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Deductive Databases and Logic Programming

(Winter 2007/2008)

Chapter 6: Bottom-Up
Evaluation

• Evaluation of logic programs with DB techniques.

• Predicate dependency graph.

• Seminaive evaluation.

• A compiler for Datalog into C+SQL.
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Objectives

After completing this chapter, you should be able to:

• explain how bottom-up evaluation works.

• draw the predicate dependency graph for a given

program, determine recursive cliques.

• translate a given Datalog rule into relational algebra

and SQL.

• explain seminaive evaluation.

• translate a given Datalog program into C+SQL.
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Overview

1. Basic Approach of Bottom-Up Evaluation
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2. Predicate Dependency Graph

3. Translation of Rules

4. First Compiler for Datalog

5. Seminaive Evaluation

6. Further Remarks: Optimizations, Problems
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Bottom-Up Evaluation: Goal

Given:

• Relational DB with relations for EDB-predicates

• Logic program P that defines IDB-predicates

Compute:

• Minimal model, i.e. relations for IDB-predicates.
This corresponds to the materialization of the views defined by the
logic program P . The extension of the derived predicates is computed.

• Only the extension of the special predicate answer

is important.
Defined by answer(X1, . . . , Xn)← Q with query Q with variables Xi.
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Basic Method (1)

• Compute the minimal model as least fixpoint of TP

iteratively. The simplest (very naive) algorithm is:

(1) I := ∅;
(2) Inew := TP(I);
(3) while Inew 6= I do
(4) I := Inew;
(5) Inew := TP(I);
(6) od;
(7) print I[[answer]];

• The immediate consequence operator TP has to be

implemented with database techniques.
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Basic Method (2)

Problems:

• Assignment of whole database states I?
It would be better to update only single relations.

• The relations for the EDB-predicates are given and

do not change during the evaluation.

• Norecursive rules should be applied only once.

In general, every fact should be derived only once.

• Not all facts in the minimal model are relevant for

the given query (→ Magic Sets, Chapter 7).

After the transformation, all facts in the minimal model are relevant.
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Basic Method (3)

Interpretation vs. Compilation:

• Above, a bottom-up interpreter was shown.

• Often, the same logic program is executed several

times for different database states.

I.e. at different times, when updates had occurred in the meantime.

• The time invested in analysis of the input program

and query optimization should be amortized over

several executions of the program.

• The goal is to translate Datalog into imperative

programs (relational algebra + Control structures).

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2007



6. Bottom-Up Evaluation 6-8

Example: Input

• Let the given program be:

parent(X, Y) ← mother(X, Y).
parent(X, Y) ← father(X, Y).
ancestor(X, Y) ← parent(X, Y).
ancestor(X, Z) ← parent(X, Y) ∧ ancestor(Y, Z).
answer(X) ← ancestor(julia, X).

• The last rule was automatically added for the query

ancestor(julia, X).

• EDB-Predicates (stored in the database):

� father

� mother
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Example: Output

(1) parent := mother ∪ father;
(2) ancestor := ∅;
(3) ancestor_new := parent;
(4) while ancestor_new 6= ∅ do
(5) ancestor := ancestor ∪ ancestor_new;
(6) ancestor_new :=
(7) π$1,$3(parent ��@@

$2=$1
ancestor_new);

(8) ancestor_new := ancestor_new− ancestor;
(9) od;

(10) answer := π$2

(
σ$1=’julia’(ancestor)

)
;

(11) print answer;
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Example: Remark

• Here, a version of relational algebra is used that

refers to columns by position, not by name.

Some more theoretical database textbooks use this convention be-
cause it is easier to define, e.g. there can be no name clashes.

• Usually, the columns of IDB-predicates have no na-

mes, but one could of course assign artifical names.

E.g., if one uses an SQL-database.

• $i is the i-th column of the input relation.

• For the join R ��@@

$i=$j
S, the i-th column of R must

be equal to the j-th column of S.
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Example: Exercise

• Please execute the above program for the following

database state:

mother

Child Mother

emil birgit

frida doris

julia frida

father

Child Father

emil arno

frida chris

julia emil
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EDB- vs. IDB-Predicates (1)

• The distinction between EDB- and IDB-predicates

is not important for the semantics (minimal mo-

del), and also not for SLD-resolution, but it is fun-

damental for bottom-up query evaluation.

• Above (in the chapter about Pure Prolog), it was

assumed that the EDB-predicates are defined in the

logic program (as facts). This is usual in Prolog.

• However, in database applications there are often

thousands or millions of facts, but only a few rules.
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EDB- vs. IDB-Predicates (2)

• A fact can be seen as special case of a rule (a rule

with empty body), but since this special case is so

common, it deserves a special treatment.

It is a general principle of efficiency improvement to treat simple and
very common special cases separately.

• Furthermore,

� facts are changed by updates, whereas

� a query might be executed several times, and

� view definitions are stable.
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EDB- vs. IDB-Predicates (3)

Definition:

• Given a logic program P , a predicate p that occurs

in P is an IDB-predicate (of P ), if P contains at

least one rule A ← B1 ∧ · · · ∧ Bm with pred(A) = p

and m ≥ 1, or an EDB-predicate (of P ) otherwise.

• Let PIDB(P ) be the set of IDB-predicates of P , and

PEDB(P ) be its set of EDB-predicates.

• IDB(P ) := {A← B1 ∧ · · · ∧Bm ∈ P |
pred(A) ∈ PIDB(P ), m ≥ 0}.

EDB(P ) := {A | A← true ∈ P, p(A) ∈ PEDB(P )}.
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EDB- vs. IDB-Predicates (4)

Interpreter with Distinction EDB-IDB:

(1) Idb := EDB(P );
(2) P ′ := IDB(P );
(3) I := ∅;
(4) Inew := TP ′(I ∪ Idb);
(5) while Inew 6= I do
(6) I := Inew;
(7) Inew := TP ′(I ∪ Idb);
(8) od;
(9) print I(answer);
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Overview

1. Basic Approach of Bottom-Up Evaluation

2. Predicate Dependency Graph
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3. Translation of Rules

4. First Compiler for Datalog

5. Seminaive Evaluation

6. Further Remarks: Optimizations, Problems
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Predicate Depencencies (1)

Definition:

• The predicate-dependency graph of a logic program

P is the directed graph DG(P ) = (V, E) with

� the set V of nodes is the set of all predicates

that occur in P ,

� there is an edge from p to q, i.e. (p, q) ∈ E ⊆ V×V,

if and only if there is a rule A ← B1 ∧ · · · ∧ Bm

in P and i ∈ {1, . . . , m}, such that pred(Bi) = p

and pred(A) = q.

Some authors use the other direction of the arrows.
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Predicate Dependencies (2)

Example:

parent(X, Y) ← mother(X, Y).
parent(X, Y) ← father(X, Y).
ancestor(X, Y)← parent(X, Y).
ancestor(X, Z)← parent(X, Y) ∧

ancestor(Y, Z).
answer(X) ← ancestor(julia, X).

answer
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Predicate Dependencies (3)

Definition:

• Let a logic program P be given.

• A predicate q depends on a predicate p iff there is a

path (consisting of one or more edges) from p to q

in DG(P ).

• A predicate p is recursive iff p depends on itself.

• The nodes {p1, . . . , pk} of a strongly connected com-

ponent (SCC) of DG(P ) are called recursive clique.

• Two predicates p and q that belong to the same

recursive clique are mutually recursive.
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Predicate Dependencies (4)

Exercise:

Compute the predicate dependency graph and the (mu-

tually) recursive predicates for the following program:
rule and rhs contain a context free grammar. The program computes the
nonterminal symbols from which the empty string can be derived.

empty until(Rule, 0) ← rule(Rule, , ).
empty until(Rule, Next) ← empty until(Rule, Pos) ∧

succ(Pos, Next) ∧
rhs(Rule, Next, NonTerm) ∧
empty(NonTerm).

empty(Left) ← rule(Rule, Left, RightSize) ∧
empty until(Rule, RightSize).
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Predicate Dependencies (5)

Definition:

• A rule A← B1∧ · · · ∧Bm is a recursive rule iff there

is i ∈ {1, . . . , m}, such that pred(Bi) depends on

pred(A).

Note that not all rules about a recursive predicate are recursive rules.

• Let P be a logic program and C ⊆ PIDB(P ). Then

� rec(P, C) is the set of recursive rules from P

about predicates in C.

� nrec(P, C) is the set of nonrecursive rules from P

about predicates in C.
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Predicate Dependencies (6)

Definition:

The reduced predicate-dependency graph of a program

P is the directed acyclic graph RG(P ) = (V̂ , Ê) with

• V̂ := {C ⊆ PIDB(P ) | C is recursive clique}
∪ {p ∈ PIDB(P ) | p is non-recursive}.

• (C1, C2) ∈ Ê if and only if C1 6= C2 and there are

p1, p2 ∈ PIDB(P ) with

� p1 ∈ C1 or p1 = C1,

� p2 ∈ C2 or p2 = C2,

� there is an edge p1 −→ p2 in DG(P ).
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Predicate Dependencies (7)

Exercise:

• Compute the reduced predicate dependency graph:

p1 ← q1 ∧ q2.
p1 ← q1 ∧ q3.
p2 ← p1.
p3 ← q3.
p3 ← p1.
p3 ← p2.
p4 ← p2 ∧ p3.
p5 ← p4 ∧ q2.

p6 ← p5.
p4 ← p6.
p7 ← p5 ∧ p3.
p7 ← q4 ∧ p7.
p8 ← p2.
p9 ← p8 ∧ p7.
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Predicate Dependencies (8)

Definition:

• Let P be a logic program and RG(P ) = (V̂ , Ê) be

its reduced predicate-dependency graph.

• A predicate evaluation sequence for P is a sequence

C1, . . . , Ck of the nodes of this graph such that

for all i, j ∈ {1, . . . , k}: (Ci, Cj) ∈ Ê =⇒ i < j

(i.e. there are only forward edges).

• One gets such a sequence by topologically sorting

V̂ with respect to the order relation Ê.
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Predicate Dependencies (9)

• A predicate evaluation sequence always exists.
However, it may be not unique.

• Example: A predicate evaluation sequence for

parent(X, Y) ← mother(X, Y).
parent(X, Y) ← father(X, Y).
ancestor(X, Y)← parent(X, Y).
ancestor(X, Z)← parent(X, Y) ∧ ancestor(Y, Z).
answer(X) ← ancestor(julia, X).

is parent, {ancestor}, answer.

• Exercise: Compute a predicate evaluation sequence

for the program on Slide 6-23.
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Predicate Dependencies (10)

Interpreter with evaluation sequence

(1) Idb := EDB(P );
(2) Compute evaluation sequence C1, . . . , Ck;
(3) I := ∅;
(4) for i := 1 to k do
(5) /* Extend I by evaluating Ci: */
(6) . . . see next slide . . .

(16) od;
(17) print I(answer);
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Predicate Dependencies (11)

(6) if Ci is nonrecursive predicate p then
(7) I := I ∪ Tnrec(P, {p})(I ∪ Idb);

(8) else /* Ci is recursive clique */
(9) Inew := Tnrec(P, Ci)

(I ∪ Idb);
(10) while Inew 6= ∅ do
(11) I := I ∪ Inew;
(12) Inew := Trec(P, Ci)

(I ∪ Idb);
(13) Inew := Inew − I;
(14) od;
(15) fi;
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Predicate Dependencies (12)

Remark (Rule Dependency Graph):

• One can also define a rule-dependency graph in

which the rules are represented as nodes, and there

is an edge from rule R1 to rule R2 if the body of R2

contains a predicate that appears in the head of R1.

• This graph contains so many edges that it is never

used (but see predicate-rule graph below).

• An advantage might be that the recursive rules are

exactly the rules occurring in cycles.
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Predicate Dependencies (13)

Remark (Predicate-Rule Graph):

• An improvement is the predicate-rule graph: It is a

bipartite graph with rules and predicates as nodes.

� There is an edge from predicate p to rule R if p

appears in the body of R.

� There is an edge from rule R to predicate p if p

appears in the head of R.

• But the predicate dependency graph is the smal-

lest of the three, and together with the rules, the

information in the other graphs can easily derived.
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Translation of Rules (1)

• Statements like the following must still be further

refined:
I := I ∪ Tnrec(P,Ci)

(I ∪ Idb);

• For nonrecursive components (and seminaive eva-

luation of recursive ones, see below), rules can be

executed one after the other.

• I.e., if head and body predicates are disjoint,

I := I ∪ T{R1,...,Rn}(I)
is equivalent to

I := I ∪ T{R1}(I); . . . I := I ∪ T{Rn}(I);
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Translation of Rules (2)

Example:

• Input rule: p(X, a)← q(X, Y ) ∧ r(Y, b).

• The principles are:

� Do a selection for constants in the body,
Or if a variable appears more than once in the same body literal.

� a join for common variables of different body

literals, and

� a projection for the head.

• Translation into relational algebra:

p := p ∪ π$1,a

(
q ��@@

$2=$1
σ$2=b(r)

)
.
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Translation of Rules (3)

Example, continued:

• The same principles are applied for a translation to

SQL.

• Input rule (again): p(X, a)← q(X, Y ) ∧ r(Y, b).

• Execution in an SQL database:

INSERT INTO p (SELECT DISTINCT B1.$1, ’a’
FROM q B1, r B2
WHERE B1.$2=B2.$1 AND B2.$2=’b’)

• Of course, the $i could be replaced by other column

names.
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Translation of Rules (4)

• Input Rule (again): p(X, a)← q(X, Y ) ∧ r(Y, b).

• Direct implementation with “Nested Loop Join”:

(1) foreach B1 ∈ q do
(2) X := B1[1]; Y := B1[2];
(3) foreach B2 ∈ r do
(4) if B2[1] = Y and B2[2] = ’b’ then
(5) /* Insert tuple into p */
(6) . . . see next slide . . .

(16) fi;
(17) od;
(18) od;
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Translation of Rules (5)

• Insertion with duplicate test:

(6) Duplicate := false;
(7) foreach A ∈ p do
(8) if A[1] = X and A[2] = ’a’ then
(9) Duplicate := true; break;

(10) fi;
(11) od;
(12) if not Duplicate then
(13) new A′; A′[1] = X; A′[2] = ’a’;
(14) append A′ to p;
(15) fi;
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Translation of Rules (6)

Exercises:

• Name some alternatives for evaluating this rule.

E.g. another join method, using indexes. Are there other possibilities
for eliminating duplicates?

• If this is the only/first rule about p, is it possible to

work without the duplicate test?

Or is further knowledge necessary (key constraints)?

• For nonrecursive programs, it is possible to elimi-

nate duplicates only once at the end. What are the

advantages and disadvantages?
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Translation of Rules (7)

Exercises, continued:

• Why might this method (deferred duplicate elimi-

nation) be dangerous in recursive programs?

• Name some advantages and disadvantages of using

a commercial DBMS (translation into SQL) com-

pared with the direct translation to Pascal.

At this state, it might be difficult to find convincing disadvantages.
When discussing seminaive evaluation below, it will become clear that
some kind of versioned relations are needed that are missing in todays
commercial databases.
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Translation of Rules (8)

Remark (General Approach):

• It is not difficult to write a program for translating

Datalog rules into relational algebra or SQL.
However, a good translation into program code (Pascal, C, abstract
machine) that contains a query optimizer and efficiently accesses ex-
ternal memory is a big project (basically, one reimplements a DBMS).

• When a variable appears for the first time, one has

to remember its value (or a reference to the va-

lue), and for every future occurrence of the same

variable, one must do a comparison.
E.g., when translating to SQL, one will use a table that maps X

to B1.$1 after the first body literal is processed.
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Nonrecursive Programs (1)

• If there are several rules about a predicate, one can

combine the respective algebra expressions / SQL

queries with ∪/UNION.

• For non-recursive programs, one can successively

replace the IDB-predicates in the algebra expression

for answer by their definitions (algebra expressions).

Like a macro expansion. This process is called “unfolding”.

• In this way, one gets a single algebra expression

that contains only EDB-predicates and computes

the query result.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2007



6. Bottom-Up Evaluation 6-40

Nonrecursive Programs (2)

• If one works with SQL, one can also translate an

entire nonrecursive Datalog program into a single

SQL query.

This is obvious, since SQL is at least as powerful as relational algebra:
If a translation to relational algebra is possible, the resulting algebra
expression can be translated to SQL.

• One can also define views for the IDB predicates.

• Many DBMS will internally do a view expansion.
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Nonrecursive Programs (3)

• When the IDB predicates are eliminated, the opti-

mizer has more possibilities (it is not bound by the

partitioning of the program into different predicate

definitions).

The optimizer than can globally work on the entire query instead of
optimizing only locally every single rule.

• Thus, this single big query will often be executed

more efficiently than the sequential execution of all

rules.
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Nonrecursive Programs (4)

• Another important advantage of the single big que-

ry is that the IDB predicates do not have to be

“materialized” in this way (explicitly stored).

• Database systems often use internally iterators for

subexpressions that compute the next tuple only

when it is actually needed.

• Since main memory is restricted, it is important to

store intermediate results only when really necessa-

ry, e.g. when sorting.
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Nonrecursive Programs (5)

• An exception occurs if the same predicate is used

several times: The DBMS might not detect the

common subexpression and recompute the same in-

termediate tuples.

• The effect is not so clear and deserves are careful

analysis: If the work for recomputation is cheap,

that might still be the better alternative.

• Also, if different parts of the extension of the pre-

dicates are used, treating the two subexpressions

separately might be much better.
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Nonrecursive Programs (6)

Exercise:

• Translate the following program into a single alge-

bra expression (and a single SQL query):

parent(X, Y) ← mother(X, Y).
parent(X, Y) ← father(X, Y).
grandfather(X, Z) ← parent(X, Y) ∧ father(Y, Z).
answer(X) ← grandfather(julia, X).

• Do an algebraic optimization and discuss different

query evaluation plans.

If you took Database Systems II B”.
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Recursive Programs

• In this case, there are two interpretations (I, Inew):

Inew := Trec(P,Ci)
(I ∪ Idb);

Actually three, but I and Idb define disjoint predicates.

• Solution: One uses only a single interpretation (da-

tabase), but introduces different variants of the pre-

dicates. E.g.

ancestor(X, Z)← parent(X, Y) ∧ ancestor(Y, Z)

is translated like

ancestor_new(X, Z)← parent(X, Y) ∧ ancestor(Y, Z).
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Compiler for Datalog (1)

• One can get a compiler from an interpreter by par-

tial evaluation.

• The interpreter is executed as far as possible.

The logic program is already known (at compile time), but the input
relations (values for the EDB predicates) will only be known at runti-
me. If an EDB predicate is known to be small and very stable (lookup
tables), one could think about using it in the compilation.

• Whenever a statement depends on the actual data,

one prints the statement instead of executing it.

Of course, it might be possible to specialize/simplify the statement.
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Compiler for Datalog (2)

Notation/Auxillary Procedures:

• Pnew
IDB(P ) := {p new | p ∈ PIDB(P ), p is recursive}.

• translate(C) translates rule sets as explained in the

last section.

• make head new(C) changes every predicate p in a

rule head to p new.
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Compiler for Datalog (3)

(1) foreach p ∈ PIDB(P ) ∪ Pnew
IDB(P ) do

(2) print "CREATE TABLE p (...)"; od;
(3)
(4) Compute evaluation sequence C1, . . . , Ck;
(5) for i := 1 to k do /* Evaluate Ci: */
(6) . . . see next slide . . .

(16) od;
(17)
(18) print "SELECT * FROM answer";
(19) foreach p ∈ PIDB(P ) ∪ Pnew

IDB(P ) do
(20) print "DROP TABLE p"; od;
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Compiler for Datalog (4)

(6) if Ci is nonrecursive predicate p then

(7) translate
(
nrec(P, Ci)

)
;

(8) else /* Ci is recursive clique */
(9) translate

(
make head new(nrec(P, Ci))

)
;

(10) print "WHILE ";
(11) print while cond(Ci);
(12) print " DO ";
(13) print while body(Ci, P );
(14) print " OD;";
(15) fi;
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Compiler for Datalog (5)

(1) procedure print while cond(Ci):
(2) First := true;
(3) foreach p ∈ Ci do
(4) if not First then
(5) print " OR ";
(6) else
(7) First := false;
(8) fi;
(9) print "p new 6= ∅";

(10) od;
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Compiler for Datalog (6)

(1) procedure print while body(Ci, P ):
(2) foreach p ∈ Ci do
(3) print "p := p ∪ p new;";
(4) od;

(5) translate
(
make head new(rec(P, Ci))

)
;

(6) foreach p ∈ Ci do
(7) print "p new := p new − p;";
(8) od;
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Overview

1. Basic Approach of Bottom-Up Evaluation

2. Predicate Dependency Graph

3. Translation of Rules

4. First Compiler for Datalog

5. Seminaive Evaluation

'

&

$

%
6. Further Remarks: Optimizations, Problems
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Seminaive Evaluation (1)

• The first algorithm, which simply iterates to TP -

operator until a fixpoint is reached, is called “naive

bottom-up evaluation”.

• The main disadvantage is that in every iteration, it

recomputes the facts already known from previous

iterations.

• The goal now is that every applicable rule instance

is applied only once.

Actually, one would like to derive only fact only once. But if a fact
can be derived with different rule instances, this is at least difficult.
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Seminaive Evaluation (2)

• With the improved algorithm above that uses the

predicate dependency graph, the goal (single app-

lication of every applicable rule instance) was rea-

ched for nonrecursive programs.

• But for recursive programs, nothing has changed.
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Seminaive Evaluation (3)

Translation Result so far:

(1) ancestor_new := parent;
(2) while ancestor_new 6= ∅ do
(3) ancestor := ancestor ∪ ancestor_new;
(4) ancestor_new :=
(5) π$1,$3(parent ��@@

$2=$1
ancestor);

(6) ancestor_new := ancestor_new− ancestor;
(7) od;
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Seminaive Evaluation (4)

Naive Evaluation, Iteration 1:

ancestor_new(X, Z)← parent(X, Y) ∧ ancestor(Y, Z)

?

grandparents

6

parents
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Seminaive Evaluation (5)

Naive Evaluation, Iteration 2:

ancestor_new(X, Z)← parent(X, Y) ∧ ancestor(Y, Z)

?

grandparents

great-grandparents

6

parents

grandparents
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Seminaive Evaluation (6)

Naive Evaluation, Iteration 3:

ancestor_new(X, Z)← parent(X, Y) ∧ ancestor(Y, Z)

?

grandparents

great-grandparents

great2-grandparents

6

parents

grandparents

great-grandparents
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Seminaive Evaluation (7)

Basic Idea:

• Solution: Seminaive/Differential Evaluation.

• If there is only one recursive body literal, it suffices

to match it only with new facts, i.e. facts that were

derived in the last iteration.

• In the example, one could replace ancestor in the

body by ancestor_new:

ancestor_new := π$1,$3(parent ��@@

$2=$1
ancestor_new);
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Seminaive Evaluation (8)

• The general case is a bit more complicated:

� If there are several recursive body literals, one

also has to consider combinations of old and new

body literals.

� It might be a problem that the same relation is

used in head and body.
Chaos could occur when a relation is modified while it is accessed.
However, if one uses an SQL database, this would make sure that
the SELECT-query in an INSERT-statement is completely evaluated
before the tuples are actually inserted. Then there could be only
problems when there are several rules or several mutually recursive
predicates (the rule applications in one iteration should be based
on the same database state).
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Seminaive Evaluation (9)

• Seminaive evaluation is defined by a program trans-

formation using new, system-defined predicates.

• For every recursive predicate p, three additional va-

riants are introduced:

� p old: Tuples that existed already when the pre-

vious iteration started.

� p diff : Tuples that were newly derived in the

previous iteration.

� p: Value after previous iteration (p old∪ p diff).

� p new: Tuples to be computed in this iteration.
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Seminaive Evaluation (10)

Seminaive Evaluation, Iteration 3:

Parents

Grandparents

 ancestor_old

Great-Grandparents

}
ancestor_diff


ancestor

Great2-Grandparents

}
ancestor_new
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Seminaive Evaluation (11)

Seminaive Evaluation, Iteration 3:

ancestor_new(X, Z)← parent(X, Y) ∧ ancestor_diff(Y, Z)

?

great2-grandparents

6

great-grandparents
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Seminaive Evaluation (12)

• Example: p(X, Z)← p(X, Y) ∧ p(Y, Z).

p old

p diff
H

HHH
HHH

HHH
HHH

HH�
���

���
���

���
��

p old

p diff


p

• Result of the transformation:

p new(X, Z) ← p diff(X, Y) ∧ p(Y, Z).
p new(X, Z) ← p old(X, Y) ∧ p diff(Y, Z).
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Seminaive Evaluation (13)

• For n recursive body literals, 2n − 1 combinations

of “old” and “diff” must be considered.

In practice, this would not be as bad as it sounds theoretically, because
rules with more than two recursive body literals are very seldom.

• However, since there is also a relation for the union

(p = p old ∪ p diff), one can write this down with

n rules.

• Of the 2n possible combinations of “old” and “diff”,

seminaive evaluation only avoids one combination,

namely, where all tuples are old.
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Seminaive Evaluation (14)

• However, since the “old” tuples are possibly col-

lected over many iterations, there are often many

more “old” tuples than “diff” tuples (only 1 iter.).

• In this case, avoiding the combination of old with

old tuples really saves work.

• Furthermore, it might be important that every rule

instance is applied only once:

� For avoiding duplicate tests.

� For using the right number of duplicates in ag-

gregation functions like sum and avg.
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Seminaive Evaluation (15)

• Initialization (before the while-loop):

(1) p old := ∅;
(2) p diff := Facts from nonrecursive rules;
(3) p := p diff ;
(4) p new := ∅;

• After every iteration:

(1) p old := p old ∪ p diff ; /* Or: p old := p; */
(2) p diff := p new − p old;
(3) /* Or: p diff := p new − p; */
(4) p := p old ∪ p diff ;
(5) p new := ∅;

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2007



6. Bottom-Up Evaluation 6-69

Seminaive Evaluation (16)

Managing different variants of a relation:

• Of course, it is quite inefficient to really use four

relations per recursive predicate.
Especially the copying of tuples between different relations seems
superfluous work.

• But with a standard SQL database, there seems to

be no perfect solution.
As mentioned above, if there are not many recursive body literals, one
could avoid one of the four relations. Furthermore, if there is only a
single rule with a single recursive body literal, two relations would
suffice as shown in the ancestor-example.
Another approach is to use a single relation with an additional column
for the iteration step in which the tuple was derived.
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Seminaive Evaluation (17)

• If one builds a deductive DBMS from scratch, one

can use a new data structure, e.g. consisting of:

� A B-tree/hash table to detect duplicates. Deri-

ved tuples are immediately checked, only p new−p

is stored.

� A file/linked list, in which new tuples are only ap-

pended at the end. Then p old, p diff and p new

can be implemented by position pointers.

End of the list before the previous iteration step, after the previous
iteration step, and the current end of the list. Then after each
iteration only these pointers must be updated, no tuples copied.
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Seminaive Evaluation (18)

• In the above data structure, every tuple is stored

twice: In the B-tree in sort order, in the list in de-

rivation sequence.

• In a standard SQL DBMS, a heap file with a B-tree

index over all attributes would look similar.

• However, standard DBMS do not guarantee to sto-

re tuples in the heap file in insertion sequence.

Actually, effort is invested to ensure that if a short tuple arrives after
a large tuple, the short tuple might be used to fill a block that did
not have enough space for the large tuple. Furthermore, it is not clear
whether the order on the ROWIDs is meaningful.
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Seminaive Evaluation (19)

Own data structure for recursive predicates:

...

� p old: Tupel 1 to 102
...

� p diff : Tupel 103 to 120
...

� p new − p: Tupel 121 to 129
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Seminaive Evaluation (20)

Own data structure for recursive predicates:

After switching to
next iteration step

...

�@
@@�
�� p old: Tupel 1 to 120

�
�

�
�	

...
�@

@@�
�� p diff : Tupel 121 to 129

�
�

�
�	

...
� p new − p: No tuples yet
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Overview

1. Basic Approach of Bottom-Up Evaluation

2. Predicate Dependency Graph

3. Translation of Rules

4. First Compiler for Datalog

5. Seminaive Evaluation

6. Further Remarks: Optimizations, Problems
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Using a RDBMS (1)

• As mentioned before, a relatively easy implementa-

tion option for a deductive DBMS is to use a re-

lational DBMS as a basis, and translate the given

logic program into SQL plus control structures.

• This will not give optimal performance:

� Versioned relations as needed for seminaive eva-

luation are not supported.

Alteratively, the following kind of statement would be useful: Insert
a tuple into R and S, if it is not already in R.

� (continued on next slide)
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Using a RDBMS (2)

• Reasons for suboptimal performance when using a

standard relational DBMS, continued:

� Only INSERT is needed for IDB-relations, no UPDATE

or DELETE. The storage structures should be op-

timized for this case.

� No size information is known about the IDB-

relations when the logic program is translated,

and during seminaive iteration, the size changes

drastically.

Runtime optimization might help here.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2007



6. Bottom-Up Evaluation 6-77

Using a RDBMS (3)

• Other important issued when implementing a de-

ductive DBMS based on a standard RDBMS:

� Modern RDBMS support temporary relations (no

recovery, no multi-user access). These should be

used for IDB-relations.

� It is important not to materialize IDB predicates,

at least when the predicate is used only once.

� One should use stored procedures in order to

avoid network traffic between server and client

during the execution of the logic program.
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Further Optimizations (1)

• Tests have shown that a large fraction of the run-

time is used for duplicate elimination.

� Therefore, the optimizer should do an analysis

which rules can never produce duplicates.

• Recursive rules produce larger and larger interme-

diate results, which are usually kept until the end

of the iteration.

� It would be better to use the tuples immediately

and then delete them.
This can only work if the recursive rule will not produce duplicates.
Otherwise the old tuples are needed to ensure termination.
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Further Optimizations (2)

• An optimal situation is when only a single tuple

of the recursive predicate is needed at each time

point.

/* Computes position of first space in string */
first space(Pos) ← no space before(Pos) ∧

string(Pos, ’ ’).
no space before(1).
no space before(Next) ← no space before(Pos) ∧

string(Pos, Char) ∧
Char 6= ’ ’ ∧
succ(Pos, Next).
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