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Objectives

After completing this chapter, you should be able to:

• perform the magic set transformation for a given

input program (and explain how it works)

• name different SIP strategies

• compare magic sets with SLD resolution

• name some problems of the magic set method and

sketch possible solutions.
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Overview
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2. SIP Strategies, Adorned Program

3. The Magic Set Transformation

4. Improvements

5. Efficiency Comparison with SLD-Resolution

6. SLDMagic Method
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Introduction (1)

Example (Grandparents of Julia):

• Logic Program (IDB-Predicates and Query):

parent(X, Y) ← mother(X, Y).
parent(X, Y) ← father(X, Y).
grandparent(X, Z) ← parent(X, Y)∧

parent(Y, Z).
answer(X) ← grandparent(julia, X).

• EDB-Predicates (stored in the database):

� father

� mother
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Introduction (2)

Problem:

• Naive/Seminaive Bottom-Up Evaluation computes

all parent- and grandparent-relationships of all per-

sons in the database.

• Until now, the actual query is considered only at

the very end of query evaluation — after the entire

minimal model was computed.

• Therefore, the method is not goal-directed: It com-

putes many superfluous facts, which are not rele-

vant for the query.
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Introduction (3)

Solution:

• The “Magic Set” Transformation rewrites the pro-

gram such that the rules can only “fire” when their

result (the derived fact) is relevant for the query.

• This is done by making the occurring queries and

subqueries explicit. They are encoded as facts of

“magic predicates”. E.g. the query

? grandparent(julia, X)

is represented as

m grandparent bf(julia).
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Introduction (4)

More About Encoding of Queries:

• Consider again the correspondance:

� Query: ? grandparent(julia, X)

� Magic Fact: m grandparent bf(julia).

• Magic facts should be representable in a database,

and therefore should not contain variables.

• Solution: The binding pattern indicates the position

of the variables (their name is not important).

• Only the values of constants in the query (bound

arguments) are explicitly stored in the magic fact.
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Introduction (5)

Example Output, First Part:

• Rules are restricted by an additional body literal so

that they can fire only if there is a matching query:

parent(X, Y) ← m parent bf(X) ∧
mother(X, Y).

parent(X, Y) ← m parent bf(X) ∧
father(X, Y).

grandparent(X, Z) ← m grandparent bf(X) ∧
parent(X, Y) ∧
parent(Y, Z).

answer(X) ← true ∧
grandparent(julia, X).

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2007



7. Magic Sets 7-9

Introduction (6)

Example Output, Second Part:

m grandparent bf(julia) ← true.
m parent bf(X) ← m grandparent bf(X).
m parent bf(Y) ← m grandparent bf(X) ∧

parent(X, Y).

• Of course, the original query must be represented

as a magic fact in the rewritten program.

• In addition, magic facts corresponding to the oc-

curring subqueries must be derivable.

• Example: To compute the grandparents of X, one

must first compute the parents of X.
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Introduction (7)

Summary (Equivalence):

• The “Magic Set” transformation produces a pro-

gram which is equivalent for the given query:

� The extension of the predicate “answer” in the

minimal model of the transformed program is

the same as in the minimal model of the original

program.

• But often the minimal model of the transformed

program is much smaller than the minimal model

of the original program.
It contains only IDB-facts that are relevant for the given query.
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Introduction (8)

Summary (Equivalence), Continued:

• This equivalence (for the predicate answer) is inde-

pendend of the extensions of the EDB-predicates:

� No database access is needed during the trans-

formation.

Therefore, the transformation itself is quite efficient (one usually
assumes that external memory accesses are expensive).

� The transformed program can be executed se-

veral times, even when the database state was

changed in the meantime.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2007
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Introduction (9)

Input Program
(simple, but not efficient)

A
AA

�
��

“Magic Set” Transformation

A
AA

�
��

Output Program
(returns the same answers,
but is evaluated more efficiently)
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Introduction (10)

Magic Sets and Built-in Predicates:

• The magic set transformation can also improve the

termination of programs with built-in predicates:

� E.g., append has an infinite extension.

� But for a concrete query, only a finite number of

facts might be needed.

E.g., when two given lists are appended.

� In this way, the magic set transformation might

turn an infinite minimal model into a finite one.

Of course, it depends on the program and the query whether this
works.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2007
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Introduction (11)

Top-Down vs. Bottom-Up:

• Before the magic set transformation, there were

two competing evaluation approaches:

� Top-down evaluation (e.g. SLD-resolution):

Starts from the query, simplifies it, until facts

can be used. Advantage: Goal-directed.

� Bottom-up evaluation (e.g., seminaive method):

Starts from the facts, computes derived facts,

until answers to the query are reached. Advanta-

ge: Avoids duplicate work, ensures termination.

• Magic sets combine the advantages of both.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2007
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Introduction (12)

Magic Sets — A Source Code Level Transformation:

• The underlying “bottom-up machine” can remain

unchanged.

• It is always good to separate problems and solve

them one after the other.

• One can understand the method on a high level of

abstraction (Herbrand models instead of internal

data structures).

• However, it is probably advantageous for an imple-

mentation to treat the magic predicates specially.
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Introduction (13)

IDB predicates as procedures:

• With magic sets, IDB predicates can be understood

as procedures with input and output arguments:

� Input: Relation M with bindings for the input

arguments (this is the “Magic Set”).

� Output: Relation R for all arguments.

It does not suffice to return only a relation for the output argu-
ments because the connection to the input arguments would not
be clear if M contains more than one tuple.

� If E is the original extension of the predicate,

R = E ��@@ M holds (this is a semi-join).

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2007
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Introduction (14)

IDB predicates as procedures, continued:

• Example:

M :
m parent bf

emil

frida

- parent bf

Procedure

-

R:
parent bf

emil arno

emil birgit

frida chris

frida doris

The database might contain many more mother/father relationships,
but only the required parent tuples are derived.

• However, for recursive predicates, M might still be

extended later.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2007
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SIP-Strategies (1)

Motivation:

• SIP =
”
Sideways Information Passing“

When rules are evaluated, information is passed “sideways”: from a
body literal that is evaluated earlier to one that is evaluated later.

• grandparent(X, Z)← parent(X, Y) ∧ parent(Y, Z).

� Variable binding from the caller: X = julia.

� This is passed to the first body literal.

� By evaluating this body literal, one gets bindings

for Y, e.g. Y = emil and Y = frida.

� These are passed to the second body literal.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2007
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SIP-Strategies (2)

• However, for the query “? grandparent(X, arno)”, it

is more efficient to start the evaluation of

grandparent(X, Z)← parent(X, Y) ∧ parent(Y, Z)

with the second body literal.

� Then the binding Z = arno can be used.

� This gives bindings for Y, which can be passed

to the first body literal.

• If instead one evaluates the first body literal first,

this is done with the binding pattern ff, and one

has to compute the complete extension of parent.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2007
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SIP-Strategies (3)

Definition:

• Given a rule A ← B1 ∧ · · · ∧ Bm and a binding pat-

tern β for pred(A),

• a SIP-strategy defines an evaluation sequence for

the body literals, i.e. a permutation

π: {1, . . . , m} → {1, . . . , m},

• and for every k ∈ {1, . . . , m} a valid binding pattern

βπ(k) ∈ valid
(
pred(Bπ(k))

)
such that

input(Bπ(k), βπ(k)) ⊆ input(A, β) ∪
k−1⋃
j=1

vars(Bπ(j)).

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2007
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SIP-Strategies (4)

Note:

• This is the same condition for π and βπ(k) as in the

definition of “range restricted rule”.

• A given evaluation sequence determines “maximally

bound” binding patters for the body literals:

� Values for variables in “bound” argument posi-

tions in the head literal are known.

� Values for variables in body literals that were

evaluated earlier are known.

� All other variables do not have a known value yet,

thus they lead to “free” argument positions.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2007
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SIP-Strategies (5)

• Most SIP-strategies choose the above “maximal”

binding pattern that uses all existing bindings.

• Therefore, the real decision is the evaluation se-

quence for the body literals. The binding patterns

are then often automatically determined.
However, the possible evaluation sequences depend on the valid bin-
ding patterns for the body literal: Some predicates can only be eva-
luated if certain arguments are bound.

• A SIP-strategy can ignore existing bindings and

choose a more general binding pattern.
Possible reasons are explained on the next slide.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2007
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SIP-Strategies (6)

Reasons for not choosing the maximal binding pattern:

• Not all binding patters might be implemented.
This is obvious for built-in predicates, but happens also for IDB-
predicates in separately compiled modules (modules define “exported
binding patterns”).

• One needs the more general binding pattern anyway

at some other place in the program.
In this way, one avoids duplicating the rules. But unless the other
binding pattern is ff . . . f, one computes more tuples (if calls disjoint).

• to simplify the magic rules.
An even more general kind of “SIP-strategy” permits to choose a
subset of the earlier evaluated body literals for the magic rule.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2007
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SIP-Strategies (7)

Exercise:

• Consider this rule (with only IDB predicates):

ship_to(ProdName, City) ←
has_ordered(CustNo, ProdNo) ∧
customer_city(CustNo, City) ∧
product_name(ProdNo, ProdName).

• Select a good evaluation sequence for each of the

following calls, and state the binding patterns:

� ship_to(X, ’Halle’).

� ship_to(’Van Tastic’, X).

� ship_to(’Van Tastic’, ’Halle’).

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2007
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SIP-Strategies (8)

Framework for SIP-Strategies:

• Let A ← B1 ∧ · · · ∧ Bm be called with binding pat-

tern β. One chooses first π(1) (i.e. the first body

literal to evaluate), then π(2), and so on.

• Given that one has already chosen π(1), . . . , π(k),

the i-th body literal is possible with binding pat-

tern β′ ∈ valid
(
pred(Bi)

)
iff the literal has not been

chosen yet, i.e. i ∈ {1, . . . , m}−{π(1), . . . , π(k)} and

input(Bi, β
′) ⊆ input(A, β) ∪

k⋃
j=1

vars(Bπ(j)).

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2007
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SIP-Strategies (9)

Example:

• Consider the following rule is called with p(X,3):

p(X, Y )← X < Y ∧ q(X).

• At the beginning, only the second body literal is

evaluable (with binding pattern f).

The only valid binding pattern for < is bb, therefore the first body
literal cannot be evaluated at this point (although it has more bound
arguments than q(X): the value for Y is already known).

• Thus, all SIP-strategies must select π(1) = 2.

• After q(X) is evaluated, the value of X is known,

and the first literal becomes evaluable: π(2) = 1.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2007
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SIP-Strategies (10)

Common SIP-Strategies:

• Among all possible (i, β), choose one such that β

has the smallest number of free argument positions.

• Among all possible (i, β), choose one such that β

has the largest number of bound arguments.

• Among all possible (i, β), choose one such that i is

minimal, and among those one such that β has the

largest number of bound argument positions.

This strategy evaluates body literals in the sequence given by the
programmer as far as possible.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2007



7. Magic Sets 7-29

SIP-Strategies (11)

Example:

• Consider the rule

p(X1, X2)← q(X1, Y ) ∧ r(X1, X2, Z1, Z2)

and the call p(a, b).

• A SIP-strategy that tries to maximize the number

of bound argument positions begins the evaluation

with the second body literal: r(X1, X2, Z1, Z2).

• A SIP-strategy that minimizes the number of free

argument positions chooses q(X1, Y ) first.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2007
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SIP-Strategies (12)

Further Input for SIP-Strategies:

• The SIP-strategy is an important component of the

optimizer of a deductive DBMS.

• It should take also the following information into

account:

� Keys

� Indexes

� Size of Relations

� Number of different values in an attribute

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2007
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SIP-Strategies (13)

Goals of SIP-Strategies:

• Try to keep intermediate results small.

• “Fail as early as possible”.

• Call expensive predicates only when cheap tests we-

re successful. Expensive predicates are:

� Recursive predicates

� Predicates that need themselves many joins and

possibly a duplicate elimination.

� Built-in predicates with complicated computati-

ons or slow network accesses.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2007
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SIP-Strategies (14)

Exercises:

• p(X, Z)← q(X, Y1, Y2, Y3)∧r(Y1, Z), with call p(a, b),

when the first argument of q and r is a key.

• Suppose p is defined by p(X)← q1(X) ∧ q2(X) and

is called with binding pattern f. Cost estimates:

� q1: f produces 100 tuples in 100ms.

� q1: b checks a single value in 3ms (index).

� q2: f produces 1000 tuples in 200ms.

� q2: b checks a single value in 100ms (FT scan).

� Sorting/intersecting the two sets costs 1000ms.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2007
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Adorned Program (1)

Goal:

• The first step of the transformation is to make the

binding patterns of the IDB-predicates explicit.
This simplifies the definition of the main magic set transformation.

• I.e. the predicate p is renamed to p β. Several ver-

sions of a predicate are produced for different β.
Sometimes one IDB-predicate is called with different binding patterns.

• Furthermore, the body literals are ordered in the

evaluation sequence.
In this way, the information from the SIP-strategy is encoded in the
program.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2007
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Adorned Program (2)

Definition:

• Let a logic program P , valid binding patterns valid

and a SIP-strategy S be given.

• For each predicate p ∈ PIDB(P ), p 6= answer, and

every binding pattern β ∈ valid(p) a new predicate

p β is introduced.

• For a literal A = p(t1, . . . , tn) and binding pattern

β ∈ valid(p) let

adorn(A, β) :=


p β(t1, . . . , tn) if p ∈ PIDB(P ),

p 6= answer

p(t1, . . . , tn) otherwise.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2007
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Adorned Program (3)

Definition, continued:

• The program AD(P ) contains for each rule

A← B1 ∧ · · · ∧Bm from IDB(P )

and each binding pattern β ∈ valid
(
pred(A)

)
the rule

adorn(A, β) ← adorn(Bπ(1), βπ(1)) ∧ · · · ∧
adorn(Bπ(m), βπ(m)),

where π and β1, . . . , βm are determined by the SIP-

strategy S.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2007
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Adorned Program (4)

Note:

• It is theoretically simpler to process every rule for

each possible binding pattern.

• The unnecessary binding patterns are eliminated

when one later deletes all predicates (and their de-

finitions) on which “answer” does not depend.

• In practice, only necessary p β are constructed.

E.g. one manages a set of all combinations (p, β) that still have to
be processed. This is intialized with {(answer, f . . . f)}. In each step,
one takes an element from this set and generates the rules for p β. If
the rule bodies contain new combinations of predicates and binding
patterns, one inserts them into the set.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2007
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Adorned Program (5)

• Binding patterns chosen by the SIP-strategy for

EDB-/builtin predicates are important to determine

which index/implementation variant is to be used.

• But the names of these predicates are determined in

the database/the system, they cannot be changed.
In contrast, names of IDB-predicates (6= answer) are only important
within the program.

• Furthermore, the explicit binding patterns are a pre-

paration for the magic set transformation. This is

not useful for EDB-predicates, because their com-

plete extensions are already stored.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2007
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Adorned Program (6)

Exercise:

• Compute AD(P ) (as far as relevant for answer).

Use a good SIP-strategy:

� parent(X, Y) ← mother(X, Y).
parent(X, Y) ← father(X, Y).
grandparent(X, Z) ← parent(X, Y) ∧ parent(Y, Z).
answer(X) ← grandparent(julia, X).

� append([ ], L, L) ← true.
append(X, L, Y) ← cons(H, T, X) ∧ cons(H, TL, Y) ∧

append(T, L, TL).
answer(X) ← append([a], [b, c], X).

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2007
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Adorned Program (7)

Exercise, continued:

• Compute AD(P ) (as before):

�
”
Same Generation Cousins“:

sg(X, X) ← person(X).
sg(X, Y) ← parent(X, Xp) ∧ parent(Y, Yp) ∧

sg(Xp, Yp).
answer(X) ← sg(julia, X).

� Abstract Example:

answer(yes) ← p(a, b).
p(X, Z) ← q(X, Y) ∧ q(Y, Z).
q(X, Y) ← r(a, X, Y).

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2007
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Adorned Program (8)

Lemma:

• Let I be the minimal model of P and I′ be the

minimal model of AD(P ) ∪ EDB(P ).

• For every p ∈ PIDB(P ), p 6= answer, and every

β ∈ valid(p):

I′[[p β]] = I[[p]].

• Furthermore: I′[[answer]] = I[[answer]].
I.e. this part of the transformation has not changed the minimal mo-
del in an important way. It only renamed predicates (and possibly
duplicated them).

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2007
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Magic Set Transformation (1)

Notation:

• For a literal A = p β(t1, . . . , tn) let

magic[A] := m p β(ti1, . . . , tik),

where 1 ≤ i1 < · · · < ik ≤ n are the argument posi-

tions with β(ij) = b.

• For a literal A = answer(X1, . . . , Xn) with the special

predicate answer let magic[A] := true.

Example:

• magic[parent bf(X, Y)] := m parent bf(X).

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2007
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Magic Set Transformation (2)

Definition:

• Let P = EDB(P ) ∪ IDB(P ) be a logic program

and AD(P ) be the version of IDB(P ) with explicit

binding patterns.

• Then MAG(P ) contains the following rules:

� For each rule A← B1 ∧ · · · ∧Bm in AD(P ):

A← magic[A] ∧B1 ∧ · · · ∧Bm.

� For each rule A ← B1 ∧ · · · ∧ Bm in AD(P ) and

every i ∈ {1, . . . , m} with pred(Bi) ∈ PIDB(P ):

magic[Bi]← magic[A] ∧B1 ∧ · · · ∧Bi−1.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2007



7. Magic Sets 7-44

Magic Set Transformation (3)

Definition:

• Rules of the type

A← magic[A] ∧B1 ∧ · · · ∧Bm

are called “modified rules”.

• Rules of the type

magic[Bi]← magic[A] ∧B1 ∧ · · · ∧Bi−1

are called “magic rules”.

• A “magic fact” is a fact (ground atom) of the form

m p β. All other facts are called “non-magic facts”.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2007
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Magic Set Transformation (4)

Exercises:

• Check that the defined “magic set” transformation

gives the result on Slide 7-8 and 7-9 (without suf-

fix bf) for the “grandparent” example (Slide 7-4).

• Compute the result of the transformation for append

with binding pattern bbf.

append([ ], L, L) ← true.
append(X, L, Y) ← cons(H, T, X) ∧ cons(H, TL, Y) ∧

append(T, L, TL).
answer(X) ← append([a], [b, c], X).

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2007
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Correctness (1)

Lemma:

• Let IAD be the minimal model of AD(P )∪EDB(P ),

IMAG be the minimal model of MAG(P )∪EDB(P ).

• For all non-magic facts A the following holds:

� If IMAG |= A, then IAD |= A.
Proof Sketch: Induction on the number of derivation steps. A non-
magic fact can only be derived by a “modified rule”, but this is
only a restricted version of the corresponding rule in AD(P ).

� If IAD |= A and IMAG |= magic[A],

then IMAG |= A.
Proof Sketch: Induction on the number of derivation steps of A

from IAD.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2007
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Correctness (2)

Theorem:

• Let IAD and IMAG be as above, and I be the mi-

nimal model of EDB(P )∪ IDB(P ). Then the follo-

wing holds:

IMAG[[answer]] = IAD[[answer]] = I[[answer]].

• I.e. the transformed program is equivalent to the

original program in the sense that it returns the

same answers.

The two programs are not logically equivalent. Actually, that is not
even defined, because the programs are based on different signatures.
The programs could be called “answer-equivalent”.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2007
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Correctness (3)

Theorem:

• Let P be range-restricted with respect to valid.

• Then MAG(P ) is range-stricted with respect to

valid′, where

valid′(q) :=

 {f . . . f} if q has the form p β/m p β
valid(q) otherwise.

• I.e. the transformed program can be evaluated by

iteration of the TP -Operator.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2007
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Supplementary Predicates (1)

Example:

• Rule from AD(P ), all Bi with IDB-predicates:

A← B1 ∧B2 ∧B3.

• Result of the magic set transformation:

magic[B1] ← magic[A1].
magic[B2] ← magic[A1] ∧B1.
magic[B3] ← magic[A1] ∧B1 ∧B2.
A ← magic[A1] ∧B1 ∧B2 ∧B3.

• The same joins and selections are computed several

times.
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Supplementary Predicates (2)

Solution:

• Compute each join only once, store the result in a

new “supplementary predicate”:
magic[B1] ← magic[A1].
S1 ← magic[A1] ∧B1.
magic[B2] ← S1.
S2 ← S1 ∧B2.
magic[B3] ← S2.
A ← S2 ∧B3.

• The arguments of the Si are those variables from

magic[A]∧B1∧· · ·∧Bi, that are still needed, i.e. that

occur in Bi+1, . . . , Bm, A.
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Supplementary Predicates (3)

• The deductive DBMS CORAL uses this method

(“Magic Sets with Supplementary Predicates”).
CORAL is installed on our SUN machines. Before calling it, one must
use setenv CORALROOT /usr/central/coral. Then it can be called with
$CORALROOT/bin/coral. A manual is in $CORALROOT/doc/manual.ps (use
gv to display it). Homepage: http://www.cs.wisc.edu/coral/.

In CORAL, rules are written into modules, an example sg.P is shown
on the next slide. Facts are written outside modules, e.g. into *.F-
files. The files are processed with, e.g., consult(sg.P). For modules,
this does the magic set transformation, the result is stored in sg.P.M

(quite readable, i.e. one can look at the result of the transformation).

Strings are written, e.g., "abc". If it has the form [a-z][a-zA-Z0-9_.]*,
no " is needed. Computation: Y = X+1. Query syntax: ? sg(julia, X).
To get all answers immediately: clear(interactive_mode). Also useful:
help., quit., list_rels.
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Supplementary Predicates (4)

Example (CORAL):

• Rules in Coral are written in modules, with exported

predicates and possible binding patterns defined.

module same_generation_cousins.

export sg(bf).

sg(X,X) :- person(X).

sg(X,Y) :- parent(X,Xp), sg(Xp,Yp), parent(Y,Yp).

end_module.

export also works with several binding patterns, e.g. sg(bf,ff). More
bound arguments in the call are possible, but not so efficient.
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Supplementary Predicates (5)

• Example:

sg(X, Y)← parent(X, Xp) ∧ sg(Xp, Yp) ∧ parent(Y, Yp).

• Result (if parent is an EDB-predicate):

sup 2 1(X, Xp) ← m sg bf(X) ∧
parent(X, Xp).

m sg bf(X) ← sup 2 1(X, Xp).
sg bf(X, Y) ← sup 2 1(X, Xp) ∧

sg bf(Xp, Yp) ∧
parent(Y, Yp).

• In CORAL, the i-th supplementary predicate of the

n-th rule is named “sup n i”.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2007



7. Magic Sets 7-55

Supplementary Predicates (6)

• Example (continued):

sg(X, X)← person(X).

• The transformation of this non-recursive rule that

only uses an EDB-predicate is easy:

sg bf(X, X)← m sg bf(X) ∧ person(X).

• Coral also supports other transformations.

Try one of: “@magic+.”, “@sup_magic+.” (this is the default),
“@factoring+.”, “no_rewriting+.”, “sup_magic_indexing+.”.

• The SIP-strategy is left-to-right.
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Supplementary Predicates (7)

Note:

• In this method, magic sets are always directly deri-

ved from supplementary predicates.

• One can try to replace the magic predicates by the

supplementary predicates.

• If a magic predicate is defined by only one rule (only

one call of p β), this is simply a macro-expansion.

• Otherwise, one would have to duplicate rules.

• Depending on the application, it might be an ad-

vantage to distinguish different calls of a predicate.
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Rectification (1)

• Problem/Example:

p(Y1, Y2, Y3)← q(X, X, Y1, Y2, Y3).
q(a, b, Y1, Y2, Y3)← r(Y1) ∧ r(Y2) ∧ r(Y3).

• The basic magic set method as explained above

distinguishes only between “bound” and “free” ar-

gument positions.

• It calls q with the binding pattern fffff.

• Suppose that there are n facts about r. Then n3

facts about q will be derived, although the rule does

not match the call.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2007



7. Magic Sets 7-58

Rectification (2)

• Since the body of the first rule is not unifiable with

the head of the second rule, SLD-resolution would

immediately stop (without looking at the r-facts).

Such a situation probably does not happen often in practice. But since
one wants to prove that magic sets are (in some sense) as efficient
as (or really as goal-directed as) SLD-resolution, this is a problem.

• The magic set method can pass only concrete va-

lues for the arguments to a called predicate.

• The basic method cannot pass the information to q

that the first two arguments must be equal.
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Rectification (3)

Definition:

• A logic program is rectified iff no body literal con-

tains the same variable more than once, i.e. for

every body literal p(t1, . . . , tn), if ti = tj for i 6= j,

then ti is a constant.

Remark:

• In the magic predicates, free argument positions are

projected away (not represented). If the program is

rectified, this does not lead to a loss of information.
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Rectification (4)

• Every logic program that does not contain function

symbols (structured terms) can be transformed into

an equivalent, rectified program.

Again, equivalent means that it produces the same answer.

• The rectification is done by introducing predicate

variants that contain at different argument positi-

ons the same arguments: p(i1,...,in)(t1, . . . , tk) corre-

sponds to p(ti1, . . . , tin), e.g.

� q(1,1,2,3,4)(X, Y1, Y2, Y3) means q(X, X, Y1, Y2, Y3).
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Rectification (5)

• One specializes the rules of the original predicate

once for each such predicate variant:

� E.g., the critical rule q(a, b, . . .) ← . . . is dele-

ted in the specialization for the predicate variant

q(1,1,2,3,4).
Note that this is a predicate name. In practice, one of course has
to encode it without exponent, parentheses, commas.

• In general, one tries to unify the rule head with

p(ti1, . . . , tin). If it is unifiable, the result is encoded

with the new predicates: p(i1,...,in) in the head, and

in the body as needed to ensure rectification.
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Rectification (6)

• As explained above, rectification is applied befo-

re the adorned program is computed and the SIP-

strategy is applied.

• However, one could do the rectification also to-

gether with the adornment.

• Then binding patterns consist not of b and f, but of

“constant”, “variable-1”, “variable-2”, and so on.

Note that it is no problem if a bound variable appears twice in a
body literal. So one might need fewer predicate variants in this way.
Note also that if one wants to come close to SLD-resolution, only
SIP-strategies are interesting that do not ignore existing bindings.
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Problem: Tail Recursion (1)

Example:

• Computation of all nodes reachable from a given

node (standard “transitive closure” example):

path(X, Y ) ← link(X, Y ).
path(X, Z) ← link(X, Y ) ∧ path(Y, Z).

? path(”http://. . . /0”, X).

• EDB-Relation (Hypertext-Graph):

link := {(i− 1, i) | 1 ≤ i ≤ n}.

"!
# 
0 -"!

# 
1 - · · · - "!

# 
n
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Problem: Tail Recursion (2)

Complexity of Magic Sets:

• The query path(0, X) calls the subquery path(1, X),

and so on.

• In the end, all facts path(i, j) are computed.

• Derivable facts:

m path bf(i) für 0 ≤ i ≤ n
path(i, j) für 0 ≤ i < j ≤ n

• These are (n +2)(n +1)/2 facts, thus the runtime

is at least quadratic (probably more).

• This example should run in linear time!
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Problem: Tail Recursion (3)

Runtime (CORAL):

- n

6

t

d d d
d
d
d
d

d

d
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Problem: Tail Recursion (4)

SLD-Resolution (Prolog):

• The SLD-tree is shown on the next slide.

• Number of nodes in the SLD-tree: 4n + 3.

• Each node consists of maximally two literals.

• Complexity of each access to link: O
(
log(n)

)
.

• Total complexity: O
(
n ∗ log(n)

)
.

• If one could access link bf in time O(1) (e.g., hash

table), the total runtime would really be linear.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2007



7. Magic Sets 7-68

Problem: Tail Recursion (5)

path(0, X)
�

�
�

��

link(0, X)

X = 1

@
@

@
@@

link(0, Y ) ∧ path(Y, X)

path(1, X)
...

path(n, X)
�

�
�

��

link(n, X)

@
@

@
@@

link(n, Y ) ∧ path(Y, X)
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Problem: Tail Recursion (6)

Historical Note:

• A paper “Bottom-Up Beats Top-Down for Data-

log” from Jeffrey Ullman appeared in PODS’89.

• It proves that seminaive evaluation of the magic set

transformed program is always at least as efficient

as “top-down evaluation”.

• However, “top-down evaluation” as used in this pa-

per is not SLD-resolution.
It is a top-down query evaluation algorithm defined by Ullman himself
(QRGT: Queue-Based Rule/Goal Tree Expansion). He even states
that “this algorithm is easily seen to mimic the search performed by
Prolog’s SLD resolution strategy”.
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Problem: Tail Recursion (7)

Historical Note, continued:

• The paper contains a footnote that Prolog imple-

mentations usually contain a form of tail-recursion

optimization that makes them faster than QRGT

in certain cases.

• As shown here, it is not necessary to go down to

the implementation level (e.g., the WAM). The effi-

cient treatment of tail recursion is inherent in SLD-

resolution.
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Efficiency of Magic Sets (1)

Theorem:

• Let P be a rectified program.

• Let the standard left-to-right SIP-strategy and SLD

selection function be used.

• Then for each magic fact m p β(c1, . . . , ck) that is

derivable from MAG(P )∪EDB(P ), there is a node

in the SLD-tree with selected literal A, such that

magic[A] = m p β(c1, . . . , ck).
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Efficiency of Magic Sets (2)

Example:

• For each m path bf(i) there is a node path(i, X) in

the SLD-tree.

Note:

• I.e. magic facts correspond to selected literals in

the SLD-tree.

• Since both encode subqueries or predicate calls,

there is a strong relation between both methods.
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Efficiency of Magic Sets (3)

Definition:

• If a node A ∧ B1 ∧ · · · ∧ Bn in the SLD-tree has a

descendant node (B1 ∧ · · · ∧ Bn)θ, where θ is the

composition of the MGUs on this path, one says

that Aθ was proven as a lemma.

Theorem:

• Let P be a rectified program.

• Every non-magic fact about an IDB-predicate that

is derivable from MAG(P ) ∪ EDB(P ) is proven in

the SLD-tree as a lemma.
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Efficiency of Magic Sets (4)

path(0, X)
HH

HH

true

}
path(0,1)

path(1, X)
HH

HH

true

}
path(1,2)


path(0,2)

...

path(n− 1, X)
HH

HH

true

}
path(n− 1, n)

path(n, X)
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Efficiency of Magic Sets (5)

Reason for the Problem:

• With a linear number of nodes, one can prove a

quadratic number of lemmas.

The lemma depends on the path, or at least start and end node.

• The magic set method stores these lemmas expli-

citly. In the SLD-tree, they are only implicit.

• This problem occurs only for tail recursions.

• Otherwise (no tail recursions), the number of ap-

plicable rule instances in the transformed program

is O(number of nodes in the SLD-tree).
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Efficiency of Magic Sets (6)

• If the program contains no function symbols and

built-in predicates, bottom-up evaluation termina-

tes and needs only polynomial time (wrt DB-size).

• SLD-resolution does not always terminate. Even if

it does, it might need exponential time

An example is given on the next slide.

• There are variants of SLD-resolution that use ta-

bellation to avoid these problems (e.g. in XSB).

• But these methods have the same problem with tail

recursions (they are equivalent to magic sets).
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Efficiency of Magic Sets (7)

• There are exponentially many paths in this graph,

and Prolog (SLD-resolution) follows them all:
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• But the number of connected node pairs is quadra-

tic, and magic sets compute only these.
Because of join computations and duplicate elimination, the actual
runtime is probably O(n2 ∗ log(n)).
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Further Problems (1)

Nonrecursive Programs can Become Recursive:

• The “grandparent”-example on Slide 7-4 is non-

recursive.

• However, the output of the magic set transformati-

on for this example (Slide 7-8 and 7-9) is recursive:

parent(X, Y) ← m parent bf(X) ∧
mother(X, Y).

parent(X, Y) ← m parent bf(X) ∧
father(X, Y).

m parent bf(Y) ← m grandparent bf(X) ∧
parent(X, Y).
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Further Problems (2)

• If the bottom-up machine cannot process recursive

programs (e.g., a classical SQL-DBMS), this is a

real problem.

Otherwise, magic sets can be used for query optimzation in SQL-
systems, when the query refers to views.

• Even if recursive programs can be processed, the

recursion causes a significant overhead.

Multiple relation variants are needed for the seminaive iteration, one
cannot do a simple unfolding/expansion of the resulting relational
algebra expressions, duplicate checks are necessary.
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Further Problems (3)

• Why does this happen?

� The problem is that there are two calls of the

parent-predicate, and the magic set method uses

only one predicate (magic set) to store the ar-

guments (input values) of the calls.

� The input values of the second call depend on

the result values of the first call.

� Since the magic set method does not distinguish

between both calls, one gets a recursion.
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Further Problems (4)

• Although this is syntactically a recursion, one can

prove that a single application of the recursive ru-

le about m parent bf, and two applications of the

(recursive) rules about parent suffice.
See evaluation sequence on the next page. The important point is
that no new facts about m grandparent bf can be derived.

• No new facts will be derived if the recursive rules

are iterated further.

• This is an example of a “bounded recursion”.
If the bottom-up “machine” detects and optimizes bounded recursi-
ons, there is no problem.
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Further Problems (5)

m grandparent bf(julia)← true.
m parent bf(X) ← m grandparent bf(X).
parent(X, Y) ← m parent bf(X) ∧

mother(X, Y).
parent(X, Y) ← m parent bf(X) ∧

father(X, Y).
m parent bf(Y) ← m grandparent bf(X) ∧

parent(X, Y).
parent(X, Y) ← m parent bf(X) ∧

mother(X, Y).
parent(X, Y) ← m parent bf(X) ∧

father(X, Y).
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Further Problems (6)

Example:

• In the next two examples, web queries will be writ-

ten in Datalog.

• The following built-in predicates will be used:

� document(URL, Title, Text, Date)

� link(From, To, Label)

� index(Search_Term, URL, MaxResults)

� server(URL, Server_Part)

• Exercise: Which binding patterns can be supported

with reasonable efficiency?
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Further Problems (7)

Context Switches:

• Web pages that have changed since my last visit:
has_changed(URL) :- my_links(URL, Last_Visit),

mtime(URL, Modif),

Modif > Last_Visit.

mtime(URL, Modif) :- document(URL, _, _, Modif).

• When the magic set for calling mtime is constructed,

the bindings for Last_Visit are projected away.

• Later, these bindings must be reconstructed (with

an expensive join) for evaluating Modif > Last_Visit.
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Further Problems (8)

• Getting results back into the context of the caller:

my_links(URL,Last_Visit)

?

Modif > Last_Visit
6

URL Last_Visit
... ...

URL Last_Visit Modif
... ... ...

?
π

URL
...

6
��@@

URL Modif
... ...

@
@@R �

���

mtime(URL, Modif)
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Further Problems (9)

• Note that the source of the problem is again that

different calls to a predicate are to be collected in

a single magic predicate.

• Therefore, the context of the specific call must be

forgotten when the input arguments are entered

into the table for the magic predicate.

• This can also have advantages: Several identical

calls are merged, the result is computed only once.

• In the example, if URL were not a key in my_links,

the projection would eliminate duplicates.
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Further Problems (10)

Conditions for the Parameters:

• Magic sets pass to the called predicate only values

for the parameters, e.g. X = 5, but not, e.g., X > 5.

has_changed(URL) :- my_links(URL, Last_Visit),

mtime(URL, Modif),

Modif > Last_Visit.
• Example query:

has_changed(URL), server(URL, ’www.pitt.edu’).

• When the query is evaluated with magic sets,

all pages in my_links are accessed.
has_changed(...) must be evaluated first: server(...) needs URL bound.
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Further Problems (11)

• SLD resolution is more flexible: It would first re-

place the call to has_changed by its definition:

my_links(URL, Last_Visit),

mtime(URL, Modif),

Modif > Last_Visit,

server(URL, ’www.pitt.edu’).

• Now server(...) can be evaluated directly after

my_links(...), before the expensive call mtime(...).

• In this way, only pages of the server ’www.pitt.edu’

must be accessed.
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Further Problems (12)

• The problem is here that magic sets are bound to

the predicate structure of the program.

Which is again linked to the fact that identical calls to a predica-
te at different places in a program should be merged. This can be
advantageous in certain situations and one cannot have both.

• SIP strategies determine the evaluation sequence

only within a rule.

Plus possibly bindings that are ignored when constructing the magic
set.

• SLD selection functions determine the evaluation

sequence within the entire remaining goal.
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Further Problems (13)

• Solutions for most of the above problems are known

in the literature:

� Magic sets with tail recursion optimization.

� A version of magic sets that guarantees that

non-recursive programs remain non-recursive.

� A version of magic sets that can pass conditions

like X > 5 (unequalities) to the called predicate.

• My SLDMagic method (presented in the last part

of this chapter) solves all of the above problems in

a single framework.
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The SLD-Magic Method

Starting Point (Meta-Interpreter):

Anfrage / Programm

Interpreter for SLD-Resolution

Bottom-Up Machine


Top-Down
Machine

Input Programm written as Datalog Facts:
rule(grandparent(X,Z), [parent(X,Y), parent(Y,Z)]).

Note:

• François Bry explained magic sets in this way.
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The Meta-Interpreter (1)

• Initialization:

node(Query, [Query]):- query(Query).

• SLD-Resolution:

node(Query, Child) :- node(Query, [Lit|Rest]),
rule(Lit, Body),
append(Body, Rest, Child).

• Database Access:

node(Query, Rest) :- node(Query, [Lit|Rest]),
db(Lit).

• Query is proven:

answer(Query) :- node(Query, []).
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The Meta-Interpreter (2)

Theorem (Simulation of SLD-Resolution):

• For each node N with goal ← A1 ∧ · · · ∧ An in the

SLD-tree there is a fact node(Qθ, [A′1, . . . , A′n]) deri-

vable from the meta-iterpreter, and a variable ren-

aming σ, such that

� A′iσ = Ai (for i = 1, . . . , n), and

� Qθσ is the result of applying all MGUs on the

path from the root to the node N to the query Q.

• And vice versa corresponds each derivable node-fact

in this way to at least one node in the SLD-tree.
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The Meta-Interpreter (3)

Definition:

• A program is at most tail-recursive iff for each rule

A ← B1 ∧ · · · ∧ Bn the predicates of Bi for i ≤ n−1

do not depend on the predicate of A.

I.e. only the last literal of every rule can be recursive.

Theorem (Termination):

• Let P be at most tail-recursive and let P , the DB,

and Q be finite and without structured terms.

• Then bottom-up evaluation of the meta-interpreter

terminates.
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The Meta-Interpreter (4)

• Sometimes magic sets are better.

Therefore the user should be able to choose the

evaluation method for each body literal.

• This needs only two new rules in the interpreter.

• Start recursive call of SLD-resolution:

query(Lit) :- node(_, [call(Lit)|_]).

• Use the recursively computed results:

node(Query, Rest):- node(Query, [call(Lit)|Rest]),

answer(Lit).
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The Meta-Interpreter (5)

• This is basically SLD resolution with tabulation:

� The first rule puts the call into a table,

� the second rule takes proven lemmas from a ta-

ble in order to solve the literal.

• If call(...) is used for every body literal with an

IDB predicate, one gets something very similar to

magic sets with supplementary predicates.

query-facts correspond to facts about magic predicates, answer-facts
correspond to derived IDB-predicates, and node-facts correspond to
facts about the supplementary predicates.
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The Meta-Interpreter (6)

• With the possibility to select magic set behaviour,

one can also overcome the termination problems of

the pure SLD-meta-interpreter:

� For every recursive call that is not tail-recursive,

one uses: call(...).

• For other body literals with IDB predicates, it is

an intersting problem for the optimizer to choose

between the two evaluation strategies.
It must try to find out how often the same call will be repeated. The
strength of magic sets is that it avoids repeated calls (at the cost
explained above).
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Partial Evaluation (1)

Interpreter
+ Partial Evaluator

Compiler

Inputs for the Meta-Interpreter:

Interpreter

Database�

Query�

Program�


Known
at compiletime

}
only at runtime
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Partial Evaluation (2)

Idea:

• Fixpoint computation with conditional facts F← C.

C contains the part that is only known at runtime (typically bindings
for the variables in F).

• Application of a rule gives

� possibly a new conditional fact
After the derivation step, variables in conditional facts are norma-
lized X0, X1, . . . to ensure that there are not unnecessarily many.

� a specialized rule.

• At runtime, the evaluation works only with instan-

ces of the conditions.
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Partial Evaluation (3)

Input Program:

path(X, Y ) ← link(X, Y ).
path(X, Z) ← link(X, Y ) ∧ path(Y, Z).

? path(0, X).

Initial Set of Conditional Facts:

• query(path(0,X)) ← true.

• rule(path(X,Y),[link(X,Y)]) ← true.

• rule(path(X,Z),[link(X,Y), path(Y,Z)]) ← true.

• db(link(X,Y)) ← link(X,Y).
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Partial Evaluation (4)

Derivation Step:
Rule (from Meta-Int.): A← B1 ∧ B2
Conditional Facts: B′1← C1 B′2← C2
MGU((B1,B2), (B′1,B′2)): σ
Part. eval. Rule: E ← C1σ ∧ C2σ
Conditional Fact: Aσ←E

Encoding of Result Literals:

E has the form p(Y1, . . . ,Yn), where Yi are those

variables that appear in both, in Aσ , and in one of

the Ciσ.
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Partial Evaluation (5)

Prototype: http://www.informatik.uni-halle.de/

~brass/sldmagic/

Input: path(X,Y) :- link(X,Y).
path(X,Z) :- link(X,Y), path(Y,Z).
?- path(0, X).

Output: p0(X0) :- link(0,X0).
p1(X1) :- link(0,X1).
p0(X0) :- p1(X1), link(X1,X0).
p1(X1) :- p1(X2), link(X2,X1).
reach(d0,X0) :- p0(X0).
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Partial Evaluation (6)

Conditional Facts:

db(edge(X0,X1)) :- edge(X0,X1).

rule(path(X0,X1),[edge(X0,X1)]) :- true.

rule(path(X0,X1),[edge(X0,X2),path(X2,X1)]) :- true.

query(path(0,X0)) :- true.

node(path(0,X0),[path(0,X0)]) :- true.

node(path(0,X0),[edge(0,X0)]) :- true.

node(path(0,X0),[edge(0,X1),path(X1,X0)]) :- true.

node(path(0,X0),[]) :- p0(X0).

node(path(0,X0),[path(X1,X0)]) :- p1(X1).

node(path(0,X0),[edge(X1,X0)]) :- p2(X1).

node(path(0,X0),[edge(X1,X2),path(X2,X0)]) :- p3(X1).

answer(path(X0,X1)) :- path(X0,X1).
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Partial Evaluation (7)

Rules after partial evaluation:

• p0(X0) :- edge(0,X0).

p1(X1) :- edge(0,X1).

p2(X1) :- p1(X1).

p3(X1) :- p1(X1).

p0(X0) :- p2(X1), edge(X1,X0).

p1(X1) :- p3(X2), edge(X2,X1).

path(0,X0) :- p0(X0).

• In the version shown above already “copy rules”

were eliminated.

As can be seen, further optimizations are possible, but already this
program does not more steps than SLD-resolution.
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