e Computation of all nodes reachable from a given
node (standard ‘transitive closure” example):

path(X,Y) «— link(X,Y).
path(X,Z) <« link(X,Y) Apath(Y, Z).

? path("http://... /0", X).

e EDB-Relation (Hypertext-Graph):
link :={(i—1,7) |1 <i<n}.

©—@®— @

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2007

7. Magic Sets 7-65

Problem: Tail Recursion (2)'

Complexity of Magic Sets:

e The query path(0, X) calls the subquery path(1, X),
and so on.

e In the end, all facts path(i,j) are computed.

e Derivable facts:

m_path_bf(i) fur 0<i<mn
path(i, j) fir 0<i1<j<n

e These are (n+2)(n+ 1)/2 facts, thus the runtime
is at least quadratic (probably more).

e [his example should run in linear timel

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2007

7. Magic Sets 7-66

Problem: Tail Recursion (3)'

Runtime (CORAL):

t

o -

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2007

7. Magic Sets 7-67

Problem: Tail Recursion (4)'

SLD-Resolution (Prolog):

e T he SLD-tree is shown on the next slide.

e Number of nodes in the SLD-tree: 4n + 3.

e Each node consists of maximally two literals.
e Complexity of each access to link: O (log(n))
e Total complexity: O (n*log(n)).

e If one could access link bf in time O(1) (e.g., hash
table), the total runtime would really be linear.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2007

7. Magic Sets 7-68

Problem: Tail Recursion (5)'

path(0, X)

/N

link(0, X) link(0,Y) A path(Y, X)

X=1 path(1l, X)

path(n, X)

/N

link(n,X) link(n,Y) A path(Y, X)

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2007

7. Magic Sets 7-69

Problem: Tail Recursion (6)

Historical Note:

e A paper “Bottom-Up Beats Top-Down for Data-
log” from Jeffrey Ullman appeared in PODS'89.

e It proves that seminaive evaluation of the magic set
transformed program is always at least as efficient
as ‘“‘top-down evaluation’ .

e However, "“top-down evaluation” as used in this pa-
per is not SLD-resolution.

It is a top-down query evaluation algorithm defined by Ullman himself
(QRGT: Queue-Based Rule/Goal Tree Expansion). He even states
that “this algorithm is easily seen to mimic the search performed by
Prolog’'s SLD resolution strategy’.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2007

7. Magic Sets 7-70

Problem: Tail Recursion (7)'

Historical Note, continued:

e [he paper contains a footnote that Prolog imple-
mentations usually contain a form of tail-recursion
optimization that makes them faster than QRGT
In certain cases.

e As shown here, it is not necessary to go down to
the implementation level (e.g., the WAM). T he effi-
cient treatment of tail recursion is inherent in SLD-
resolution.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2007

7. Magic Sets 7-71

Efficiency of Magic Sets (1)'

T heorem:

o Let P be a rectified program.

e L et the standard left-to-right SIP-strategy and SLD
selection function be used.

e Then for each magic fact m_p ((cq,...,c.) that is
derivable from MAG(P)U EDB(P), there is a node
in the SLD-tree with selected literal A, such that

magic|A] = m_p_B(cq,...,cL).

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2007

7. Magic Sets 7-72

Efficiency of Magic Sets (2)'

Example:

e For each m path bf(i) there is a node path(i, X) in
the SLD-tree.

Note:

e [.e. magic facts correspond to selected literals in
the SLD-tree.

e Since both encode subqueries or predicate calls,
there is a strong relation between both methods.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2007

7. Magic Sets

Efficiency of Magic Sets (3)'

Definition:

7-73

e If a node AN By A---AN By in the SLD-tree has a
descendant node (B1 A --- A Bp)6, where 6 is the

composition of the MGUs on this path, one says
that A6 was proven as a lemma.

T heorem:

o Let P be a rectified program.

e Every non-magic fact about an IDB-predicate that

is derivable from MAG(P) U EDB(P) is proven in
the SLD-tree as a lemma.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2007

7. Magic Sets

7-74

Efficiency of Magic Sets (4)'

> path(0,1)
| true - > path(0, 2)
> path(1,2)

th(n —1,X
pa (nW\\\:) :}path(nf—-l,n)
| true
path(n, X)

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2007

7. Magic Sets 7-75

Efficiency of Magic Sets (5)'

Reason for the Problem:

e With a linear number of nodes, one can prove a
quadratic number of lemmas.

The lemma depends on the path, or at least start and end node.

e T he magic set method stores these lemmas expli-
citly. In the SLD-tree, they are only implicit.

e [his problem occurs only for tail recursions.

e Otherwise (no tail recursions), the number of ap-
plicable rule instances in the transformed program
is O(number of nodes in the SLD-tree).

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2007

7. Magic Sets 7-76

Efficiency of Magic Sets (6)'

e If the program contains no function symbols and
built-in predicates, bottom-up evaluation termina-
tes and needs only polynomial time (wrt DB-size).

e SLD-resolution does not always terminate. Even if
It does, it might need exponential time

An example is given on the next slide.

e [here are variants of SLD-resolution that use ta-
bellation to avoid these problems (e.g. in XSB).

e But these methods have the same problem with tail
recursions (they are equivalent to magic sets).

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2007

7. Magic Sets T7-77

Efficiency of Magic Sets (7)

e [here are exponentially many paths in this graph,
and Prolog (SLD-resolution) follows them all:

e But the number of connected node pairs is quadra-
tic, and magic sets compute only these.

Because of join computations and duplicate elimination, the actual
runtime is probably O(n? xlog(n)).

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2007

7. Magic Sets 7-78

Further Problems (1)'

Nonrecursive Programs can Become Recursive:

e [he “grandparent’'-example on Slide 7-4 is non-
recursive.

e However, the output of the magic set transformati-
on for this example (Slide 7-8 and 7-9) is recursive:

parent(X,Y) «— m_parent bf(X) A
mother(X,Y).

parent(X,Y) «— m parent bf(X) A
father(X,Y).

m parent bf(Y) <« m grandparent bf(X) A
parent(X,Y).

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2007

7. Magic Sets 7-79

Further Problems (2)

e If the bottom-up machine cannot process recursive
programs (e.g., a classical SQL-DBMS), this is a
real problem.

Otherwise, magic sets can be used for query optimzation in SQL-
systems, when the query refers to views.

e Even if recursive programs can be processed, the
recursion causes a significant overhead.

Multiple relation variants are needed for the seminaive iteration, one
cannot do a simple unfolding/expansion of the resulting relational
algebra expressions, duplicate checks are necessary.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2007

7. Magic Sets 7-80

Further Problems (3)'

e \Why does this happen??

¢ The problem is that there are two calls of the
parent-predicate, and the magic set method uses
only one predicate (magic set) to store the ar-
guments (input values) of the calls.

¢ The input values of the second call depend on
the result values of the first call.

¢ Since the magic set method does not distinguish
between both calls, one gets a recursion.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2007

7. Magic Sets 7-81

Further Problems (4)

e Although this is syntactically a recursion, one can
prove that a single application of the recursive ru-
le about m parent bf, and two applications of the
(recursive) rules about parent suffice.

See evaluation sequence on the next page. The important point is
that no new facts about m grandparent bf can be derived.

e NOo new facts will be derived if the recursive rules
are iterated further.

e [his is an example of a “bounded recursion’.

If the bottom-up “machine” detects and optimizes bounded recursi-
ons, there is no problem.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2007

7. Magic Sets

7-82

—

m parent bf(X)
parent(X,Y)

-
parent(X,Y)
m parent bf(Y)
parent(X,Y)

parent(X,Y)

Further Problems (5)'

m_grandparent bf(julia) < true.

m_grandparent bf(X).
m_parent bf(X) A
mother(X,Y).
m_parent bf(X) A
father(X,Y).
m_grandparent bf(X) A
parent(X,Y).
m_parent bf(X) A
mother(X,Y).
m_parent bf(X) A
father(X,Y).

Stefan Brass: Deductive Databases and Logic Programming

Univ. Halle, 2007

7. Magic Sets 7-83

Further Problems (6)'

Example:

e In the next two examples, web queries will be writ-
ten in Datalog.

e [he following built-in predicates will be used:
¢ document (URL, Title, Text, Date)
¢ link(From, To, Label)
¢ index(Search_Term, URL, MaxResults)

¢ server (URL, Server_Part)

e EXxercise: Which binding patterns can be supported
with reasonable efficiency?

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2007

7. Magic Sets 7-84

Further Problems (7)'

Context Switches:

e \Web pages that have changed since my last visit:

has_changed(URL) :- my_links(URL, Last_Visit),
mtime (URL, Modif),
Modif > Last_Visit.

mtime (URL, Modif) :- document(URL, _, _, Modif).
e \When the magic set for calling mtime is constructed,
the bindings for Last_Visit are projected away.

e Later, these bindings must be reconstructed (with
an expensive join) for evaluating Modif > Last_Visit.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2007

7. Magic Sets

7-85

my_links (URL,Last_Visit)

|

URL

Last _Visit

Further Problems (8)'

e Getting results back into the context of the caller:

Modif > Last _Visit

|

URL

Last _Visit | Modif

|

URL

N\

X
URL | Modif

/

mtime (URL, Modif)

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2007

7. Magic Sets 7-86

Further Problems (9)'

e Note that the source of the problem is again that
different calls to a predicate are to be collected in
a single magic predicate.

e [herefore, the context of the specific call must be
forgotten when the input arguments are entered
into the table for the magic predicate.

e T his can also have advantages: Several identical
calls are merged, the result is computed only once.

e In the example, if URL were not a key in my_links,
the projection would eliminate duplicates.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2007

7. Magic Sets 7-87

Further Problems (10)'

Conditions for the Parameters:

e Magic sets pass to the called predicate only values
for the parameters, e.g. X=5, but not, e.g., X>5.

has_changed(URL) :- my_links(URL, Last_Visit),
mtime (URL, Modif),

Modif > Last_Visit.
e Example query:

has_changed (URL), server(URL, ’www.pitt.edu’).

e \When the query is evaluated with magic sets,
all pages in my_links are accessed.

has_changed(...) must be evaluated first: server(...) needs URL bound.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2007

7. Magic Sets 7-88

Further Problems (11) l

e SLD resolution is more flexible: It would first re-
place the call to has_changed by its definition:

my_links(URL, Last_Visit),
mtime (URL, Modif),

Modif > Last_Visit,

server (URL, ’www.pitt.edu’).

e Now server(...) can be evaluated directly after
my_links(...), before the expensive call mtime(...).

e In this way, only pages of the server ’www.pitt.edu’
must be accessed.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2007

7. Magic Sets 7-89

Further Problems (12)

e [he problem is here that magic sets are bound to
the predicate structure of the program.

Which is again linked to the fact that identical calls to a predica-
te at different places in a program should be merged. This can be
advantageous in certain situations and one cannot have both.

e SIP strategies determine the evaluation sequence
only within a rule.

Plus possibly bindings that are ignored when constructing the magic
set.

e SLD selection functions determine the evaluation
sequence within the entire remaining goal.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2007

7. Magic Sets 7-90

Further Problems (13)'

e Solutions for most of the above problems are known
in the literature:

¢ Magic sets with tail recursion optimization.
o A version of magic sets that guarantees that
NnoN-recursive programs remain non-recursive.

¢ A version of magic sets that can pass conditions
like X > 5 (unequalities) to the called predicate.

e My SLDMagic method (presented in the last part
of this chapter) solves all of the above problems in
a single framework.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2007

7. Magic Sets 7-91

Overview I

1. Introduction (Examples, Motivation, Idea)

2. SIP Strategies, Adorned Program
3. The Magic Set Transformation
4. Improvements

5. Efficiency Comparison with SLD-Resolution

[6. SLDMagic Method]

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2007

7. Magic Sets

7-92

Starting Point (Meta-Interpreter):

Anfrage / Programm

Interpreter for SLD-Resolution

Bottom-Up Machine

Note:

J

The SLD-Magic I\/IethodI

Top-Down
Machine

Input Programm written as Datalog Facts:
rule(grandparent (X,Z), [parent(X,Y), parent(Y,Z)]).

e Francois Bry explained magic sets in this way.

Stefan Brass: Deductive Databases and Logic Programming

Univ. Halle, 2007

7. Magic Sets 7-93

The Meta-Interpreter (1)'

e Initialization:
node (Query, [Queryl]) :- query(Query) .

e SLD-Resolution:

node (Query, Child) :- node(Query, [Lit|Rest]),
rule(Lit, Body),
append (Body, Rest, Child).

e Database Access:

node (Query, Rest) :- node(Query, [Lit|Rest]),
db(Lit) .

e QQuery is proven:

answer (Query) : - node (Query, []).

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2007

7. Magic Sets 7-94

The Meta-Interpreter (2)'

Theorem (Simulation of SLD-Resolution):

e For each node N with goal «— A7y A--- A A, in the
SLD-tree there is a fact node (Q0, [A], ..., AL]) deri-
vable from the meta-iterpreter, and a variable ren-
aming o, such that
o Alo=A; (fori=1,...,n), and
¢ QB0 is the result of applying all MGUs on the

path from the root to the node N to the query Q.

e ANnd vice versa corresponds each derivable node-fact
in this way to at least one node in the SLD-tree.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2007

7. Magic Sets 7-95

The Meta-Interpreter (3)'

Definition:
e A program is at most tail-recursive iff for each rule
A« By AN---N By the predicates of B; for : < n-—1
do not depend on the predicate of A.

I.e. only the last literal of every rule can be recursive.

Theorem (Termination):

e Let P be at most tail-recursive and let P, the DB,
and () be finite and without structured terms.

e [hen bottom-up evaluation of the meta-interpreter
terminates.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2007

7. Magic Sets 7-96

The Meta-Interpreter (4)'

e Sometimes magic sets are better.
Therefore the user should be able to choose the
evaluation method for each body literal.

e [his needs only two new rules in the interpreter.

e Start recursive call of SLD-resolution:

query(Lit) ;- node(_, [call(Lit)|_]1).

e Use the recursively computed results:

node (Query, Rest) :— node(Query, [call(Lit)|Rest]),
answer (Lit) .

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2007

7. Magic Sets 7-97

The Meta-Interpreter (5)

e [his is basically SLD resolution with tabulation:
o T he first rule puts the call into a table,

¢ the second rule takes proven lemmas from a ta-
ble in order to solve the literal.

e If call(...) is used for every body literal with an
IDB predicate, one gets something very similar to
magic sets with supplementary predicates.

query-facts correspond to facts about magic predicates, answer-facts
correspond to derived IDB-predicates, and node-facts correspond to
facts about the supplementary predicates.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2007

7. Magic Sets 7-98

The Meta-Interpreter (6)

e With the possibility to select magic set behaviour,
one can also overcome the termination problems of
the pure SLD-meta-interpreter:
¢ For every recursive call that is not tail-recursive,

one uses: call(...).

e For other body literals with IDB predicates, it is
an intersting problem for the optimizer to choose
between the two evaluation strategies.

It must try to find out how often the same call will be repeated. The
strength of magic sets is that it avoids repeated calls (at the cost
explained above).

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2007

7. Magic Sets

7-99

Interpreter
-+ Partial Evaluator

Compiler

Inputs for the Meta-Interpreter:

—1 Program

Interpreter |— Query

— | Database

J

Partial Evaluation (1)'

Known

>at compiletime

} only at runtime

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2007

7. Magic Sets 7-100

Partial Evaluation (2)

Idea:

e Fixpoint computation with conditional facts F « C.

C contains the part that is only known at runtime (typically bindings
for the variables in F).

e Application of a rule gives
¢ possibly a new conditional fact

After the derivation step, variables in conditional facts are norma-
lized Xo, X1,... to ensure that there are not unnecessarily many.

& a specialized rule.

e At runtime, the evaluation works only with instan-
ces of the conditions.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2007

7. Magic Sets 7-101

Partial Evaluation (3) l

Input Program:

path(X,Y) «— link(X,Y).
path(X,Z) < link(X,Y) Apath(Y, Z).

? path(0, X).

Initial Set of Conditional Facts:

e query(path(0,X)) « true.
e rule(path(X,Y), [1ink(X,Y)]) < true.
e rule(path(X,Z), [1link(X,Y), path(Y,Z)]) « true.

e db(1link(X,Y)) « 1link(X,Y).

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2007

7. Magic Sets 7-102
Partial Evaluation (4) l
Derivation Step:

Rule (from Meta-Int.): A — By N Bo
Conditional Facts: B — C;1 B, — Co
MGU((B]_,BQ), (BlaB/Q)) o
Part. eval. Rule: E«— Cqo N Coo
Conditional Fact: Aoc—E

Encoding of Result Literals:

variables that appear in both, in Ao , and
the CiO'.

E has the form p(Y1,...,Yn), where Y, are those

in one of

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2007

7. Magic Sets 7-103

Partial Evaluation (5) l

Prototype: http://www.informatik.uni-halle.de/

“brass/sldmagic/

Input: path(X,Y) - link(X,Y).
path(X,2Z2) - link(X,Y), path(Y,Z2).
?7- path(0, X).

Output: pPO(XO0) - 1ink(0,X0).
pl(X1) - link(0,X1).
p0(XO0) — pl(X1), link(X1,X0).
p1(X1) - pl(X2), link(X2,X1).

reach(d0,X0) :- pO0(XO0).

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2007

7. Magic Sets 7-104

Partial Evaluation (6) l

Conditional Facts:

db(edge(X0,X1)) :- edge(X0,X1).

rule(path(X0,X1), [edge(X0,X1)]) :- true.
rule(path(X0,X1), [edge(X0,X2) ,path(X2,X1)]) :- true.
query(path(0,X0)) :- true.

node (path(0,X0), [path(0,X0)]) :- true.

node (path(0,X0), [edge(0,X0)]) :- true.

node (path(0,X0), [edge(0,X1) ,path(X1,X0)]) :- true.
node (path(0,X0),[]1) :- p0(X0).

node (path(0,X0), [path(X1,X0)]) :- p1(X1).

node (path(0,X0), [edge(X1,X0)]) :- p2(X1).

node (path(0,X0), [edge (X1,X2) ,path(X2,X0)]) :- p3(X1).
answer (path(X0,X1)) :- path(X0,X1).

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2007

7. Magic Sets

7-105

e pO(X0)
pl(X1)
p2(X1)
p3(X1)
p0 (X0)
pl(X1) :

path(0,X0)

Partial Evaluation (7) l

Rules after partial evaluation:

edge (0,X0) .
edge(0,X1).
pl(X1).
pl(X1).

p2(X1), edge(X1,X0).
p3(X2), edge(X2,X1).

:— p0(X0).

e In the version shown above already
were eliminated.

As can be seen, further optimizations are possible, but already this
program does not more steps than SLD-resolution.

“‘copy rules”

Stefan Brass: Deductive Databases and Logic Programming

Univ. Halle, 2007

